Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Small ; 20(12): e2308142, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37984879

ABSTRACT

Hollow nanoreactors (HoNRs) have regarded as an attractive catalytic material for photocatalysis due to their exceptional capabilities in enhancing light harvesting, facilitating charge separation and transfer, and optimizing surface reactions. Developing novel HoNRs offers new options to realize controllable catalytic behavior. However, the catalytic mechanism of photocatalysis occurring in HoNRs has not yet been fully revealed. Against this backdrop, this review elaborates on three aspects: 1) the fundamental theoretical insights of HoNRs-driven photocatalytic kinetics; 2) structure-performance relationship of HoNRs to photocatalysis; 3) catalytic advantages of HoNRs in photocatalytic applications. Specifically, the review focuses on the fundamental theories of HoNRs for photocatalysis and their structural advantages for strengthening light scattering, promoting charge separation and transfer, and facilitating surface reaction kinetics, and the relationship between key structural parameters of HoNRs and their photocatalytic performance is in-depth discussed. Also, future prospects and challenges are proposed. It is anticipated that this review paper will pave the way for forthcoming investigations in the realm of HoNRs for photocatalysis.

2.
J Environ Sci (China) ; 145: 128-138, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38844313

ABSTRACT

Zeolites are a promising support for Pd catalysts in lean methane (CH4) combustion. Herein, three types of zeolites (H-MOR, H-ZSM-5 and H-Y) were selected to estimate their structural effects and deactivation mechanisms in CH4 combustion. We show that variations in zeolite structure and surface acidity led to distinct changes in Pd states. Pd/H-MOR with external high-dispersing Pd nanoparticles exhibited the best apparent activity, with activation energy (Ea) at 73 kJ/mol, while Pd/H-ZSM-5 displayed the highest turnover frequency (TOF) at 19.6 × 10-3 sec-1, presumably owing to its large particles with more step sites providing active sites in one particle for CH4 activation. Pd/H-Y with dispersed PdO within pore channels and/or Pd2+ ions on ion-exchange sites yielded the lowest apparent activity and TOF. Furthermore, Pd/H-MOR and Pd/H-ZSM-5 were both stable under a dry condition, but introducing 3 vol.% H2O caused the CH4 conversion rate on Pd/H-MOR drop from 100% to 63% and that on Pd/H-ZSM-5 decreased remarkably from 82% to 36%. The former was shown to originate from zeolite structural dealumination, and the latter principally owed to Pd aggregation and the loss of active PdO.


Subject(s)
Methane , Palladium , Zeolites , Zeolites/chemistry , Methane/chemistry , Catalysis , Palladium/chemistry , Models, Chemical
3.
Angew Chem Int Ed Engl ; 63(41): e202406761, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-38990707

ABSTRACT

Multicomponent catalysts can be designed to synergistically combine reaction intermediates at interfacial active sites, but restructuring makes systematic control and understanding of such dynamics challenging. We here unveil how reducibility and mobility of indium oxide species in Ru-based catalysts crucially control the direct, selective conversion of CO2 to ethanol. When uncontrolled, reduced indium oxide species occupy the Ru surface, leading to deactivation. With the addition of steam as a mild oxidant and using porous polymer layers to control In mobility, Ru-In2O3 interface sites are stabilized, and ethanol can be produced with superior overall selectivity (70 %, rest CO). Our work highlights how engineering of bifunctional active ensembles enables cooperativity and synergy at tailored interfaces, which unlocks unprecedented performance in heterogeneous catalysts.

4.
Nanotechnology ; 34(25)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36962944

ABSTRACT

The integration of ultrathin two-dimensional (2D) semiconductors with other conductive 2D materials to form hybrid electrocatalysts with abundant heterointerfaces can enhance the electrocatalytic activity by facilitating interfacial charge transfer. However, the hybrid electrocatalysts with weak interfacial bonding have limited effect on the electrocatalytic performance because the intrinsic activity of interfacial sites cannot be altered by weak interfacial interactions. As a proof-of-concept, we design ultrathin 2D-2D heterostructures with bridge-bonded Ni-O-Ti ligands based on single-layered Ti3C2TxMXene and metal hydroxides, and further reveal the structure-activity correlation between interfacial bonding and electrocatalytic oxygen evolution reaction by combining theoretical and experimental studies. Density functional theory calculations reveal the modulation of the electronic structure of interfacial metal sites after the formation of bridged interfacial Ni-O-Ti bonding. Compared with the hydrogen-bond-linked heterostructure, the ultrathin 2D-2D heterostructure with bridge-bonded Ni-O-Ti ligands shows enhanced intrinsic activity and stability towards electrocatalytic oxygen evolution with a very low overpotential of 205 mV at 10 mA cm-2and the long-term durability. This work provides a new understanding and approach for the design and development of 2D hybrid catalysts with highly efficient electrocatalytic activity.

5.
Powder Technol ; 415: 118168, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36533138

ABSTRACT

Based on the drug repositioning strategy, niclosamide (NCL) has shown potential applications for treating COVID-19. However, the development of new formulations for effective NCL delivery is still challenging. Herein, NCL-embedded dry powder for inhalation (NeDPI) was fabricated by a novel spray freeze drying technology. The addition of Tween-80 together with 1,2-Distearoyl-sn-glycero-3-phosphocholine showed the synergistic effects on improving both the dispersibility of primary NCL nanocrystals suspended in the feed liquid and the spherical structure integrity of the spray freeze dried (SFD) microparticle. The SFD microparticle size, morphology, crystal properties, flowability and aerosol performance were systematically investigated by regulating the feed liquid composition and freezing temperature. The addition of leucine as the aerosol enhancer promoted the microparticle sphericity with greatly improved flowability. The optimal sample (SF- 80D-N20L2D2T1) showed the highest fine particle fraction of ∼47.83%, equivalently over 3.8 mg NCL that could reach the deep lung when inhaling 10 mg dry powders.

6.
Angew Chem Int Ed Engl ; 62(11): e202216645, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36546885

ABSTRACT

Polymer electrolyte membrane water electrolysis (PEMWE) has been regarded as a promising technology for renewable hydrogen production. However, acidic oxygen evolution reaction (OER) catalysts with long-term stability impose a grand challenge in its large-scale industrialization. In this review, critical factors that may lead to catalyst's instability in couple with potential solutions are comprehensively discussed, including mechanical peeling, substrate corrosion, active-site over-oxidation/dissolution, reconstruction, oxide crystal structure collapse through the lattice oxygen-participated reaction pathway, etc. Last but not least, personal prospects are provided in terms of rigorous stability evaluation criteria, in situ/operando characterizations, economic feasibility and practical electrolyzer consideration, highlighting the ternary relationship of structure evolution, industrial-relevant activity and stability to serve as a roadmap towards the ultimate application of PEMWE.

7.
Small ; 18(43): e2106635, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35218294

ABSTRACT

As one of the most competitive candidates for large-scale energy storage, zinc-air batteries (ZABs) have attracted great attention due to their high theoretical specific energy density, low toxicity, high abundance, and high safety. It is highly desirable but still remains a huge challenge, however, to achieve cheap and efficient electrocatalysts to promote their commercialization. Recently, Fe-based single-atom and dual-atom catalysts (SACs and DACs, respectively) have emerged as powerful candidates for ZABs derived from their maximum utilization of atoms, excellent catalytic performance, and low price. In this review, some fundamental concepts in the field of ZABs are presented and the recent progress on the reported Fe-based SACs and DACs is summarized, mainly focusing on the relationship between structure and performance at the atomic level, with the aim of providing helpful guidelines for future rational designs of efficient electrocatalysts with atomically dispersed active sites. Finally, the great advantages and future challenges in this field of ZABs are also discussed.

8.
Chemistry ; 28(50): e202201659, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-35726763

ABSTRACT

The development of cost-effective sorbents for direct capture of trace CO2 (<1 %) from the atmosphere is an important and challenging task. Natural or commercial zeolites are promising sorbents, but their performance in adsorption of trace CO2 has been poorly explored to date. A systematic study on capture of trace CO2 by commercial faujasite zeolites reveals that the extra-framework cations play a key role on their performance. Under dry conditions, Ba-X displays high dynamic uptake of 1.79 and 0.69 mmol g-1 at CO2 concentrations of 10000 and 1000 ppm, respectively, and shows excellent recyclability in the temperature-swing adsorption processes. K-X exhibits perfect moisture resistance, and >95 % dry CO2 uptake can be preserved under relative humidity of 74 %. In situ solid-state NMR spectroscopy, synchrotron X-ray diffraction and neutron diffraction reveal two binding sites for CO2 in these zeolites, namely the basic framework oxygen atoms and the divalent alkaline earth metal ions. This study unlocks the potential of low-cost natural zeolites for applications in direct air capture.

9.
Small ; 17(30): e2100559, 2021 07.
Article in English | MEDLINE | ID: mdl-34185440

ABSTRACT

While metal-based electrocatalysts have garnered extensive attention owing to the large variety of enzyme-mimic properties, the search for such highly-efficient catalysts still relies on empirical explorations, owing to the lack of predictive indicators as well as the ambiguity of structure-activity relationships. Notably, surface electronic structures play a crucial role in metal-based catalysts yet remain unexplored in enzyme-mimics. Herein, the authors investigate the electronic structure as a possible indicator of electrocatalytic activities of H2 O2 decomposition and glucose oxidation using Pd@Pt core-shell nanocrystals as a well-defined platform. The electron densities of the Pd@Pt are modulated with the correlation of strain through precise control of surface orientation and the number of atomic layers. The close relationships between the electrocatalytic activities and the surface charge accumulation are found, in which the increase of the electron accumulation can enhance both the enzyme-mimic activities. As a result, the Pd@Pt3L icosahedra with compressive strain in Pt shells exhibit the highest electrocatalytic activities for H2 O2 decomposition and glucose oxidation. Such systematic and comprehensive study provides the structure-activity relationships and paves a new way for the rational design of metal-based electrocatalysts. Especially, the charge accumulation degrees may serve as a general performance indicator for metal-based catalysts.


Subject(s)
Nanoparticles , Platinum , Catalysis , Electronics , Palladium
10.
Mikrochim Acta ; 188(12): 407, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34735602

ABSTRACT

A dual-mode DNA sensor was constructed to detect nucleic acid sensitively and selectively. Based on dendritic porous silica nanoparticles (DPSNs) and hybridization chain reaction (HCR) amplification strategy, the fabricated DNA sensor showed good sensitivity with low detection limits down to 2.18 pM and 4.02 pM by fluorescence (excited at 488 nm and emitted at 508 nm) and personal glucose meter (PGM) assays, respectively. This dual-mode detection of DNA offered superior reliability and accuracy and could meet the requirements of different testing environments, including laboratory confirmation and portable detection. Moreover, the impact of nanoparticles morphology on detection performance was also discussed. Due to the center-radial pores, DPSNs had high curvature morphology, which improved the coverage capacity, footprint, and deflection angle of probes. This work fabricated a dual-mode DNA sensor and revealed the relationship between morphology and detection performance, which brought new insights in novel biosensor development.


Subject(s)
Biosensing Techniques , DNA/chemistry , Fluorometry/methods , Nanoparticles/chemistry , Silicon Dioxide , Humans , Porosity , Surface Properties
11.
Mikrochim Acta ; 187(9): 531, 2020 08 29.
Article in English | MEDLINE | ID: mdl-32862258

ABSTRACT

A series of three-dimensional magnetic covalent organic frameworks were designed and synthesized via monomer selection, coating thickness optimization, and composite strategy transformation. Their structure properties including morphology, functional group, surface area, and pore size were characterized. The relationship between the structural properties and analytical performance was systematically investigated by density functional theory calculation and batch extraction experiments for polycyclic aromatic hydrocarbons. It is proven that the extractant modified by monomer 1,4-phthalaldehyde provides a hizgh affinity for high molecule weight polycyclic aromatic hydrocarbons and the right balance between extraction and elution efficiency. The relationship between coating thickness and mass transfer rate of polycyclic aromatic hydrocarbons was studied by accurate tuning of coating layers via layer-by-layer method. A mathematical model was derived and employed to determine that two coating layers were sufficient to provide the highest extraction efficiency with the shortest equilibrium time. The extractants synthesized by two different composite strategies (layer-by-layer and one-step) show opposite selectivity for polycyclic aromatic hydrocarbons. After optimization of the extraction conditions, dispersed solid-phase extraction coupled with gas chromatography-mass spectroscopy method was developed providing a wide linear range (5-500 ng L-1), good linearity (R2 > 0.9923), high precision in intra-day (RSD% < 8.2%) and inter-day (RSD% < 12.3%) detection, and low detection limits (1.5-15.1 ng L-1). The method was applied to the simultaneous determination of 16 polycyclic aromatic hydrocarbons with acceptable recoveries, which were 87-109% for groundwater, 83-116% for East Lake water, and 82-116% for Yangtze River water samples.

12.
Chemistry ; 24(10): 2384-2388, 2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29193398

ABSTRACT

Electron-diffraction data on the zeolites Silicalite-1 and ZSM-5 (both MFI framework type) were collected from individual grains of about 150×100×50 nm3 . Crystals were synthesized with tetrapropylammonium as structure-directing agent. The resolution extended to about 0.8 Šfor Silicalite-1 and about 0.9-1.0 Šfor ZSM-5 crystals. Analysis of several data sets showed that at the nanometre-scale, these zeolite crystals are single crystals and not intergrown.

13.
Adv Mater ; 36(3): e2308653, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37779465

ABSTRACT

It is very important to understand the structure-performance relationship of metal catalysts by adjusting the microstructure of catalysts at the atomic scale. The atomic distance has an essential influence on the composition of the environment of active metal atom, which is a key factor for the design of targeted catalysts with desired function. In this review, we discuss and summarize strategies for changing the atomic distance from three aspects and relate their effects on the reactivity of catalysts. First, the effects of regulating bond length between metal and coordination atom at one single-atom site on the catalytic performance are introduced. The bond lengths are affected by the strain effect of the support and high-shell doping and can evolve during the reaction. Next, the influence of the distance between single-atom sites on the catalytic performance is discussed. Due to the space matching of adsorption and electron transport, the catalytic performance can be adjusted with the shortening of site distance. In addition, the effect of the arrangement spacing of the surface metal active atoms on the catalytic performance of metal nanocatalysts is studied. Finally, a comprehensive summary and outlook of the relationship between atomic distance and catalytic performance is given.

14.
ChemSusChem ; : e202401255, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39129709

ABSTRACT

In this study chitin derived from shrimp shells was used in the design of heterogeneous Pd-based catalysts for Heck and Suzuki-Miyaura cross-coupling reactions. The synthesis of Pd nanoparticles supported on N-doped carbons was performed through different approaches, including a sustainable mechanochemical approach, by using a twin-screw extruder. All catalytic systems were characterized by a multitechnique approach and the effect of nanoparticles size, N-doping on the support, and their synergistic interactions were elucidated. Specifically, Kelvin Probe Atomic Force Microscopy provided valuable insights on charge transfer and metal-support interactions. The catalytic behaviour of the samples was investigated in cross-coupling reactions under batch conditions and under semi-continuous flow solvent-free conditions, respectively obtaining a quantitative yield and a noteworthy productivity of 8.7 mol/(gPdh).

15.
Adv Mater ; 36(6): e2307404, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37870392

ABSTRACT

The rapid development of modern consumer electronics is placing higher demands on the lithium cobalt oxide (LiCoO2 ; LCO) cathode that powers them. Increasing operating voltage is exclusively effective in boosting LCO capacity and energy density but is inhibited by the innate high-voltage instability of the LCO structure that serves as the foundation and determinant of its electrochemical behavior in lithium-ion batteries. This has stimulated extensive research on LCO structural stabilization. Here, it is focused on the fundamental structural understanding of LCO cathode from long-term studies. Multi-scale structures concerning LCO bulk and surface and various structural issues along with their origins and corresponding stabilization strategies with specific mechanisms are uncovered and elucidated at length, which will certainly deepen and advance the knowledge of LCO structure and further its inherent relationship with electrochemical performance. Based on these understandings, remaining questions and opportunities for future stabilization of the LCO structure are also emphasized.

16.
Article in English | MEDLINE | ID: mdl-39356972

ABSTRACT

Electrocatalytic CO2 reduction reaction (CO2RR) emerges as a promising avenue to mitigate carbon emissions, enabling the capture and conversion of CO2 into high-value products such as syngas with CO/H2. One of the crucial aspects lies in the tailored development of durable and efficient electrocatalysts for the CO2RR. Covalent organic frameworks (COFs) possess unique characteristics that render them attractive candidates for catalytic applications. However, the relationship between structure and performance still requires further exploration; especially, most COFs with such properties are limited to COFs containing specific groups such as phthalocyanine or porphyrin groups. Here, we custom-synthesize two azine-linked nitrogen-rich COFs constructed from triazine building blocks, which are doped with ultrafine and highly dispersed Ag nanoparticles (Ag@TFPT-HZ and Ag@TPT-HZ). Thus-obtained COFs can serve as electrocatalysts for the CO2RR, and a comprehensive investigation has been conducted to uncover the intricate structure-performance relationship within these materials. Notably, Ag@TFPT-HZ exhibits superior CO selectivity in the electrocatalytic CO2RR, achieving a FECO of 81% and a partial current density of 7.65 mA·cm-2 at the potential of -1.0 V (vs reversible hydrogen electrode (RHE)). In addition, Ag@TPT-HZ as an electrocatalyst can continuously produce syngas with a CO/H2 molar ratio of 1:1, an ideal condition for methanol synthesis. The observed distinct performance between these two COFs is attributed to the presence of O atoms in TFPT-HZ. These O atoms facilitate a higher loading capacity of Ag nanoparticles (11 wt %) and generate a greater number of active sites, thereby enhancing electrochemical activity and promoting faster reaction kinetics. Therefore, two tailor-made two-dimensional (2D) nitrogen-rich COFs with various active sites as electrocatalysts can exhibit different outstanding electrocatalytic performances for CO2RR and possess high cycling stability (>50 h). This work offers valuable insights into the design and synthesis of electrocatalysts, particularly in elucidating the intricate relationship between their structure and performance.

17.
Adv Mater ; 36(21): e2313406, 2024 May.
Article in English | MEDLINE | ID: mdl-38319004

ABSTRACT

Single-atom nanozymes (SAzymes) showcase not only uniformly dispersed active sites but also meticulously engineered coordination structures. These intricate architectures bestow upon them an exceptional catalytic prowess, thereby captivating numerous minds and heralding a new era of possibilities in the biomedical landscape. Tuning the microstructure of SAzymes on the atomic scale is a key factor in designing targeted SAzymes with desirable functions. This review first discusses and summarizes three strategies for designing SAzymes and their impact on reactivity in biocatalysis. The effects of choices of carrier, different synthesis methods, coordination modulation of first/second shell, and the type and number of metal active centers on the enzyme-like catalytic activity are unraveled. Next, a first attempt is made to summarize the biological applications of SAzymes in tumor therapy, biosensing, antimicrobial, anti-inflammatory, and other biological applications from different mechanisms. Finally, how SAzymes are designed and regulated for further realization of diverse biological applications is reviewed and prospected. It is envisaged that the comprehensive review presented within this exegesis will furnish novel perspectives and profound revelations regarding the biomedical applications of SAzymes.


Subject(s)
Nanostructures , Humans , Nanostructures/chemistry , Biosensing Techniques/methods , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Catalysis , Anti-Inflammatory Agents/chemistry
18.
ACS Nano ; 18(26): 16413-16449, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38904346

ABSTRACT

Layered double hydroxides (LDHs), especially those containing nickel (Ni), are increasingly recognized for their potential in photo(-/)electrocatalytic water oxidation due to the abundant availability of Ni, their corrosion resistance, and their minimal toxicity. This review provides a comprehensive examination of Ni-based LDHs in electrocatalytic (EC), photocatalytic (PC), and photoelectrocatalytic (PEC) water oxidation processes. The review delves into the operational principles, highlighting similarities and distinctions as well as the benefits and limitations associated with each method of water oxidation. It includes a detailed discussion on the synthesis of monolayer, ultrathin, and bulk Ni-based LDHs, focusing on the merits and drawbacks inherent to each synthesis approach. Regarding the EC oxygen evolution reaction (OER), strategies to improve catalytic performance and insights into the structural evolution of Ni-based LDHs during the electrocatalytic process are summarized. Furthermore, the review extensively covers the advancements in Ni-based LDHs for PEC OER, including an analysis of semiconductors paired with Ni-based LDHs to form photoanodes, with a focus on their enhanced activity, stability, and underlying mechanisms facilitated by LDHs. The review concludes by addressing the challenges and prospects in the development of innovative Ni-based LDH catalysts for practical applications. The comprehensive insights provided in this paper will not only stimulate further research but also engage the scientific community, thus driving the field of photo(-/)electrocatalytic water oxidation forward.

19.
ACS Appl Mater Interfaces ; 16(24): 31428-31437, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38843444

ABSTRACT

Exploring the structure-performance relationship of high-voltage organic solar cells (OSCs) is significant for pushing material design and promoting photovoltaic performance. Herein, we chose a D-π-A type polymer composed of 4,8-bis(thiophene-2-yl)-benzo[1,2-b:4,5-b']dithiophene (BDT-T) and benzotriazole (BTA) units as the benchmark to investigate the effect of the fluorination number and position of the polymers on the device performance of the high-voltage OSCs, with a benzotriazole-based small molecule (BTA3) as the acceptor. F00, F20, and F40 are the polymers with progressively increasing F atoms on the D units, while F02, F22, and F42 are the polymers with further attachment of F atoms to the BTA units based on the above three polymers. Fluorination positively affects the molecular planarity, dipole moment, and molecular aggregations. Our results show that VOC increases with the number of fluorine atoms, and fluorination on the D units has a greater effect on VOC than on the A unit. F42 with six fluorine atom substitutions achieves the highest VOC (1.23 V). When four F atoms are located on the D units, the short-circuit current (JSC) and fill factor (FF) plummet, and before that, they remain almost constant. The drop in JSC and FF in F40- and F42-based devices may be attributed to inefficient charge transfer and severe charge recombination. The F22:BTA3 system achieves the highest power conversion efficiency of 9.5% with a VOC of 1.20 V due to the excellent balance between the photovoltaic parameters. Our study provides insights for the future application of fluorination strategies in molecular design for high-voltage organic photovoltaics.

20.
Adv Mater ; 36(24): e2314340, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38439595

ABSTRACT

Hydrogen peroxide (H2O2) as a green oxidizing agent is widely used in various fields. Electrosynthesis of H2O2 has gradually become a hotspot due to its convenient and environment-friendly features. Single-atom-site catalysts (SASCs) with uniform active sites are the ideal catalysts for the in-depth study of the reaction mechanism and structure-performance relationship. In this review, the outstanding achievements of SASCs in the electrosynthesis of H2O2 through 2e- oxygen reduction reaction (ORR) and 2e- water oxygen reaction (WOR) in recent years, are summarized. First, the elementary steps of the two pathways and the roles of key intermediates (*OOH and *OH) in the reactions are systematically discussed. Next, the influence of the size effect, electronic structure regulation, the support/interfacial effect, the optimization of coordination microenvironments, and the SASCs-derived catalysts applied in 2e- ORR are systematically analyzed. Besides, the developments of SASCs in 2e- WOR are also overviewed. Finally, the research progress of H2O2 electrosynthesis on SASCs is concluded, and an outlook on the rational design of SASCs is presented in conjunction with the design strategies and characterization techniques.

SELECTION OF CITATIONS
SEARCH DETAIL