Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 180
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(18): e2313442121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648483

ABSTRACT

Seasonal migration is a widespread behavior relevant for adaptation and speciation, yet knowledge of its genetic basis is limited. We leveraged advances in tracking and sequencing technologies to bridge this gap in a well-characterized hybrid zone between songbirds that differ in migratory behavior. Migration requires the coordinated action of many traits, including orientation, timing, and wing morphology. We used genetic mapping to show these traits are highly heritable and genetically correlated, explaining how migration has evolved so rapidly in the past and suggesting future responses to climate change may be possible. Many of these traits mapped to the same genomic regions and small structural variants indicating the same, or tightly linked, genes underlie them. Analyses integrating transcriptomic data indicate cholinergic receptors could control multiple traits. Furthermore, analyses integrating genomic differentiation further suggested genes underlying migratory traits help maintain reproductive isolation in this hybrid zone.


Subject(s)
Animal Migration , Seasons , Songbirds , Animals , Animal Migration/physiology , Songbirds/genetics , Songbirds/physiology , Genetic Speciation , Hybridization, Genetic , Receptors, Cholinergic/genetics , Receptors, Cholinergic/metabolism , Genomics/methods , Chromosome Mapping
2.
Proc Natl Acad Sci U S A ; 119(23): e2118448119, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35658073

ABSTRACT

During vocal exchanges, hearing specific auditory signals can provoke vocal responses or suppress vocalizations to avoid interference. These abilities result in the widespread phenomenon of vocal turn taking, yet little is known about the neural circuitry that regulates the input-dependent timing of vocal replies. Previous work in vocally interacting zebra finches has highlighted the importance of premotor inhibition for precisely timed vocal output. By developing physiologically constrained mathematical models, we derived circuit mechanisms based on feedforward inhibition that enable both the temporal modulation of vocal premotor drive as well as auditory suppression of vocalization during listening. Extracellular recordings in HVC during the listening phase confirmed the presence of auditory-evoked response patterns in putative inhibitory interneurons, along with corresponding signatures of auditory-evoked activity suppression. Further, intracellular recordings of identified neurons projecting to HVC from the upstream sensorimotor nucleus, nucleus interfacialis (NIf), shed light on the timing of auditory inputs to this network. The analysis of incrementally time-lagged interactions between auditory and premotor activity in the model resulted in the prediction of a window of auditory suppression, which could be, in turn, verified in behavioral data. A phasic feedforward inhibition model consistently explained the experimental results. This mechanism highlights a parsimonious and generalizable principle for how different driving inputs (vocal and auditory related) can be integrated in a single sensorimotor circuit to regulate two opposing vocal behavioral outcomes: the controlled timing of vocal output or the suppression of overlapping vocalizations.


Subject(s)
Finches , Animals , Auditory Perception/physiology , Finches/physiology , Inhibition, Psychological , Vocalization, Animal/physiology
3.
Am Nat ; 203(5): 576-589, 2024 May.
Article in English | MEDLINE | ID: mdl-38635359

ABSTRACT

AbstractLong-term social and genetic monogamy is rare in animals except birds, but even in birds it is infrequent and poorly understood. We investigated possible advantages of monogamy in a colonial, facultative cooperatively breeding bird from an arid, unpredictable environment, the sociable weaver (Philetairus socius). We documented divorce and extrapair paternity of 703 pairs over 10 years and separated effects of pair duration from breeding experience by analyzing longitudinal and cross-sectional datasets. Parts of the colonies were protected from nest predation, thereby limiting its stochastic and thus confounding effect on fitness measures. We found that 6.4% of sociable weaver pairs divorced and 2.2% of young were extrapair. Longer pair-bonds were associated with more clutches and fledglings per season and with reproducing earlier and later in the season, when snake predation is lower, but not with increased egg or fledgling mass or with nestling survival. Finally, the number of helpers at the nest increased with pair-bond duration. Results were similar for protected and unprotected nests. We suggest that long-term monogamy is associated with a better capacity for exploiting a temporally unpredictable environment and helps to form larger groups. These results can contribute to our understanding of why long-term monogamy is frequently associated with unpredictable environments and cooperation.


Subject(s)
Pair Bond , Sparrows , Animals , Cross-Sectional Studies , Predatory Behavior , Reproduction
4.
Am Nat ; 203(5): 562-575, 2024 May.
Article in English | MEDLINE | ID: mdl-38635362

ABSTRACT

AbstractIn species with resource-defense mating systems (such as most temperate-breeding songbirds), male dispersal is often considered to be limited in both frequency and spatial extent. When dispersal occurs within a breeding season, the favored explanation is ecological resource tracking. In contrast, movements of male birds associated with temporary emigration, such as polyterritoriality (i.e., defense of an additional location after attracting a female in the initial territory), are usually attributed to mate searching. We suggest that male dispersal and polyterritoriality are functionally related and that mate searching may be a unifying hypothesis for predicting the within-season movements of male songbirds. Here, we test three key predictions derived from this hypothesis in Wood Warblers (Phylloscopus sibilatrix). We collected data on the spatial behavior of 107 males between 2017 and 2019 and related male movements to a new territory (in both a dispersal and a polyterritorial context) to mating potential in the current territory. Most males dispersed from their territories within days or weeks after failing to attract a female, despite occupying territories in apparently suitable habitat. Probability of polyterritoriality by paired males increased after the peak fertile period of their mate. Males never dispersed following nest predation if the female remained to renest. Thus, our data are consistent with the hypothesis that both movement types are functionally related to mate searching.


Subject(s)
Songbirds , Animals , Female , Male , Sexual Behavior, Animal , Seasons , Ecosystem , Reproduction
5.
Proc Biol Sci ; 291(2021): 20232427, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38628131

ABSTRACT

Cooperation may emerge from intrinsic factors such as social structure and extrinsic factors such as environmental conditions. Although these factors might reinforce or counteract each other, their interaction remains unexplored in animal populations. Studies on multilevel societies suggest a link between social structure, environmental conditions and individual investment in cooperative behaviours. These societies exhibit flexible social configurations, with stable groups that overlap and associate hierarchically. Structure can be seasonal, with upper-level units appearing only during specific seasons, and lower-level units persisting year-round. This offers an opportunity to investigate how cooperation relates to social structure and environmental conditions. Here, we study the seasonal multilevel society of superb fairy-wrens (Malurus cyaneus), observing individual responses to experimental playback of conspecific distress calls. Individuals engaged more in helping behaviour and less in aggressive/territorial song during the harsher non-breeding season compared to the breeding season. The increase in cooperation was greater for breeding group members than for members of the same community, the upper social unit, comprised of distinct breeding groups in association. Results suggest that the interaction between social structure and environmental conditions drives the seasonal switch in cooperation, supporting the hypothesis that multilevel societies can emerge to increase cooperation during harsh environmental conditions.


Subject(s)
Passeriformes , Songbirds , Humans , Animals , Songbirds/physiology , Cooperative Behavior , Territoriality , Helping Behavior
6.
Emerg Infect Dis ; 29(11): 2298-2306, 2023 11.
Article in English | MEDLINE | ID: mdl-37877570

ABSTRACT

Salmonella infection causes epidemic death in wild songbirds, with potential to spread to humans. In February 2021, public health officials in Oregon and Washington, USA, isolated a strain of Salmonella enterica serovar Typhimurium from humans and a wild songbird. Investigation by public health partners ultimately identified 30 illnesses in 12 states linked to an epidemic of Salmonella Typhimurium in songbirds. We report a multistate outbreak of human salmonellosis associated with songbirds, resulting from direct handling of sick and dead birds or indirect contact with contaminated birdfeeders. Companion animals might have contributed to the spread of Salmonella between songbirds and patients; the outbreak strain was detected in 1 ill dog, and a cat became ill after contact with a wild bird. This outbreak highlights a One Health issue where actions like regular cleaning of birdfeeders might reduce the health risk to wildlife, companion animals, and humans.


Subject(s)
Salmonella Food Poisoning , Salmonella Infections, Animal , Songbirds , Humans , Animals , United States/epidemiology , Dogs , Salmonella typhimurium , Salmonella Infections, Animal/epidemiology , Salmonella Food Poisoning/epidemiology , Animals, Wild , Disease Outbreaks , Oregon
7.
Chromosoma ; 131(1-2): 77-86, 2022 06.
Article in English | MEDLINE | ID: mdl-35389062

ABSTRACT

Passerine birds have a supernumerary chromosome in their germ cells called the germline-restricted chromosome (GRC). The GRC was first discovered more than two decades ago in zebra finch but recent studies have suggested that it is likely present in all passerines, the most species rich avian order, encompassing more than half of all modern bird species. Despite its wide taxonomic distribution, studies on this chromosome are still scarce and limited to a few species. Here, we cytogenetically analyzed the GRC in five closely related estrildid finch species of the genus Lonchura. We show that the GRC varies enormously in size, ranging from a tiny micro-chromosome to one of the largest macro-chromosomes in the cell, not only among recently diverged species but also within species and sometimes even between germ cells of a single individual. In Lonchura atricapilla, we also observed variation in GRC copy number among male germ cells of a single individual. Finally, our analysis of hybrids between two Lonchura species with noticeably different GRC size directly supported maternal inheritance of the GRC. Our results reveal the extraordinarily dynamic nature of the GRC, which might be caused by frequent gains and losses of sequences on this chromosome leading to substantial differences in genetic composition of the GRC between and even within species. Such differences might theoretically contribute to reproductive isolation between species and thus accelerate the speciation rate of passerine birds compared to other bird lineages.


Subject(s)
Finches , Passeriformes , Animals , Chromosomes/genetics , Female , Finches/genetics , Germ Cells , Male , Passeriformes/genetics
8.
Proc Biol Sci ; 290(2009): 20231474, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37848060

ABSTRACT

Climate change has led to changes in the strength of directional selection on seasonal timing. Understanding the causes and consequences of these changes is crucial to predict the impact of climate change. But are observed patterns in one population generalizable to others, and can spatial variation in selection be explained by environmental variation among populations? We used long-term data (1955-2022) on blue and great tits co-occurring in four locations across the Netherlands to assess inter-population variation in temporal patterns of selection on laying date. To analyse selection, we combine reproduction and adult survival into a joined fitness measure. We found distinct spatial variation in temporal patterns of selection which overall acted towards earlier laying, and which was due to selection through reproduction rather than through survival. The underlying relationships between temperature, bird and caterpillar phenology were however the same across populations, and the spatial variation in selection patterns is thus caused by spatial variation in the temperatures and other habitat characteristics to which birds and caterpillars respond. This underlines that climate change is not necessarily equally affecting populations, but that we can understand this spatial variation, which enables us to predict climate change effects on selection for other populations.


Subject(s)
Lepidoptera , Songbirds , Animals , Climate Change , Seasons , Reproduction , Selection, Genetic
9.
BMC Neurosci ; 24(1): 41, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37537543

ABSTRACT

BACKGROUND: Song performed in flocks by European starlings (Sturnus vulgaris), referred to here as gregarious song, is a non-sexual, social behavior performed by adult birds. Gregarious song is thought to be an intrinsically reinforced behavior facilitated by a low-stress, positive affective state that increases social cohesion within a flock. The medial preoptic area (mPOA) is a region known to have a role in the production of gregarious song. However, the neurochemical systems that potentially act within this region to regulate song remain largely unexplored. In this study, we used RNA sequencing to characterize patterns of gene expression in the mPOA of male and female starlings singing gregarious song to identify possibly novel neurotransmitter, neuromodulator, and hormonal pathways that may be involved in the production of gregarious song. RESULTS: Differential gene expression analysis and rank rank hypergeometric analysis indicated that dopaminergic, cholinergic, and GABAergic systems were associated with the production of gregarious song, with multiple receptor genes (e.g., DRD2, DRD5, CHRM4, GABRD) upregulated in the mPOA of starlings who sang at high rates. Additionally, co-expression network analyses identified co-expressing gene clusters of glutamate signaling-related genes associated with song. One of these clusters contained five glutamate receptor genes and two glutamate scaffolding genes and was significantly enriched for genetic pathways involved in neurodevelopmental disorders associated with social deficits in humans. Two of these genes, GRIN1 and SHANK2, were positively correlated with performance of gregarious song. CONCLUSIONS: This work provides new insights into the role of the mPOA in non-sexual, gregarious song in starlings and highlights candidate genes that may play a role in gregarious social interactions across vertebrates. The provided data will also allow other researchers to compare across species to identify conserved systems that regulate social behavior.


Subject(s)
Singing , Starlings , Animals , Humans , Male , Female , Starlings/metabolism , Vocalization, Animal/physiology , Preoptic Area/metabolism , Gene Expression
10.
J Anat ; 242(3): 495-509, 2023 03.
Article in English | MEDLINE | ID: mdl-36070480

ABSTRACT

The hyper-diverse clade Passeriformes (crown group passerines) comprises over half of extant bird diversity, yet disproportionately few studies have targeted passerine comparative anatomy on a broad phylogenetic scale. This general lack of research attention hinders efforts to interpret the passerine fossil record and obscures patterns of morphological evolution across one of the most diverse clades of extant vertebrates. Numerous potentially important crown passeriform fossils have proven challenging to place phylogenetically, due in part to a paucity of phylogenetically informative characters from across the passerine skeleton. Here, we present a detailed analysis of the morphology of extant passerine carpometacarpi, which are relatively abundant components of the passerine fossil record. We sampled >70% of extant family-level passerine clades (132 extant species) as well as several fossils from the Oligocene of Europe and scored them for 54 phylogenetically informative carpometacarpus characters optimised on a recently published phylogenomic scaffold. We document a considerable amount of previously undescribed morphological variation among passerine carpometacarpi, and, despite high levels of homoplasy, our results support the presence of representatives of both crown Passeri and crown Tyranni in Europe during the Oligocene.


Subject(s)
Fossils , Passeriformes , Animals , Phylogeny , Passeriformes/anatomy & histology , Anatomy, Comparative , Europe , Biological Evolution
11.
Glob Chang Biol ; 29(23): 6635-6646, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37728032

ABSTRACT

Urbanization now exposes large portions of the earth to sources of anthropogenic disturbance, driving rapid environmental change and producing novel environments. Changes in selective pressures as a result of urbanization are often associated with phenotypic divergence; however, the generality of phenotypic change remains unclear. In this study, we examined whether morphological phenotypes in two residential species (Carolina Wren [Thryothorus ludovicianus] and Northern Cardinal [Cardinalis cardinalis]) and two migratory species (Painted Bunting [Passerina ciris], and White-eyed Vireo [Vireo griseus]), differed between urban core and edge habitats in San Antonio, Texas, USA. More specifically, we examined whether urbanization, associated sensory pollution (light and noise) and brightness (open, bright areas cause by anthropogenic land use) influenced measures of avian body (mass and frame size) and lateral eye size. We found no differences in body size between urban core and edge habitats for all species except the Painted Bunting, in which core-urban individuals were smaller. Rather than a direct effect of urbanization, this was due to differences in age structure between habitats, with urban-core areas consisting of higher proportions of younger buntings which are, on average, smaller than older birds. Residential birds inhabiting urban-core areas had smaller eyes compared to their urban-edge counterparts, resulting from a negative association between eye size and light pollution and brightness across study sites; notably, we found no such association in the two migratory species. Our findings demonstrate how urbanization may indirectly influence phenotypes by altering population demographics and highlight the importance of accounting for age when assessing factors driving phenotypic change. We also provide some of the first evidence that birds may adapt to urban environments through changes in their eye morphology, demonstrating the need for future research into relationships among eye size, ambient light microenvironment use, and disassembly of avian communities as a result of urbanization.


Subject(s)
Songbirds , Humans , Animals , Urbanization , Light Pollution , Ecosystem , Noise
12.
Horm Behav ; 155: 105410, 2023 09.
Article in English | MEDLINE | ID: mdl-37567061

ABSTRACT

Behavioral neuroendocrinology has largely relied on mammalian models to understand the relationship between hormones and behavior, even if this discipline has historically used a larger diversity of species than other fields. Recent advances revealed the potential of avian models in elucidating the neuroendocrine bases of behavior. This paper provides a review focused mainly on the contributions of our laboratory to the study of sexual differentiation in Japanese quail and songbirds. Quail studies have firmly established the role of embryonic estrogens in the sexual differentiation of male copulatory behavior. While most sexually differentiated features identified in brain structure and physiology result from the different endocrine milieu of adults, a few characteristics are organized by embryonic estrogens. Among them, a sex difference was identified in the number and morphology of microglia which is not associated with sex differences in the concentration/expression of neuroinflammatory molecules. The behavioral role of microglia and neuroinflammatory processes requires further investigations. Sexual differentiation of singing in zebra finches is not mediated by the same endocrine mechanisms as male copulatory behavior and "direct" genetic effect, i.e., not mediated by gonadal steroids have been identified. Epigenetic contributions have also been considered. Finally sex differences in specific aspects of singing behavior have been identified in canaries after treatment of adults with exogenous testosterone suggesting that these aspects of song are differentiated during ontogeny. Integration of quail and songbirds as alternative models has thus expanded understanding of the interplay between hormones and behavior in the control of sexual differentiation.


Subject(s)
Coturnix , Sex Differentiation , Animals , Female , Male , Quail , Sexual Behavior, Animal/physiology , Estrogens , Gonadal Steroid Hormones , Brain , Testosterone , Neurosecretory Systems , Mammals
13.
J Anim Ecol ; 92(1): 195-206, 2023 01.
Article in English | MEDLINE | ID: mdl-36377920

ABSTRACT

Conspecific attraction during habitat selection is common among animals, but the ultimate (i.e. fitness-related) reasons for this behaviour often remain enigmatic. We aimed to evaluate the following three hypotheses for conspecific attraction during the breeding season in male Wood Warblers (Phylloscopus sibilatrix): the habitat detection hypothesis, the habitat choice copying hypothesis and the female preference hypothesis. These hypotheses make different predictions with respect to the relative importance of social and nonsocial information during habitat assessment, and whether benefits accrue as a consequence of aggregation. We tested the above hypotheses using a combination of a 2-year playback experiment, spatial statistics and mate choice models. The habitat detection hypothesis was the most likely explanation for conspecific attraction and aggregation in male Wood Warblers, based on the following results: (1) males were attracted to conspecific song playbacks, but fine-scale habitat heterogeneity was the better predictor of spatial patterns in the density of settling males; (2) male pairing success did not increase, but instead slightly decreased, as connectivity with other males (i.e. the number and proximity of neighbouring males) increased. Our study highlights how consideration of the process by which animals detect and assess habitat, together with the potential fitness consequences of resulting aggregations, are important for understanding conspecific attraction and spatially clustered distributions.


Subject(s)
Passeriformes , Songbirds , Male , Female , Animals , Ecosystem
14.
Proc Natl Acad Sci U S A ; 117(48): 30539-30546, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33199602

ABSTRACT

Parent-offspring conflict has explained a variety of ecological phenomena across animal taxa, but its role in mediating when songbirds fledge remains controversial. Specifically, ecologists have long debated the influence of songbird parents on the age of fledging: Do parents manipulate offspring into fledging to optimize their own fitness or do offspring choose when to leave? To provide greater insight into parent-offspring conflict over fledging age in songbirds, we compared nesting and postfledging survival rates across 18 species from eight studies in the continental United States. For 12 species (67%), we found that fledging transitions offspring from comparatively safe nesting environments to more dangerous postfledging ones, resulting in a postfledging bottleneck. This raises an important question: as past research shows that offspring would benefit-improve postfledging survival-by staying in the nest longer: Why then do they fledge so early? Our findings suggest that parents manipulate offspring into fledging early for their own benefit, but at the cost of survival for each individual offspring, reflecting parent-offspring conflict. Early fledging incurred, on average, a 13.6% postfledging survival cost for each individual offspring, but parents benefitted through a 14.0% increase in the likelihood of raising at least one offspring to independence. These parental benefits were uneven across species-driven by an interaction between nest mortality risk and brood size-and predicted the age of fledging among species. Collectively, our results suggest that parent-offspring conflict and associated parental benefits explain variation in fledging age among songbird species and why postfledging bottlenecks occur.


Subject(s)
Behavior, Animal , Songbirds , Animals , Nesting Behavior
15.
Eur J Neurosci ; 55(2): 549-565, 2022 01.
Article in English | MEDLINE | ID: mdl-34852183

ABSTRACT

How vocal communication signals are represented in the cortex is a major challenge for behavioural neuroscience. Beyond a descriptive code, it is relevant to unveil the dynamical mechanism responsible for the neural representation of auditory stimuli. In this work, we report evidence of synchronous neural activity in nucleus HVC, a telencephalic area of canaries (Serinus canaria), in response to auditory playback of the bird's own song. The rhythmic features of canary song allowed us to show that this large-scale synchronization was locked to defined features of the behaviour. We recorded neural activity in a brain region where sensorimotor integration occurs, showing the presence of well-defined oscillations in the local field potentials, which are locked to song rhythm. We also show a correspondence between local field potentials, multiunit activity and single unit activity within the same brain region. Overall, our results show that the rhythmic features of the vocal behaviour are represented in a telencephalic region of canaries.


Subject(s)
Canaries , Vocalization, Animal , Animals , Brain/physiology , Canaries/physiology , Cerebral Cortex , Telencephalon/physiology , Vocalization, Animal/physiology
16.
Proc Biol Sci ; 289(1982): 20220792, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36100028

ABSTRACT

Many birds emit tonal song syllables even though the sound sources generate sound with rich upper harmonic energy content. This tonality is thought to arise in part from dynamically adjusted filtering of harmonic content. Here, we compare tonality of song syllables between vocal learners and non-learners to assess whether this characteristic is linked to the increased neural substrate that evolved with vocal learning. We hypothesize that vocal learning ability is correlated with enhanced ability for generating tonal sounds, because vocal production learners might also have an enhanced ability to articulate their vocal tracts and sound source for producing tonality. To test this hypothesis, we compared vocal learners and non-learners from two groups (186 passerines and 42 hummingbirds) by assessing tonality of song syllables. The data suggest that vocal learners in both clades have evolved to sing songs with higher tonality than the related, non-vocal learning clades, which is consistent with stronger roles for broadband dynamic filtering and adjustments to the sound source. In addition, oscine songs display higher tonality than those of hummingbirds. A complex interplay of vocal tract biomechanics, anatomical differences of the sound source as well as increased motor control through vocal learning facilitates generation of broad tonality.


Subject(s)
Songbirds , Vocalization, Animal , Animals , Learning , Sound
17.
Horm Behav ; 143: 105194, 2022 07.
Article in English | MEDLINE | ID: mdl-35561543

ABSTRACT

Temperate-zone birds display marked seasonal changes in reproductive behaviors and the underlying hormonal and neural mechanisms. These changes were extensively studied in canaries (Serinus canaria) but differ between strains. Fife fancy male canaries change their reproductive physiology in response to variations in day length but it remains unclear whether they become photorefractory (PR) when exposed to long days and what the consequences are for gonadal activity, singing behavior and the associated neural plasticity. Photosensitive (PS) male birds that had become reproductively competent (high song output, large testes) after being maintained on short days (SD, 8 L:16D) for 6 months were divided into two groups: control birds remained on SD (SD-PS group) and experimental birds were switched to long days (16 L:8D) and progressively developed photorefractoriness (LD-PR group). During the following 12 weeks, singing behavior (quantitatively analyzed for 3 × 2 hours every week) and gonadal size (repeatedly measured by CT X-ray scans) remained similar in both groups but there was an increase in plasma testosterone and trill numbers in the LD-PR group. Day length was then decreased back to 8 L:16D for LD-PR birds, which immediately induced a cessation of song, a decrease in plasma testosterone concentration, in the volume of song control nuclei (HVC, RA and Area X), in HVC neurogenesis and in aromatase expression in the medial preoptic area. These data demonstrate that Fife fancy canaries readily respond to changes in photoperiod and display a pattern of photorefractoriness following exposure to long days that is associated with marked changes in brain and behavior.


Subject(s)
Canaries , Singing , Animals , Canaries/physiology , Male , Photoperiod , Testosterone , Vocalization, Animal/physiology
18.
Horm Behav ; 143: 105197, 2022 07.
Article in English | MEDLINE | ID: mdl-35597055

ABSTRACT

Adult treatments with testosterone (T) do not activate singing behavior nor promote growth of song control nuclei to the same extent in male and female canaries (Serinus canaria). Because T acts in part via aromatization into an estrogen and brain aromatase activity is lower in females than in males in many vertebrates, we hypothesized that this enzymatic difference might explain the sex differences seen even after exposure to the same amount of T. Three groups of castrated males and 3 groups of photoregressed females (i.e., with quiescent ovaries following exposure to short days) received either 2 empty 10 mm silastic implants, one empty implant and one implant filled with T or one implant filled with T plus one with estradiol (E2). Songs were recorded for 3 h each week for 6 weeks before brains were collected and song control nuclei volumes were measured in Nissl-stained sections. Multiple measures of song were still different in males and females following treatment with T. Co-administration of E2 did not improve these measures and even tended to inhibit some measures such as song rate and song duration. The volume of forebrain song control nuclei (HVC, RA, Area X) and the rate of neurogenesis in HVC was increased by the two steroid treatments, but remained significantly smaller in females than in males irrespective of the endocrine condition. These sex differences are thus not caused by a lower aromatization of the steroid; sex differences in canaries are probably organized either by early steroid action or by sex-specific gene regulation directly in the brain.


Subject(s)
Androgens , Canaries , Androgens/pharmacology , Animals , Brain , Canaries/physiology , Estrogens/pharmacology , Female , Male , Sex Characteristics , Testosterone/pharmacology , Testosterone/physiology , Vocalization, Animal/physiology
19.
J Exp Biol ; 225(14)2022 07 15.
Article in English | MEDLINE | ID: mdl-35762254

ABSTRACT

Many songbird species rely on seeds as a primary food source and the process of picking up, positioning, cracking, dehusking and swallowing seeds is one of the most sophisticated tasks of the beak. Still, we lack understanding about how granivorous songbirds move their beak during the different phases of seed processing. In this study, we used multi-view high-speed imaging to analyze the 3D movement of the beak in feeding domestic canaries. Our analysis focused on the correlation of the upper and lower beak, the frequency of mandibulation and the direction of mandible movement in 3D space. We show that the correlation of maxilla and mandible movement differs among the phases of seed processing. Furthermore, we found that the beak moves at extremely high frequencies, up to 25 Hz, which resembles previously reported maximal syllable rates in singing canaries. Finally, we report that canaries use specific 3D mandible movements during the different phases of seed processing. Kinematic parameters do not differ between male and female canaries. Our findings provide an important biomechanical basis for better understanding the beak as a functional tool.


Subject(s)
Beak , Songbirds , Animals , Canaries , Female , Head , Male , Movement
20.
Anim Cogn ; 25(3): 605-615, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34797462

ABSTRACT

Nest-building behaviour in birds may be particularly relevant to investigating the evolution of physical cognition, as nest building engages cognitive mechanisms for the use and manipulation of materials. We hypothesized that nest-building ecology may be related to physical cognitive abilities. To test our hypothesis, we used zebra finches, which have sex-differentiated roles in nest building. We tested 16 male and 16 female zebra finches on three discrimination tasks in the following order: length discrimination, flexibility discrimination, and color discrimination, using different types of string. We predicted that male zebra finches, which select and deposit the majority of nesting material and are the primary nest builders in this species, would learn to discriminate string length and flexibility-structural traits relevant to nest building-in fewer trials compared to females, but that the sexes would learn color discrimination (not structurally relevant to nest building) in a similar number of trials. Contrary to these predictions, male and female zebra finches did not differ in their speed to learn any of the three tasks. There was, however, consistent among-individual variation in performance: learning speed was positively correlated across the tasks. Our findings suggest that male and female zebra finches either (1) do not differ in their physical cognitive abilities, or (2) any cognitive sex differences in zebra finches are more specific to tasks more closely associated with nest building. Our experiment is the first to examine the potential evolutionary relationship between nest building and physical cognitive abilities.


Subject(s)
Finches , Animals , Cognition , Female , Learning , Male , Nesting Behavior , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL