Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 291
Filter
Add more filters

Publication year range
1.
Cell ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39276772

ABSTRACT

Protein aggregation causes a wide range of neurodegenerative diseases. Targeting and removing aggregates, but not the functional protein, is a considerable therapeutic challenge. Here, we describe a therapeutic strategy called "RING-Bait," which employs an aggregating protein sequence combined with an E3 ubiquitin ligase. RING-Bait is recruited into aggregates, whereupon clustering dimerizes the RING domain and activates its E3 function, resulting in the degradation of the aggregate complex. We exemplify this concept by demonstrating the specific degradation of tau aggregates while sparing soluble tau. Unlike immunotherapy, RING-Bait is effective against both seeded and cell-autonomous aggregation. RING-Bait removed tau aggregates seeded from Alzheimer's disease (AD) and progressive supranuclear palsy (PSP) brain extracts and was also effective in primary neurons. We used a brain-penetrant adeno-associated virus (AAV) to treat P301S tau transgenic mice, reducing tau pathology and improving motor function. A RING-Bait strategy could be applied to other neurodegenerative proteinopathies by replacing the Bait sequence to match the target aggregate.

2.
Cell ; 186(10): 2176-2192.e22, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37137307

ABSTRACT

The ClpC1:ClpP1P2 protease is a core component of the proteostasis system in mycobacteria. To improve the efficacy of antitubercular agents targeting the Clp protease, we characterized the mechanism of the antibiotics cyclomarin A and ecumicin. Quantitative proteomics revealed that the antibiotics cause massive proteome imbalances, including upregulation of two unannotated yet conserved stress response factors, ClpC2 and ClpC3. These proteins likely protect the Clp protease from excessive amounts of misfolded proteins or from cyclomarin A, which we show to mimic damaged proteins. To overcome the Clp security system, we developed a BacPROTAC that induces degradation of ClpC1 together with its ClpC2 caretaker. The dual Clp degrader, built from linked cyclomarin A heads, was highly efficient in killing pathogenic Mycobacterium tuberculosis, with >100-fold increased potency over the parent antibiotic. Together, our data reveal Clp scavenger proteins as important proteostasis safeguards and highlight the potential of BacPROTACs as future antibiotics.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , Endopeptidase Clp/metabolism , Heat-Shock Proteins/metabolism , Mycobacterium tuberculosis/drug effects , Proteostasis
3.
Annu Rev Biochem ; 91: 295-319, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35320687

ABSTRACT

Methods to direct the degradation of protein targets with proximity-inducing molecules that coopt the cellular degradation machinery are advancing in leaps and bounds, and diverse modalities are emerging. The most used and well-studied approach is to hijack E3 ligases of the ubiquitin-proteasome system. E3 ligases use specific molecular recognition to determine which proteins in the cell are ubiquitinated and degraded. This review focuses on the structural determinants of E3 ligase recruitment of natural substrates and neo-substrates obtained through monovalent molecular glues and bivalent proteolysis-targeting chimeras. We use structures to illustrate the different types of substrate recognition and assess the basis for neo-protein-protein interactions in ternary complex structures. The emerging structural and mechanistic complexity is reflective of the diverse physiological roles of protein ubiquitination. This molecular insight is also guiding the application of structure-based design approaches to the development of new and existing degraders as chemical tools and therapeutics.


Subject(s)
Ubiquitin-Protein Ligases , Ubiquitin , Proteins/metabolism , Proteolysis , Substrate Specificity , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
4.
Cell ; 185(13): 2338-2353.e18, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35662409

ABSTRACT

Hijacking the cellular protein degradation system offers unique opportunities for drug discovery, as exemplified by proteolysis-targeting chimeras. Despite their great promise for medical chemistry, so far, it has not been possible to reprogram the bacterial degradation machinery to interfere with microbial infections. Here, we develop small-molecule degraders, so-called BacPROTACs, that bind to the substrate receptor of the ClpC:ClpP protease, priming neo-substrates for degradation. In addition to their targeting function, BacPROTACs activate ClpC, transforming the resting unfoldase into its functional state. The induced higher-order oligomer was visualized by cryo-EM analysis, providing a structural snapshot of activated ClpC unfolding a protein substrate. Finally, drug susceptibility and degradation assays performed in mycobacteria demonstrate in vivo activity of BacPROTACs, allowing selective targeting of endogenous proteins via fusion to an established degron. In addition to guiding antibiotic discovery, the BacPROTAC technology presents a versatile research tool enabling the inducible degradation of bacterial proteins.


Subject(s)
Bacterial Proteins , Molecular Chaperones , Bacteria/metabolism , Bacterial Proteins/metabolism , Molecular Chaperones/metabolism , Proteolysis
5.
Cell ; 184(20): 5201-5214.e12, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34536345

ABSTRACT

Certain obligate parasites induce complex and substantial phenotypic changes in their hosts in ways that favor their transmission to other trophic levels. However, the mechanisms underlying these changes remain largely unknown. Here we demonstrate how SAP05 protein effectors from insect-vectored plant pathogenic phytoplasmas take control of several plant developmental processes. These effectors simultaneously prolong the host lifespan and induce witches' broom-like proliferations of leaf and sterile shoots, organs colonized by phytoplasmas and vectors. SAP05 acts by mediating the concurrent degradation of SPL and GATA developmental regulators via a process that relies on hijacking the plant ubiquitin receptor RPN10 independent of substrate ubiquitination. RPN10 is highly conserved among eukaryotes, but SAP05 does not bind insect vector RPN10. A two-amino-acid substitution within plant RPN10 generates a functional variant that is resistant to SAP05 activities. Therefore, one effector protein enables obligate parasitic phytoplasmas to induce a plethora of developmental phenotypes in their hosts.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/parasitology , Host-Parasite Interactions/physiology , Parasites/physiology , Proteolysis , Ubiquitins/metabolism , Amino Acid Sequence , Animals , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Genetic Engineering , Humans , Insecta/physiology , Models, Biological , Phenotype , Photoperiod , Phylogeny , Phytoplasma/physiology , Plant Development , Plant Shoots/growth & development , Plants, Genetically Modified , Proteasome Endopeptidase Complex/metabolism , Protein Stability , Reproduction , Nicotiana , Transcription Factors/metabolism , Transcription, Genetic
6.
Mol Cell ; 84(8): 1585-1600.e7, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38479385

ABSTRACT

Myriad physiological and pathogenic processes are governed by protein levels and modifications. Controlled protein activity perturbation is essential to studying protein function in cells and animals. Based on Trim-Away technology, we screened for truncation variants of E3 ubiquitinase Trim21 with elevated efficiency (ΔTrim21) and developed multiple ΔTrim21-based targeted protein-degradation systems (ΔTrim-TPD) that can be transfected into host cells. Three ΔTrim-TPD variants are developed to enable chemical and light-triggered programmable activation of TPD in cells and animals. Specifically, we used ΔTrim-TPD for (1) red-light-triggered inhibition of HSV-1 virus proliferation by degrading the packaging protein gD, (2) for chemical-triggered control of the activity of Cas9/dCas9 protein for gene editing, and (3) for blue-light-triggered degradation of two tumor-associated proteins for spatiotemporal inhibition of melanoma tumor growth in mice. Our study demonstrates that multiple ΔTrim21-based controllable TPD systems provide powerful tools for basic biology research and highlight their potential biomedical applications.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Mice , Animals , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Proteins/metabolism , Proteolysis , Mammals/metabolism
7.
Mol Cell ; 84(2): 386-400.e11, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38103558

ABSTRACT

The posttranslational modifier ubiquitin regulates most cellular processes. Its ability to form polymeric chains of distinct linkages is key to its diverse functionality. Yet, we still lack the experimental tools to induce linkage-specific polyubiquitylation of a protein of interest in cells. Here, we introduce a set of engineered ubiquitin protein ligases and matching ubiquitin acceptor tags for the rapid, inducible linear (M1-), K48-, or K63-linked polyubiquitylation of proteins in yeast and mammalian cells. By applying the so-called "Ubiquiton" system to proteasomal targeting and the endocytic pathway, we validate this tool for soluble cytoplasmic and nuclear as well as chromatin-associated and integral membrane proteins and demonstrate how it can be used to control the localization and stability of its targets. We expect that the Ubiquiton system will serve as a versatile, broadly applicable research tool to explore the signaling functions of polyubiquitin chains in many biological contexts.


Subject(s)
Ubiquitin-Protein Ligases , Ubiquitin , Animals , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Polyubiquitin/genetics , Polyubiquitin/metabolism , Signal Transduction , Proteasome Endopeptidase Complex/metabolism , Ubiquitination , Mammals/metabolism
8.
Mol Cell ; 84(7): 1304-1320.e16, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38382526

ABSTRACT

Cullin-RING ligases (CRLs) ubiquitylate specific substrates selected from other cellular proteins. Substrate discrimination and ubiquitin transferase activity were thought to be strictly separated. Substrates are recognized by substrate receptors, such as Fbox or BCbox proteins. Meanwhile, CRLs employ assorted ubiquitin-carrying enzymes (UCEs, which are a collection of E2 and ARIH-family E3s) specialized for either initial substrate ubiquitylation (priming) or forging poly-ubiquitin chains. We discovered specific human CRL-UCE pairings governing substrate priming. The results reveal pairing of CUL2-based CRLs and UBE2R-family UCEs in cells, essential for efficient PROTAC-induced neo-substrate degradation. Despite UBE2R2's intrinsic programming to catalyze poly-ubiquitylation, CUL2 employs this UCE for geometrically precise PROTAC-dependent ubiquitylation of a neo-substrate and for rapid priming of substrates recruited to diverse receptors. Cryo-EM structures illuminate how CUL2-based CRLs engage UBE2R2 to activate substrate ubiquitylation. Thus, pairing with a specific UCE overcomes E2 catalytic limitations to drive substrate ubiquitylation and targeted protein degradation.


Subject(s)
Cullin Proteins , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Cullin Proteins/genetics , Cullin Proteins/metabolism , Ubiquitination , Ubiquitin/metabolism , Polyubiquitin/metabolism , Carrier Proteins/metabolism
9.
Mol Cell ; 83(5): 770-786.e9, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36805027

ABSTRACT

E3 ligase recruitment of proteins containing terminal destabilizing motifs (degrons) is emerging as a major form of regulation. How those E3s discriminate bona fide substrates from other proteins with terminal degron-like sequences remains unclear. Here, we report that human KLHDC2, a CRL2 substrate receptor targeting C-terminal Gly-Gly degrons, is regulated through interconversion between two assemblies. In the self-inactivated homotetramer, KLHDC2's C-terminal Gly-Ser motif mimics a degron and engages the substrate-binding domain of another protomer. True substrates capture the monomeric CRL2KLHDC2, driving E3 activation by neddylation and subsequent substrate ubiquitylation. Non-substrates such as NEDD8 bind KLHDC2 with high affinity, but its slow on rate prevents productive association with CRL2KLHDC2. Without substrate, neddylated CRL2KLHDC2 assemblies are deactivated via distinct mechanisms: the monomer by deneddylation and the tetramer by auto-ubiquitylation. Thus, substrate specificity is amplified by KLHDC2 self-assembly acting like a molecular timer, where only bona fide substrates may bind before E3 ligase inactivation.


Subject(s)
Proteins , Ubiquitin-Protein Ligases , Humans , Carrier Proteins , Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
10.
Mol Cell ; 82(6): 1140-1155.e11, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35245435

ABSTRACT

MLL rearrangements produce fusion oncoproteins that drive leukemia development, but the direct effects of MLL-fusion inactivation remain poorly defined. We designed models with degradable MLL::AF9 where treatment with small molecules induces rapid degradation. We leveraged the kinetics of this system to identify a core subset of MLL::AF9 target genes where MLL::AF9 degradation induces changes in transcriptional elongation within 15 minutes. MLL::AF9 degradation subsequently causes loss of a transcriptionally active chromatin landscape. We used this insight to assess the effectiveness of small molecules that target members of the MLL::AF9 multiprotein complex, specifically DOT1L and MENIN. Combined DOT1L/MENIN inhibition resembles MLL::AF9 degradation, whereas single-agent treatment has more modest effects on MLL::AF9 occupancy and gene expression. Our data show that MLL::AF9 degradation leads to decreases in transcriptional elongation prior to changes in chromatin landscape at select loci and that combined inhibition of chromatin complexes releases the MLL::AF9 oncoprotein from chromatin globally.


Subject(s)
Leukemia , Myeloid-Lymphoid Leukemia Protein , Chromatin/genetics , Humans , Leukemia/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/genetics , Transcription Factors/genetics
11.
Genes Dev ; 36(17-18): 1031-1042, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36328355

ABSTRACT

Targeted protein degradation (TPD) has risen as a promising therapeutic modality. Leveraging the catalytic nature of the ubiquitin-proteasome enzymatic machinery, TPD exhibits higher potency to eliminate disease-causing target proteins such as oncogenic transcription factors that may otherwise be difficult to abrogate by conventional inhibitors. However, there are challenges that remain. Currently, nearly all degraders engage CUL4CRBN or CUL2VHL as the E3 ligase for target ubiquitination. While their immediate efficacies are evident, the narrowed E3 ligase options make TPD vulnerable to potential drug resistance. In addition, E3 ligases show differential tissue expression and have intrinsic limitations in accessing varying types of disease-relevant targets. As the success of TPD is closely associated with the ability of E3 ligases to efficiently polyubiquitinate the target of interest, the long-term outlook of TPD drug development will depend on whether E3 ligases such as CUL4CRBN and CUL2VHL are accessible to the targets of interest. To overcome these potential caveats, a broad collection of actionable E3 ligases is required. Here, we designed a macrocyclic degrader engaging CUL3KLHL20 for targeting BET proteins and validated CUL3KLHL20 as an E3 ligase system suitable for TPD. This work thus contributes to the expansion of usable E3 ligases for potential drug development.


Subject(s)
Adaptor Proteins, Signal Transducing , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Proteolysis , Ligands , Adaptor Proteins, Signal Transducing/metabolism , Ubiquitination
12.
Mol Cell ; 81(7): 1411-1424.e7, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33567268

ABSTRACT

Targeted protein degradation is an emerging therapeutic paradigm. Small-molecule degraders such as proteolysis-targeting chimeras (PROTACs) induce the degradation of neo-substrates by hijacking E3 ubiquitin ligases. Although ubiquitylation of endogenous substrates has been extensively studied, the mechanism underlying forced degradation of neo-substrates is less well understood. We found that the ubiquitin ligase TRIP12 promotes PROTAC-induced and CRL2VHL-mediated degradation of BRD4 but is dispensable for the degradation of the endogenous CRL2VHL substrate HIF-1α. TRIP12 associates with BRD4 via CRL2VHL and specifically assembles K29-linked ubiquitin chains, facilitating the formation of K29/K48-branched ubiquitin chains and accelerating the assembly of K48 linkage by CRL2VHL. Consequently, TRIP12 promotes the PROTAC-induced apoptotic response. TRIP12 also supports the efficiency of other degraders that target CRABP2 or TRIM24 or recruit CRBN. These observations define TRIP12 and K29/K48-branched ubiquitin chains as accelerators of PROTAC-directed targeted protein degradation, revealing a cooperative mechanism of branched ubiquitin chain assembly unique to the degradation of neo-substrates.


Subject(s)
Carrier Proteins/metabolism , Polyubiquitin/metabolism , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , HCT116 Cells , HEK293 Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Polyubiquitin/genetics , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics
13.
Mol Cell ; 81(15): 3110-3127.e14, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34233157

ABSTRACT

SPT6 is a histone chaperone that tightly binds RNA polymerase II (RNAPII) during transcription elongation. However, its primary role in transcription is uncertain. We used targeted protein degradation to rapidly deplete SPT6 in human cells and analyzed defects in RNAPII behavior by a multi-omics approach and mathematical modeling. Our data indicate that SPT6 is a crucial factor for RNAPII processivity and is therefore required for the productive transcription of protein-coding genes. Unexpectedly, SPT6 also has a vital role in RNAPII termination, as acute depletion induced readthrough transcription for thousands of genes. Long-term depletion of SPT6 induced cryptic intragenic transcription, as observed earlier in yeast. However, this phenotype was not observed upon acute SPT6 depletion and therefore can be attributed to accumulated epigenetic perturbations in the prolonged absence of SPT6. In conclusion, targeted degradation of SPT6 allowed the temporal discrimination of its function as an epigenetic safeguard and RNAPII elongation factor.


Subject(s)
RNA Polymerase II/metabolism , Transcription Elongation, Genetic , Transcription Factors/metabolism , Cell Line , DNA Replication , Humans , Indoleacetic Acids/pharmacology , Polyadenylation , Proteolysis/drug effects , RNA/biosynthesis , RNA Polymerase II/genetics , Transcription Factors/genetics
14.
Trends Biochem Sci ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39332983

ABSTRACT

Targeted protein degradation is an innovative therapeutic modality for the degradation of disease-causing proteins. In a recent report combining high-throughput screening of small-molecule compounds and biochemical analyses, Mori et al. identified certain inhibitors of cellular pathways, such as PARylation and proteostatic pathways, which enhance proteolysis-targeting chimera (PROTAC)-induced protein degradation.

15.
Mol Cell ; 77(5): 1092-1106.e9, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31973889

ABSTRACT

Co-opting Cullin4 RING ubiquitin ligases (CRL4s) to inducibly degrade pathogenic proteins is emerging as a promising therapeutic strategy. Despite intense efforts to rationally design degrader molecules that co-opt CRL4s, much about the organization and regulation of these ligases remains elusive. Here, we establish protein interaction kinetics and estimation of stoichiometries (PIKES) analysis, a systematic proteomic profiling platform that integrates cellular engineering, affinity purification, chemical stabilization, and quantitative mass spectrometry to investigate the dynamics of interchangeable multiprotein complexes. Using PIKES, we show that ligase assemblies of Cullin4 with individual substrate receptors differ in abundance by up to 200-fold and that Cand1/2 act as substrate receptor exchange factors. Furthermore, degrader molecules can induce the assembly of their cognate CRL4, and higher expression of the associated substrate receptor enhances degrader potency. Beyond the CRL4 network, we show how PIKES can reveal systems level biochemistry for cellular protein networks important to drug development.


Subject(s)
Chromatography, High Pressure Liquid , Proteomics/methods , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Ubiquitin-Protein Ligases/metabolism , Cullin Proteins/genetics , Cullin Proteins/metabolism , HEK293 Cells , Humans , Kinetics , Muscle Proteins/genetics , Muscle Proteins/metabolism , NEDD8 Protein/genetics , NEDD8 Protein/metabolism , Protein Interaction Maps , Proteolysis , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics
16.
Annu Rev Pharmacol Toxicol ; 64: 291-312, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37585660

ABSTRACT

Thalidomide and its derivatives are powerful cancer therapeutics that are among the best-understood molecular glue degraders (MGDs). These drugs selectively reprogram the E3 ubiquitin ligase cereblon (CRBN) to commit target proteins for degradation by the ubiquitin-proteasome system. MGDs create novel recognition interfaces on the surface of the E3 ligase that engage in induced protein-protein interactions with neosubstrates. Molecular insight into their mechanism of action opens exciting opportunities to engage a plethora of targets through a specific recognition motif, the G-loop. Our analysis shows that current CRBN-based MGDs can in principle recognize over 2,500 proteins in the human proteome that contain a G-loop. We review recent advances in tuning the specificity between CRBN and its MGD-induced neosubstrates and deduce a set of simple rules that govern these interactions. We conclude that rational MGD design efforts will enable selective degradation of many more proteins, expanding this therapeutic modality to more disease areas.


Subject(s)
Thalidomide , Ubiquitin-Protein Ligases , Humans , Thalidomide/pharmacology , Thalidomide/therapeutic use , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Proteasome Endopeptidase Complex/metabolism
17.
Mol Cell ; 75(4): 849-858.e8, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442425

ABSTRACT

Inducing protein degradation via small molecules is a transformative therapeutic paradigm. Although structural requirements of target degradation are emerging, mechanisms determining the cellular response to small-molecule degraders remain poorly understood. To systematically delineate effectors required for targeted protein degradation, we applied genome-scale CRISPR/Cas9 screens for five drugs that hijack different substrate receptors (SRs) of cullin RING ligases (CRLs) to induce target proteolysis. We found that sensitivity to small-molecule degraders is dictated by shared and drug-specific modulator networks, including the COP9 signalosome and the SR exchange factor CAND1. Genetic or pharmacologic perturbation of these effectors impairs CRL plasticity and arrests a wide array of ligases in a constitutively active state. Resulting defects in CRL decommissioning prompt widespread CRL auto-degradation that confers resistance to multiple degraders. Collectively, our study informs on regulation and architecture of CRLs amenable for targeted protein degradation and outlines biomarkers and putative resistance mechanisms for upcoming clinical investigation.


Subject(s)
COP9 Signalosome Complex/metabolism , Cullin Proteins/metabolism , Proteolysis , Transcription Factors/metabolism , COP9 Signalosome Complex/genetics , Cullin Proteins/genetics , Humans , Transcription Factors/genetics
18.
Mol Cell ; 76(5): 797-810.e10, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31606272

ABSTRACT

Protein silencing represents an essential tool in biomedical research. Targeted protein degradation (TPD) strategies exemplified by PROTACs are rapidly emerging as modalities in drug discovery. However, the scope of current TPD techniques is limited because many intracellular materials are not substrates of proteasomal clearance. Here, we described a novel targeted-clearance strategy (autophagy-targeting chimera [AUTAC]) that contains a degradation tag (guanine derivatives) and a warhead to provide target specificity. As expected from the substrate scope of autophagy, AUTAC degraded fragmented mitochondria as well as proteins. Mitochondria-targeted AUTAC accelerated both the removal of dysfunctional fragmented mitochondria and the biogenesis of functionally normal mitochondria in patient-derived fibroblast cells. Cytoprotective effects against acute mitochondrial injuries were also seen. Canonical autophagy is viewed as a nonselective bulk decomposition system, and none of the available autophagy-inducing agents exhibit useful cargo selectivity. With its target specificity, AUTAC provides a new modality for research on autophagy-based drugs.


Subject(s)
Autophagy/physiology , Guanine/chemistry , Proteolysis/drug effects , Autophagy-Related Proteins/metabolism , Cell Line , Guanine/physiology , Humans , Mitochondria/metabolism , Mitophagy/physiology , Protein Engineering/methods , Protein Kinases/metabolism , Protein Stability
19.
Proc Natl Acad Sci U S A ; 121(13): e2320053121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38513100

ABSTRACT

Lysosome-targeting chimeras (LYTACs) are a promising therapeutic modality to drive the degradation of extracellular proteins. However, early versions of LYTAC contain synthetic glycopeptides that cannot be genetically encoded. Here, we present our designs for a fully genetically encodable LYTAC (GELYTAC), making our tool compatible with integration into therapeutic cells for targeted delivery at diseased sites. To achieve this, we replaced the glycopeptide portion of LYTACs with the protein insulin-like growth factor 2 (IGF2). After showing initial efficacy with wild-type IGF2, we increased the potency of GELYTAC using directed evolution. Subsequently, we demonstrated that our engineered GELYTAC construct not only secretes from HEK293T cells but also from human primary T-cells to drive the uptake of various targets into receiver cells. Immune cells engineered to secrete GELYTAC thus represent a promising avenue for spatially selective targeted protein degradation.


Subject(s)
Lysosomes , Humans , HEK293 Cells , Proteolysis
20.
EMBO Rep ; 25(3): 951-970, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38287192

ABSTRACT

The exquisite specificity of antibodies can be harnessed to effect targeted degradation of membrane proteins. Here, we demonstrate targeted protein removal utilising a protein degradation domain derived from the endogenous human protein Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9). Recombinant antibodies genetically fused to this domain drive the degradation of membrane proteins that undergo constitutive internalisation and recycling, including the transferrin receptor and the human cytomegalovirus latency-associated protein US28. We term this approach PACTAC (PCSK9-Antibody Clearance-Targeting Chimeras).


Subject(s)
Proprotein Convertase 9 , Serine Endopeptidases , Humans , Proprotein Convertase 9/metabolism , Proprotein Convertases/metabolism , Membrane Proteins , Receptors, LDL/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL