Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters

Publication year range
1.
Cell ; 174(6): 1450-1464.e23, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30100184

ABSTRACT

Synapses are fundamental units of communication in the brain. The prototypical synapse-organizing complex neurexin-neuroligin mediates synapse development and function and is central to a shared genetic risk pathway in autism and schizophrenia. Neurexin's role in synapse development is thought to be mediated purely by its protein domains, but we reveal a requirement for a rare glycan modification. Mice lacking heparan sulfate (HS) on neurexin-1 show reduced survival, as well as structural and functional deficits at central synapses. HS directly binds postsynaptic partners neuroligins and LRRTMs, revealing a dual binding mode involving intrinsic glycan and protein domains for canonical synapse-organizing complexes. Neurexin HS chains also bind novel ligands, potentially expanding the neurexin interactome to hundreds of HS-binding proteins. Because HS structure is heterogeneous, our findings indicate an additional dimension to neurexin diversity, provide a molecular basis for fine-tuning synaptic function, and open therapeutic directions targeting glycan-binding motifs critical for brain development.


Subject(s)
Heparitin Sulfate/metabolism , Neural Cell Adhesion Molecules/metabolism , Synapses/metabolism , Amino Acid Sequence , Animals , Calcium-Binding Proteins , Cell Adhesion Molecules, Neuronal/antagonists & inhibitors , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Drosophila , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Female , Glycopeptides/analysis , Heparitin Sulfate/chemistry , Humans , Membrane Proteins , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins , Neural Cell Adhesion Molecules/antagonists & inhibitors , Neural Cell Adhesion Molecules/genetics , Neurons/cytology , Neurons/metabolism , Protein Binding , RNA Interference , RNA, Small Interfering/metabolism , Rats , Sequence Alignment
2.
Proc Natl Acad Sci U S A ; 121(26): e2322978121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38900791

ABSTRACT

MDGA (MAM domain containing glycosylphosphatidylinositol anchor) family proteins were previously identified as synaptic suppressive factors. However, various genetic manipulations have yielded often irreconcilable results, precluding precise evaluation of MDGA functions. Here, we found that, in cultured hippocampal neurons, conditional deletion of MDGA1 and MDGA2 causes specific alterations in synapse numbers, basal synaptic transmission, and synaptic strength at GABAergic and glutamatergic synapses, respectively. Moreover, MDGA2 deletion enhanced both N-methyl-D-aspartate (NMDA) receptor- and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated postsynaptic responses. Strikingly, ablation of both MDGA1 and MDGA2 abolished the effect of deleting individual MDGAs that is abrogated by chronic blockade of synaptic activity. Molecular replacement experiments further showed that MDGA1 requires the meprin/A5 protein/PTPmu (MAM) domain, whereas MDGA2 acts via neuroligin-dependent and/or MAM domain-dependent pathways to regulate distinct postsynaptic properties. Together, our data demonstrate that MDGA paralogs act as unique negative regulators of activity-dependent postsynaptic organization at distinct synapse types, and cooperatively contribute to adjustment of excitation-inhibition balance.


Subject(s)
Hippocampus , Synapses , Synaptic Transmission , Animals , Synapses/metabolism , Mice , Hippocampus/metabolism , Hippocampus/cytology , Synaptic Transmission/physiology , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Mice, Knockout , Receptors, AMPA/metabolism , Receptors, AMPA/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cells, Cultured
3.
Proc Natl Acad Sci U S A ; 121(18): e2314541121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38657049

ABSTRACT

Recent evidence has demonstrated that the transsynaptic nanoscale organization of synaptic proteins plays a crucial role in regulating synaptic strength in excitatory synapses. However, the molecular mechanism underlying this transsynaptic nanostructure in inhibitory synapses still remains unclear and its impact on synapse function in physiological or pathological contexts has not been demonstrated. In this study, we utilized an engineered proteolysis technique to investigate the effects of acute cleavage of neuroligin-2 (NL2) on synaptic transmission. Our results show that the rapid cleavage of NL2 led to impaired synaptic transmission by reducing both neurotransmitter release probability and quantum size. These changes were attributed to the dispersion of RIM1/2 and GABAA receptors and a weakened spatial alignment between them at the subsynaptic scale, as observed through superresolution imaging and model simulations. Importantly, we found that endogenous NL2 undergoes rapid MMP9-dependent cleavage during epileptic activities, which further exacerbates the decrease in inhibitory transmission. Overall, our study demonstrates the significant impact of nanoscale structural reorganization on inhibitory transmission and unveils ongoing modulation of mature GABAergic synapses through active cleavage of NL2 in response to hyperactivity.


Subject(s)
Cell Adhesion Molecules, Neuronal , Nerve Tissue Proteins , Synapses , Synaptic Transmission , Animals , Mice , Cell Adhesion Molecules, Neuronal/metabolism , Epilepsy/metabolism , Epilepsy/physiopathology , Epilepsy/pathology , Hippocampus/metabolism , Matrix Metalloproteinase 9/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Proteolysis , Receptors, GABA-A/metabolism , Synapses/metabolism , Synaptic Transmission/physiology
4.
J Neurosci ; 44(23)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38684366

ABSTRACT

Latrophilin-1 (Lphn1, aka CIRL1 and CL1; gene symbol Adgrl1) is an adhesion GPCR that has been implicated in excitatory synaptic transmission as a candidate receptor for α-latrotoxin. Here we analyzed conditional knock-in/knock-out mice for Lphn1 that contain an extracellular myc epitope tag. Mice of both sexes were used in all experiments. Surprisingly, we found that Lphn1 is localized in cultured neurons to synaptic nanoclusters that are present in both excitatory and inhibitory synapses. Conditional deletion of Lphn1 in cultured neurons failed to elicit a detectable impairment in excitatory synapses but produced a decrease in inhibitory synapse numbers and synaptic transmission that was most pronounced for synapses close to the neuronal soma. No changes in axonal or dendritic outgrowth or branching were observed. Our data indicate that Lphn1 is among the few postsynaptic adhesion molecules that are present in both excitatory and inhibitory synapses and that Lphn1 by itself is not essential for excitatory synaptic transmission but is required for some inhibitory synaptic connections.


Subject(s)
Mice, Knockout , Receptors, Peptide , Synapses , Animals , Female , Male , Mice , Cells, Cultured , Excitatory Postsynaptic Potentials/physiology , Hippocampus/metabolism , Hippocampus/cytology , Inhibitory Postsynaptic Potentials/physiology , Mice, Inbred C57BL , Neural Inhibition/physiology , Neurons/metabolism , Neurons/physiology , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, Peptide/genetics , Receptors, Peptide/metabolism , Synapses/metabolism , Synapses/physiology , Synaptic Transmission/physiology
5.
J Biol Chem ; 299(5): 104716, 2023 05.
Article in English | MEDLINE | ID: mdl-37060998

ABSTRACT

Synaptic adhesion molecules (SAMs) are essential for driving the formation, maturation, and plasticity of synaptic connections for neural networks. MAM domain-containing glycosylphosphatidylinositol anchors (MDGAs) are a type of SAM that regulates the formation of trans-synaptic bridges, which are critical for neurotransmission and synaptic differentiation. In a recent issue of the JBC, Lee et al. uncovered that MDGA1 can control protein-protein interactions and synaptic cleft activity by adopting different global 3D conformations. This novel molecular mechanism may be applicable to other SAMs that regulate protein-protein interactions and nanoscale organization in the synaptic cleft.


Subject(s)
Cell Adhesion Molecules, Neuronal , Synapses , Synapses/physiology , Synaptic Transmission , Cell Communication
6.
J Neurochem ; 168(6): 1060-1079, 2024 06.
Article in English | MEDLINE | ID: mdl-38308496

ABSTRACT

Neuronal hyperactivity induced by ß-amyloid (Aß) is an early pathological feature in Alzheimer's disease (AD) and contributes to cognitive decline in AD progression. However, the underlying mechanisms are still unclear. Here, we revealed that Aß increased the expression level of synaptic adhesion molecule protocadherin-γC5 (Pcdh-γC5) in a Ca2+-dependent manner, associated with aberrant elevation of synapses in both Aß-treated neurons in vitro and the cortex of APP/PS1 mice in vivo. By using Pcdhgc5 gene knockout mice, we demonstrated the critical function of Pcdh-γC5 in regulating neuronal synapse formation, synaptic transmission, and cognition. To further investigate the role of Pcdh-γC5 in AD pathogenesis, the aberrantly enhanced expression of Pcdh-γC5 in the brain of APP/PS1 mice was knocked down by shRNA. Downregulation of Pcdh-γC5 efficiently rescued neuronal hyperactivity and impaired cognition in APP/PS1 mice. Our findings revealed the pathophysiological role of Pcdh-γC5 in mediating Aß-induced neuronal hyperactivity and cognitive deficits in AD and identified a novel mechanism underlying AD pathogenesis.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cadherins , Mice, Knockout , Neurons , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Cadherins/metabolism , Cadherins/genetics , Mice , Neurons/metabolism , Mice, Transgenic , Synapses/metabolism , Synapses/pathology , Cadherin Related Proteins , Mice, Inbred C57BL , Male , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/genetics , Cells, Cultured , Cognition Disorders/metabolism
7.
EMBO J ; 39(11): e104150, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32347567

ABSTRACT

Alternative splicing regulates trans-synaptic adhesions and synapse development, but supporting in vivo evidence is limited. PTPδ, a receptor tyrosine phosphatase adhering to multiple synaptic adhesion molecules, is associated with various neuropsychiatric disorders; however, its in vivo functions remain unclear. Here, we show that PTPδ is mainly present at excitatory presynaptic sites by endogenous PTPδ tagging. Global PTPδ deletion in mice leads to input-specific decreases in excitatory synapse development and strength. This involves tyrosine dephosphorylation and synaptic loss of IL1RAPL1, a postsynaptic partner of PTPδ requiring the PTPδ-meA splice insert for binding. Importantly, PTPδ-mutant mice lacking the PTPδ-meA insert, and thus lacking the PTPδ interaction with IL1RAPL1 but not other postsynaptic partners, recapitulate biochemical and synaptic phenotypes of global PTPδ-mutant mice. Behaviorally, both global and meA-specific PTPδ-mutant mice display abnormal sleep behavior and non-REM rhythms. Therefore, alternative splicing in PTPδ regulates excitatory synapse development and sleep by modulating a specific trans-synaptic adhesion.


Subject(s)
Interleukin-1 Receptor Accessory Protein/metabolism , Protein Tyrosine Phosphatases/metabolism , Sleep Stages , Synapses/metabolism , Animals , Interleukin-1 Receptor Accessory Protein/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , Protein Tyrosine Phosphatases/genetics , Synapses/genetics
8.
Bioessays ; 44(11): e2200134, 2022 11.
Article in English | MEDLINE | ID: mdl-36089658

ABSTRACT

Bidirectional trans-synaptic signaling is essential for the formation, maturation, and plasticity of synaptic connections. Synaptic cell adhesion molecules (CAMs) are prime drivers in shaping the identities of trans-synaptic signaling pathways. A series of recent studies provide evidence that diverse presynaptic cell adhesion proteins dictate the regulation of specific synaptic properties in postsynaptic neurons. Focusing on mammalian synaptic CAMs, this article outlines several exemplary cases supporting this notion and highlights how these trans-synaptic signaling pathways collectively contribute to the specificity and diversity of neural circuit architecture.


Subject(s)
Neurons , Synapses , Animals , Synapses/metabolism , Neurons/metabolism , Cell Adhesion Molecules/metabolism , Cell Communication , Mammals/metabolism
9.
Int J Mol Sci ; 24(18)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37762184

ABSTRACT

This work aimed at assessing Alzheimer's disease (AD) pathogenesis through the investigation of the astrocytic role to transduce the load of amyloid-beta (Aß) into neuronal death. The backbone of this review is focused on the deepening of the molecular pathways eliciting the activation of astrocytes crucial phenomena in the understanding of AD as an autoimmune pathology. The complex relations among astrocytes, Aß and tau, together with the role played by the tripartite synapsis are discussed. A review of studies published from 1979 to 2023 on Scopus, PubMed and Google Scholar databases was conducted. The selected papers focused not only on the morphological and metabolic characteristics of astrocytes, but also on the latest notions about their multifunctional involvement in AD pathogenesis. Astrocytes participate in crucial pathways, including pruning and sprouting, by which the AD neurodegeneration evolves from an aggregopathy to neuroinflammation, loss of synapses and neuronal death. A1 astrocytes stimulate the production of pro-inflammatory molecules which have been correlated with the progression of AD cognitive impairment. Further research is needed to "hold back" the A1 polarization and, thus, to slow the worsening of the disease. AD clinical expression is the result of dysfunctional neuronal interactions, but this is only the end of a process involving a plurality of protagonists. One of these is the astrocyte, whose importance this work intends to put under the spotlight in the AD scenario, reflecting the multifaceted nature of this disease in the functional versatility of this glial population.

10.
Int J Mol Sci ; 23(11)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35682897

ABSTRACT

Synaptic cell adhesion molecules (SynCAMs) play an important role in the formation and maintenance of synapses and the regulation of synaptic plasticity. SynCAM3 is expressed in the synaptic cleft of the central nervous system (CNS) and is involved in the connection between axons and astrocytes. We hypothesized that SynCAM3 may be related to the astrocytic scar (glial scar, the most important factor of CNS injury treatment) through extracellular matrix (ECM) reconstitution. Thus, we investigated the influence of the selective removal of SynCAM3 on the outcomes of spinal cord injury (SCI). SynCAM3 knock-out (KO) mice were subjected to moderate compression injury of the lower thoracic spinal cord using wild-type (WT) (C57BL/6JJc1) mice as controls. Single-cell RNA sequencing analysis over time, quantitative real-time polymerase chain reaction (qRT-PCR) analysis, and immunohistochemistry (IHC) showed reduced scar formation in SynCAM3 KO mice compared to WT mice. SynCAM3 KO mice showed improved functional recovery from SCI by preventing the transformation of reactive astrocytes into scar-forming astrocytes, resulting in improved ECM reconstitution at four weeks after injury. Our findings suggest that SynCAM3 could be a novel therapeutic target for SCI.


Subject(s)
Gliosis , Spinal Cord Injuries , Animals , Astrocytes/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cicatrix/pathology , Gliosis/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism
11.
J Neurosci ; 40(44): 8438-8462, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33037075

ABSTRACT

Neurexins (Nrxns) and LAR-RPTPs (leukocyte common antigen-related protein tyrosine phosphatases) are presynaptic adhesion proteins responsible for organizing presynaptic machineries through interactions with nonoverlapping extracellular ligands. Here, we report that two members of the LAR-RPTP family, PTPσ and PTPδ, are required for the presynaptogenic activity of Nrxns. Intriguingly, Nrxn1 and PTPσ require distinct sets of intracellular proteins for the assembly of specific presynaptic terminals. In addition, Nrxn1α showed robust heparan sulfate (HS)-dependent, high-affinity interactions with Ig domains of PTPσ that were regulated by the splicing status of PTPσ. Furthermore, Nrxn1α WT, but not a Nrxn1α mutant lacking HS moieties (Nrxn1α ΔHS), inhibited postsynapse-inducing activity of PTPσ at excitatory, but not inhibitory, synapses. Similarly, cis expression of Nrxn1α WT, but not Nrxn1α ΔHS, suppressed the PTPσ-mediated maintenance of excitatory postsynaptic specializations in mouse cultured hippocampal neurons. Lastly, genetics analyses using male or female Drosophila Dlar and Dnrx mutant larvae identified epistatic interactions that control synapse formation and synaptic transmission at neuromuscular junctions. Our results suggest a novel synaptogenesis model whereby different presynaptic adhesion molecules combine with distinct regulatory codes to orchestrate specific synaptic adhesion pathways.SIGNIFICANCE STATEMENT We provide evidence supporting the physical interactions of neurexins with leukocyte common-antigen related receptor tyrosine phosphatases (LAR-RPTPs). The availability of heparan sulfates and alternative splicing of LAR-RPTPs regulate the binding affinity of these interactions. A set of intracellular presynaptic proteins is involved in common for Nrxn- and LAR-RPTP-mediated presynaptic assembly. PTPσ triggers glutamatergic and GABAergic postsynaptic differentiation in an alternative splicing-dependent manner, whereas Nrxn1α induces GABAergic postsynaptic differentiation in an alternative splicing-independent manner. Strikingly, Nrxn1α inhibits the glutamatergic postsynapse-inducing activity of PTPσ, suggesting that PTPσ and Nrxn1α might control recruitment of a different pool of postsynaptic machinery. Drosophila orthologs of Nrxns and LAR-RPTPs mediate epistatic interactions in controlling synapse structure and strength at neuromuscular junctions, underscoring the physiological significance in vivo.


Subject(s)
Calcium-Binding Proteins/physiology , Leukocyte Common Antigens/physiology , Neural Cell Adhesion Molecules/physiology , Animals , Calcium-Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster , Excitatory Postsynaptic Potentials/physiology , Extracellular Space/metabolism , Female , HEK293 Cells , Humans , Larva , Male , Mice , Molecular Conformation , Neural Cell Adhesion Molecules/metabolism , Pregnancy , Presynaptic Terminals/metabolism , Rats , Receptor-Like Protein Tyrosine Phosphatases/genetics , Synaptic Transmission/physiology
12.
J Biol Chem ; 295(27): 9244-9262, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32434929

ABSTRACT

Calsyntenin-3 (Clstn3) is a postsynaptic adhesion molecule that induces presynaptic differentiation via presynaptic neurexins (Nrxns), but whether Nrxns directly bind to Clstn3 has been a matter of debate. Here, using LC-MS/MS-based protein analysis, confocal microscopy, RNAscope assays, and electrophysiological recordings, we show that ß-Nrxns directly interact via their LNS domain with Clstn3 and Clstn3 cadherin domains. Expression of splice site 4 (SS4) insert-positive ß-Nrxn variants, but not insert-negative variants, reversed the impaired Clstn3 synaptogenic activity observed in Nrxn-deficient neurons. Consistently, Clstn3 selectively formed complexes with SS4-positive Nrxns in vivo Neuron-specific Clstn3 deletion caused significant reductions in number of excitatory synaptic inputs. Moreover, expression of Clstn3 cadherin domains in CA1 neurons of Clstn3 conditional knockout mice rescued structural deficits in excitatory synapses, especially within the stratum radiatum layer. Collectively, our results suggest that Clstn3 links to SS4-positive Nrxns to induce presynaptic differentiation and orchestrate excitatory synapse development in specific hippocampal neural circuits, including Schaffer collateral afferents.


Subject(s)
Calcium-Binding Proteins/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neural Cell Adhesion Molecules/metabolism , Animals , Cadherins/metabolism , Calcium-Binding Proteins/physiology , Chromatography, Liquid/methods , Hippocampus/metabolism , Membrane Proteins/physiology , Mice , Nerve Tissue Proteins/physiology , Neural Cell Adhesion Molecules/physiology , Neurons/metabolism , Synapses/metabolism , Tandem Mass Spectrometry/methods
13.
Cell Mol Life Sci ; 77(16): 3117-3127, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32077971

ABSTRACT

Complex brain circuitry with feedforward and feedback systems regulates neuronal activity, enabling neural networks to process and drive the entire spectrum of cognitive, behavioral, sensory, and motor functions. Simultaneous orchestration of distinct cells and interconnected neural circuits is underpinned by hundreds of synaptic adhesion molecules that span synaptic junctions. Dysfunction of a single molecule or molecular interaction at synapses can lead to disrupted circuit activity and brain disorders. Neuroligins, a family of cell adhesion molecules, were first identified as postsynaptic-binding partners of presynaptic neurexins and are essential for synapse specification and maturation. Here, we review recent advances in our understanding of how this family of adhesion molecules controls neuronal circuit assembly by acting in a synapse-specific manner.


Subject(s)
Brain/physiology , Nerve Net/physiology , Neurons/physiology , Animals , Brain/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Humans , Nerve Net/metabolism , Neurons/metabolism , Synapses/metabolism , Synapses/physiology , Synaptic Transmission/physiology
14.
Mol Cell Neurosci ; 103: 103465, 2020 03.
Article in English | MEDLINE | ID: mdl-31923461

ABSTRACT

Synaptic adhesion proteins play a critical role in the formation and maintenance of synapses in the developing nervous system. Errors in synaptic adhesion constitute the molecular basis of many neuropsychiatric disorders, including schizophrenia, bipolar disorder, Tourette syndrome, and autism. Slit- and Trk-like proteins (Slitrks) are a family of leucine-rich repeat containing transmembrane proteins that promote synaptogenesis. These proteins localize to the postsynaptic density, where they induce synapse formation via trans-synaptic interactions with receptor protein tyrosine phosphatases. While trans-synaptic binding partners of Slitrks have been reported, little is known about the intracellular proteins that associate with Slitrks. Here we report an interaction between Slitrk2 and members of the PSD-95 subfamily of membrane associated guanylate kinases (MAGUKs). Coimmunoprecipitation from postnatal mouse brain indicates that PSD-93 and PSD-95 associate with Slitrk2 in vivo. Mapping analysis in yeast demonstrates that Slitrk2 interacts directly with PSD-95 via a non-canonical Src homology 3 (SH3) domain binding motif that associates with the SH3 domain of PSD-95. We also show that PSD-95 induces robust clustering of Slitrk2 in 293T cells, and deletion of the SH3 domain in PSD-95 or the SH3 domain binding motif in Slitrk2 reduces this clustering. These data confirm PSD-95 as the first known intracellular binding partner of Slitrk2. Future studies will examine if Slitrk-MAGUK interactions mediate localization of Slitrks to synaptic sites and facilitate recruitment of additional intracellular signaling molecules involved in postsynaptic differentiation.


Subject(s)
Guanylate Kinases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Synapses/metabolism , Animals , Intracellular Space , Mice , Neurogenesis/physiology
15.
Alzheimers Dement ; 17(3): 489-499, 2021 03.
Article in English | MEDLINE | ID: mdl-33075204

ABSTRACT

Aging, the greatest risk factor for Alzheimer's disease (AD), may lead to the accumulation of somatic mutations in neurons. We investigated whether somatic mutations, specifically in longer genes, are implicated in AD etiology. First, we modeled the theoretical likelihood of genes being affected by aging-induced somatic mutations, dependent on their length. We then tested this model and found that long genes are indeed more affected by somatic mutations and that their expression is more frequently reduced in AD brains. Furthermore, using gene-set enrichment analysis, we investigated the potential consequences of such long gene disruption. We found that long genes are involved in synaptic adhesion and other synaptic pathways that are predicted to be inhibited in the brains of AD patients. Taken together, our findings indicate that long gene-dependent synaptic impairment may contribute to AD pathogenesis.


Subject(s)
Aging , Alzheimer Disease , Amyloid beta-Peptides/metabolism , Brain/pathology , Aging/genetics , Aging/physiology , Alzheimer Disease/etiology , Alzheimer Disease/genetics , DNA Damage , Humans , Mutation/genetics , Neurons/metabolism
16.
Hum Brain Mapp ; 41(13): 3737-3748, 2020 09.
Article in English | MEDLINE | ID: mdl-32558014

ABSTRACT

Molecular mechanisms underlying Alzheimer's disease (AD) are difficult to investigate, partly because diagnosis lags behind the insidious pathological processes. Therefore, identifying AD neuroimaging markers and their genetic modifiers may help study early mechanisms of neurodegeneration. We aimed to identify brain regions of the highest vulnerability to AD using a data-driven search in the AD Neuroimaging Initiative (ADNI, n = 1,100 subjects), and further explored genetic variants affecting this critical brain trait using both ADNI and the younger UK Biobank cohort (n = 8,428 subjects). Tensor-Based Morphometry (TBM) and Independent Component Analysis (ICA) identified the limbic system and its interconnecting white-matter as the most AD-vulnerable brain feature. Whole-genome analysis revealed a common variant in SHARPIN that was associated with this imaging feature (rs34173062, p = 2.1 × 10-10 ). This genetic association was validated in the UK Biobank, where it was correlated with entorhinal cortical thickness bilaterally (p = .002 left and p = 8.6 × 10-4 right), and with parental history of AD (p = 2.3 × 10-6 ). Our findings suggest that neuroanatomical variation in the limbic system and AD risk are associated with a novel variant in SHARPIN. The role of this postsynaptic density gene product in ß1-integrin adhesion is in line with the amyloid precursor protein (APP) intracellular signaling pathway and the recent genome-wide evidence.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Imaging Genomics , Limbic System/diagnostic imaging , Neuroimaging , Post-Synaptic Density/metabolism , Ubiquitins/genetics , White Matter/diagnostic imaging , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Cross-Sectional Studies , Entorhinal Cortex/diagnostic imaging , Entorhinal Cortex/metabolism , Entorhinal Cortex/pathology , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Limbic System/metabolism , Limbic System/pathology , Longitudinal Studies , Magnetic Resonance Imaging , Male , White Matter/metabolism , White Matter/pathology
17.
J Neurosci ; 38(4): 901-917, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29229705

ABSTRACT

Proteolytic processing of synaptic adhesion components can accommodate the function of synapses to activity-dependent changes. The adhesion system formed by neurexins (Nrxns) and neuroligins (Nlgns) bidirectionally orchestrate the function of presynaptic and postsynaptic terminals. Previous studies have shown that presenilins (PS), components of the gamma-secretase complex frequently mutated in familial Alzheimer's disease, clear from glutamatergic terminals the accumulation of Nrxn C-terminal fragments (Nrxn-CTF) generated by ectodomain shedding. Here, we characterized the synaptic consequences of the proteolytic processing of Nrxns in cultured hippocampal neurons from mice and rats of both sexes. We show that activation of presynaptic Nrxns with postsynaptic Nlgn1 or inhibition of ectodomain shedding in axonal Nrxn1-ß increases presynaptic release at individual terminals, likely reflecting an increase in the number of functional release sites. Importantly, inactivation of PS inhibits presynaptic release downstream of Nrxn activation, leaving synaptic vesicle recruitment unaltered. Glutamate-receptor signaling initiates the activity-dependent generation of Nrxn-CTF, which accumulate at presynaptic terminals lacking PS function. The sole expression of Nrxn-CTF decreases presynaptic release and calcium flux, recapitulating the deficits due to loss of PS function. Our data indicate that inhibition of Nrxn processing by PS is deleterious to glutamatergic function.SIGNIFICANCE STATEMENT To gain insight into the role of presenilins (PS) in excitatory synaptic function, we address the relevance of the proteolytic processing of presynaptic neurexins (Nrxns) in glutamatergic differentiation. Using synaptic fluorescence probes in cultured hippocampal neurons, we report that trans-synaptic activation of Nrxns produces a robust increase in presynaptic calcium levels and neurotransmitter release at individual glutamatergic terminals by a mechanism that depends on normal PS activity. Abnormal accumulation of Nrxn C-terminal fragments resulting from impaired PS activity inhibits presynaptic calcium signal and neurotransmitter release, assigning synaptic defects to Nrxns as a specific PS substrate. These data may provide links into how loss of PS activity inhibits glutamatergic synaptic function in Alzheimer's disease patients.


Subject(s)
Neural Cell Adhesion Molecules/metabolism , Presenilins/metabolism , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism , Animals , Female , Male , Mice , Proteolysis , Rats
18.
J Neurosci ; 38(30): 6700-6721, 2018 07 25.
Article in English | MEDLINE | ID: mdl-29934346

ABSTRACT

Leukocyte common antigen-receptor protein tyrosine phosphatases (LAR-RPTPs) are hub proteins that organize excitatory and inhibitory synapse development through binding to various extracellular ligands. Here, we report that knockdown (KD) of the LAR-RPTP family member PTPσ reduced excitatory synapse number and transmission in cultured rat hippocampal neurons, whereas KD of PTPδ produced comparable decreases at inhibitory synapses, in both cases without altering expression levels of interacting proteins. An extensive series of rescue experiments revealed that extracellular interactions of PTPσ with Slitrks are important for excitatory synapse development. These experiments further showed that the intracellular D2 domain of PTPσ is required for induction of heterologous synapse formation by Slitrk1 or TrkC, suggesting that interaction of LAR-RPTPs with distinct intracellular presynaptic proteins, drives presynaptic machinery assembly. Consistent with this, double-KD of liprin-α2 and -α3 or KD of PTPσ substrates (N-cadherin and p250RhoGAP) in neurons inhibited Slitrk6-induced, PTPσ-mediated heterologous synapse formation activity. We propose a synaptogenesis model in presynaptic neurons involving LAR-RPTP-organized retrograde signaling cascades, in which both extracellular and intracellular mechanisms are critical in orchestrating distinct synapse types.SIGNIFICANCE STATEMENT In this study, we sought to test the unproven hypothesis that PTPσ and PTPδ are required for excitatory and inhibitory synapse formation/transmission, respectively, in cultured hippocampal neurons, using knockdown-based loss-of-function analyses. We further performed extensive structure-function analyses, focusing on PTPσ-mediated actions, to address the mechanisms of presynaptic assembly at excitatory synaptic sites. Using interdisciplinary approaches, we systematically applied a varied set of PTPσ deletion variants, point mutants, and splice variants to demonstrate that both extracellular and intracellular mechanisms are involved in organizing presynaptic assembly. Strikingly, extracellular interactions of PTPσ with heparan sulfates and Slitrks, intracellular interactions of PTPσ with liprin-α and its associated proteins through the D2 domain, as well as distinct substrates are all critical.


Subject(s)
Neurogenesis/physiology , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Synapses/physiology , Synaptic Transmission/physiology , Animals , Humans , Neurons/physiology , Rats , Signal Transduction/physiology
19.
Neurogenetics ; 20(4): 209-213, 2019 10.
Article in English | MEDLINE | ID: mdl-31372774

ABSTRACT

Regulation of neuronal connectivity and synaptic communication are key to proper functioning of the brain. The Netrin-G subfamily and their cognate receptors are vertebrate-specific synaptic cell adhesion molecules with a role in synapse establishment and function, which seem to have co-evolved to contribute to higher brain functions. We identified a homozygous frameshift variant in NTNG2 (NM_032536.3: c.376dup), encoding Netrin-G2, in eight individuals from four families with global developmental delay, hypotonia, secondary microcephaly, and autistic features. Comparison of haplotypes established this as a founder variant. Previous studies showed that Ntng2-knockout mice have impaired visual, auditory, and motor coordination abilities required for demanding tasks, as well as possible spatial learning and memory deficits. Knockout of Ntng2 in a cellular model resulted in short neurites, and knockout of its trans-synaptic partner Ngl2/Lrrc4 in mice revealed autistic-like behavior and reduced NMDAR synaptic plasticity. The Ngl2/Lrrc4-knockout mouse phenotype was rescued by NMDAR activation, suggesting a mechanistic link to autism spectrum disorder. We thus propose NTNG2 as a candidate disease gene and provide further support for the involvement of Netrin-G2 in neuropsychiatric phenotypes.


Subject(s)
Autistic Disorder/genetics , Developmental Disabilities/genetics , Frameshift Mutation , GPI-Linked Proteins/genetics , Homozygote , Muscle Hypotonia/genetics , Netrins/genetics , Autistic Disorder/complications , Cell Adhesion , Cell Adhesion Molecules/genetics , Child , Developmental Disabilities/complications , Exome , Female , Haplotypes , Humans , Male , Muscle Hypotonia/complications , Neuronal Plasticity , Pedigree , Phenotype , Synapses/metabolism
20.
Neurol Sci ; 40(8): 1577-1582, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30963337

ABSTRACT

Dementia is one of the diabetic complications under intensive study. Alteration of synaptic adhesion protein (SAP) associates with neurological diseases, including Alzheimer's disease. However, the regulation of SAPs in the brain of diabetes mellitus remains elusive. To pinpoint the candidate SAPs underlining the mechanism of diabetic dementia, we investigated expression profiling of SAPs in both streptozotocin (STZ)-induced diabetic mice, AppNL-G-F/NL-G-F mice, and amyloid precursor protein intracellular domain (AICD)-induced human neural cell line from public databases. DST (Dystonin/BPAG1) was identified upregulated in both models. Our finding suggests that DST alteration may involve in the mechanism of diabetic dementia.


Subject(s)
Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Diabetes Complications/metabolism , Diabetes Mellitus/metabolism , Dystonin/metabolism , Animals , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL