Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 113(33): E4877-84, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27482099

ABSTRACT

Birds and gliders exploit warm, rising atmospheric currents (thermals) to reach heights comparable to low-lying clouds with a reduced expenditure of energy. This strategy of flight (thermal soaring) is frequently used by migratory birds. Soaring provides a remarkable instance of complex decision making in biology and requires a long-term strategy to effectively use the ascending thermals. Furthermore, the problem is technologically relevant to extend the flying range of autonomous gliders. Thermal soaring is commonly observed in the atmospheric convective boundary layer on warm, sunny days. The formation of thermals unavoidably generates strong turbulent fluctuations, which constitute an essential element of soaring. Here, we approach soaring flight as a problem of learning to navigate complex, highly fluctuating turbulent environments. We simulate the atmospheric boundary layer by numerical models of turbulent convective flow and combine them with model-free, experience-based, reinforcement learning algorithms to train the gliders. For the learned policies in the regimes of moderate and strong turbulence levels, the glider adopts an increasingly conservative policy as turbulence levels increase, quantifying the degree of risk affordable in turbulent environments. Reinforcement learning uncovers those sensorimotor cues that permit effective control over soaring in turbulent environments.


Subject(s)
Flight, Animal/physiology , Learning , Reinforcement, Psychology , Algorithms , Biomechanical Phenomena , Cues , Reward
2.
PNAS Nexus ; 1(1): pgac023, 2022 Mar.
Article in English | MEDLINE | ID: mdl-36712794

ABSTRACT

The largest extinct volant birds (Pelagornis sandersi and Argentavis magnificens) and pterosaurs (Pteranodon and Quetzalcoatlus) are thought to have used wind-dependent soaring flight, similar to modern large birds. There are 2 types of soaring: thermal soaring, used by condors and frigatebirds, which involves the use of updrafts to ascend and then glide horizontally; and dynamic soaring, used by albatrosses, which involves the use of wind speed differences with height above the sea surface. Previous studies have suggested that P. sandersi used dynamic soaring, while A. magnificens and Quetzalcoatlus used thermal soaring. For Pteranodon, there is debate over whether they used dynamic or thermal soaring. However, the performance and wind speed requirements of dynamic and thermal soaring for these species have not yet been quantified comprehensively. We quantified these values using aerodynamic models and compared them with that of extant birds. For dynamic soaring, we quantified maximum travel speeds and maximum upwind speeds. For thermal soaring, we quantified the animal's sinking speed circling at a given radius and how far it could glide losing a given height. Our results confirmed those from previous studies that A. magnificens and Pteranodon used thermal soaring. Conversely, the results for P. sandersi and Quetzalcoatlus were contrary to those from previous studies. P. sandersi used thermal soaring, and Quetzalcoatlus had a poor ability both in dynamic and thermal soaring. Our results demonstrate the need for comprehensive assessments of performance and required wind conditions when estimating soaring styles of extinct flying species.

3.
J R Soc Interface ; 19(196): 20220671, 2022 11.
Article in English | MEDLINE | ID: mdl-36415974

ABSTRACT

The use of flying robots (drones) is increasing rapidly, but their utility is limited by high power demand, low specific energy storage and poor gust tolerance. By contrast, birds demonstrate long endurance, harvesting atmospheric energy in environments ranging from cluttered cityscapes to open landscapes, coasts and oceans. Here, we identify new opportunities for flying robots, drawing upon the soaring flight of birds. We evaluate mechanical energy transfer in soaring from first principles and review soaring strategies encompassing the use of updrafts (thermal or orographic) and wind gradients (spatial or temporal). We examine the extent to which state-of-the-art flying robots currently use each strategy and identify several untapped opportunities including slope soaring over built environments, thermal soaring over oceans and opportunistic gust soaring. In principle, the energetic benefits of soaring are accessible to flying robots of all kinds, given atmospherically aware sensor systems, guidance strategies and gust tolerance. Hence, while there is clear scope for specialist robots that soar like albatrosses, or which use persistent thermals like vultures, the greatest untapped potential may lie in non-specialist vehicles that make flexible use of atmospheric energy through path planning and flight control, as demonstrated by generalist flyers such as gulls, kites and crows.


Subject(s)
Falconiformes , Robotics , Animals , Flight, Animal , Birds , Wind
4.
Mov Ecol ; 5: 13, 2017.
Article in English | MEDLINE | ID: mdl-28496983

ABSTRACT

BACKGROUND: Continuous time movement models resolve many of the problems with scaling, sampling, and interpretation that affect discrete movement models. They can, however, be challenging to estimate, have been presented in inconsistent ways, and are not widely used. METHODS: We review the literature on integrated Ornstein-Uhlenbeck velocity models and propose four fundamental correlated velocity movement models (CVM's): random, advective, rotational, and rotational-advective. The models are defined in terms of biologically meaningful speeds and time scales of autocorrelation. We summarize several approaches to estimating the models, and apply these tools for the higher order task of behavioral partitioning via change point analysis. RESULTS: An array of simulation illustrate the precision and accuracy of the estimation tools. An analysis of a swimming track of a bowhead whale (Balaena mysticetus) illustrates their robustness to irregular and sparse sampling and identifies switches between slower and faster, and directed vs. random movements. An analysis of a short flight of a lesser kestrel (Falco naumanni) identifies exact moments when switches occur between loopy, thermal soaring and directed flapping or gliding flights. CONCLUSIONS: We provide tools to estimate parameters and perform change point analyses in continuous time movement models as an R package (smoove). These resources, together with the synthesis, should facilitate the wider application and development of correlated velocity models among movement ecologists.

SELECTION OF CITATIONS
SEARCH DETAIL