Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 581
Filter
Add more filters

Publication year range
1.
Cell ; 186(23): 5098-5113.e19, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37918395

ABSTRACT

Drug-resistant Pseudomonas aeruginosa (PA) poses an emerging threat to human health with urgent need for alternative therapeutic approaches. Here, we deciphered the B cell and antibody response to the virulence-associated type III secretion system (T3SS) in a cohort of patients chronically infected with PA. Single-cell analytics revealed a diverse B cell receptor repertoire directed against the T3SS needle-tip protein PcrV, enabling the production of monoclonal antibodies (mAbs) abrogating T3SS-mediated cytotoxicity. Mechanistic studies involving cryoelectron microscopy identified a surface-exposed C-terminal PcrV epitope as the target of highly neutralizing mAbs with broad activity against drug-resistant PA isolates. These anti-PcrV mAbs were as effective as treatment with conventional antibiotics in vivo. Our study reveals that chronically infected patients represent a source of neutralizing antibodies, which can be exploited as therapeutics against PA.


Subject(s)
Antibodies, Bacterial , Antibodies, Neutralizing , Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Antibodies, Bacterial/pharmacology , Cryoelectron Microscopy , Immunoglobulins/metabolism , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Pseudomonas Infections/drug therapy
2.
Cell ; 178(3): 552-566.e20, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31327526

ABSTRACT

Antibacterial autophagy (xenophagy) is an important host defense, but how it is initiated is unclear. Here, we performed a bacterial transposon screen and identified a T3SS effector SopF that potently blocked Salmonella autophagy. SopF was a general xenophagy inhibitor without affecting canonical autophagy. S. Typhimurium ΔsopF resembled S. flexneri ΔvirAΔicsB with the majority of intracellular bacteria targeted by autophagy, permitting a CRISPR screen that identified host V-ATPase as an essential factor. Upon bacteria-caused vacuolar damage, the V-ATPase recruited ATG16L1 onto bacteria-containing vacuole, which was blocked by SopF. Mammalian ATG16L1 bears a WD40 domain required for interacting with the V-ATPase. Inhibiting autophagy by SopF promoted S. Typhimurium proliferation in vivo. SopF targeted Gln124 of ATP6V0C in the V-ATPase for ADP-ribosylation. Mutation of Gln124 also blocked xenophagy, but not canonical autophagy. Thus, the discovery of SopF reveals the V-ATPase-ATG16L1 axis that critically mediates autophagic recognition of intracellular pathogen.


Subject(s)
Autophagy-Related Proteins/metabolism , Bacterial Proteins/genetics , Macroautophagy , Salmonella/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Virulence Factors/genetics , ADP-Ribosylation , Autophagy-Related Proteins/deficiency , Autophagy-Related Proteins/genetics , Bacterial Proteins/metabolism , CRISPR-Cas Systems/genetics , Gene Editing , HeLa Cells , Humans , Microtubule-Associated Proteins/metabolism , Protein Binding , Salmonella/pathogenicity , Type III Secretion Systems/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Virulence Factors/metabolism
3.
Cell ; 177(3): 683-696.e18, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30929902

ABSTRACT

Microbiota and intestinal epithelium restrict pathogen growth by rapid nutrient consumption. We investigated how pathogens circumvent this obstacle to colonize the host. Utilizing enteropathogenic E. coli (EPEC), we show that host-attached bacteria obtain nutrients from infected host cell in a process we termed host nutrient extraction (HNE). We identified an inner-membrane protein complex, henceforth termed CORE, as necessary and sufficient for HNE. The CORE is a key component of the EPEC injectisome, however, here we show that it supports the formation of an alternative structure, composed of membranous nanotubes, protruding from the EPEC surface to directly contact the host. The injectisome and flagellum are evolutionarily related, both containing conserved COREs. Remarkably, CORE complexes of diverse ancestries, including distant flagellar COREs, could rescue HNE capacity of EPEC lacking its native CORE. Our results support the notion that HNE is a widespread virulence strategy, enabling pathogens to thrive in competitive niches.


Subject(s)
Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli Proteins/metabolism , Nutrients/metabolism , Amino Acids/metabolism , Bacterial Adhesion/physiology , Enteropathogenic Escherichia coli/growth & development , Enteropathogenic Escherichia coli/metabolism , Fluoresceins/metabolism , HeLa Cells , Humans , Membrane Proteins/metabolism , Microscopy, Electron, Scanning , Microscopy, Fluorescence
4.
Mol Cell ; 82(24): 4712-4726.e7, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36423631

ABSTRACT

Programmed cell death and caspase proteins play a pivotal role in host innate immune response combating pathogen infections. Blocking cell death is employed by many bacterial pathogens as a universal virulence strategy. CopC family type III effectors, including CopC from an environmental pathogen Chromobacterium violaceum, utilize calmodulin (CaM) as a co-factor to inactivate caspases by arginine ADPR deacylization. However, the molecular basis of the catalytic and substrate/co-factor binding mechanism is unknown. Here, we determine successive cryo-EM structures of CaM-CopC-caspase-3 ternary complex in pre-reaction, transition, and post-reaction states, which elucidate a multistep enzymatic mechanism of CopC-catalyzed ADPR deacylization. Moreover, we capture a snapshot of the detachment of modified caspase-3 from CopC. These structural insights are validated by mutagenesis analyses of CopC-mediated ADPR deacylization in vitro and animal infection in vivo. Our study offers a structural framework for understanding the molecular basis of arginine ADPR deacylization catalyzed by the CopC family.


Subject(s)
Calmodulin , Caspases , Animals , Calmodulin/genetics , Calmodulin/metabolism , Caspases/metabolism , Caspase 3/metabolism , Arginine , Catalysis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
5.
Mol Cell ; 82(10): 1806-1820.e8, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35338844

ABSTRACT

Caspases are evolutionarily conserved cysteine proteases that are essential for regulating cell death and are involved in multiple development and disease processes, including immunity. Here, we show that the bacterial type III secretion system (T3SS) effector CopC (Chromobacterium outer protein C) from the environmental pathogen Chromobacterium violaceum attacks caspase-3/-7/-8/-9 by ADPR-deacylization to dysregulate programmed cell death, including apoptosis, necroptosis, and pyroptosis. This modification involves ADP-ribosylation- and deamination-mediated cyclization on Arg207 of caspase-3 by a mechanism that requires the eukaryote-specific protein calmodulin (CaM), leading to inhibition of caspase activity. The manipulation of cell death signaling by CopC is essential for the virulence of C. violaceum in a mouse infection model. CopC represents a family of enzymes existing in taxonomically diverse bacteria associated with a wide spectrum of eukaryotes ranging from humans to plants. The unique activity of CopC establishes a mechanism by which bacteria counteract host defenses through a previously unrecognized post-translational modification.


Subject(s)
Arginine , Caspases , Animals , Apoptosis , Caspase 3 , Caspases/genetics , Caspases/metabolism , Mice , Pyroptosis
6.
Annu Rev Microbiol ; 77: 669-698, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37713458

ABSTRACT

Two of the most fascinating bacterial nanomachines-the broadly disseminated rotary flagellum at the heart of cellular motility and the eukaryotic cell-puncturing injectisome essential to specific pathogenic species-utilize at their core a conserved export machinery called the type III secretion system (T3SS). The T3SS not only secretes the components that self-assemble into their extracellular appendages but also, in the case of the injectisome, subsequently directly translocates modulating effector proteins from the bacterial cell into the infected host. The injectisome is thought to have evolved from the flagellum as a minimal secretory system lacking motility, with the subsequent acquisition of additional components tailored to its specialized role in manipulating eukaryotic hosts for pathogenic advantage. Both nanomachines have long been the focus of intense interest, but advances in structural and functional understanding have taken a significant step forward since 2015, facilitated by the revolutionary advances in cryo-electron microscopy technologies. With several seminal structures of each nanomachine now captured, we review here the molecular similarities and differences that underlie their diverse functions.


Subject(s)
Flagella , Type III Secretion Systems , Cryoelectron Microscopy , Biological Transport , Eukaryota
7.
Mol Cell ; 78(4): 641-652.e9, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32330457

ABSTRACT

Ubiquitination is essential for numerous eukaryotic cellular processes. Here, we show that the type III effector CteC from Chromobacterium violaceum functions as an adenosine diphosphate (ADP)-ribosyltransferase that specifically modifies ubiquitin via threonine ADP-ribosylation on residue T66. The covalent modification prevents the transfer of ubiquitin from ubiquitin-activating enzyme E1 to ubiquitin-conjugating enzyme E2, which inhibits subsequent ubiquitin activation by E2 and E3 enzymes in the ubiquitination cascade and leads to the shutdown of polyubiquitin synthesis in host cells. This unique modification also causes dysfunction of polyubiquitin chains in cells, thereby blocking host ubiquitin signaling. The disruption of host ubiquitination by CteC plays a crucial role in C. violaceum colonization in mice during infection. CteC represents a family of effector proteins in pathogens of hosts from different kingdoms. All the members of this family specifically ADP-ribosylate ubiquitin. The action of CteC reveals a new mechanism for interfering with host ubiquitination by pathogens.


Subject(s)
ADP-Ribosylation , Bacterial Proteins/metabolism , Chromobacterium/metabolism , Polyubiquitin/metabolism , Threonine/metabolism , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Animals , Bacterial Proteins/genetics , Chromobacterium/genetics , Female , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Protein Processing, Post-Translational , Threonine/genetics , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitination
8.
Mol Cell ; 74(5): 922-935.e6, 2019 06 06.
Article in English | MEDLINE | ID: mdl-30979585

ABSTRACT

Enteropathogenic E. coli NleB and related type III effectors catalyze arginine GlcNAcylation of death domain (DD) proteins to block host defense, but the underlying mechanism is unknown. Here we solve crystal structures of NleB alone and in complex with FADD-DD, UDP, and Mn2+ as well as NleB-GlcNAcylated DDs of TRADD and RIPK1. NleB adopts a GT-A fold with a unique helix-pair insertion to hold FADD-DD; the interface contacts explain the selectivity of NleB for certain DDs. The acceptor arginine is fixed into a cleft, in which Glu253 serves as a base to activate the guanidinium. Analyses of the enzyme-substrate complex and the product structures reveal an inverting sugar-transfer reaction and a detailed catalytic mechanism. These structural insights are validated by mutagenesis analyses of NleB-mediated GlcNAcylation in vitro and its function in mouse infection. Our study builds a structural framework for understanding of NleB-catalyzed arginine GlcNAcylation of host death domain.


Subject(s)
Enteropathogenic Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Host-Pathogen Interactions/genetics , Protein Conformation , Virulence Factors/chemistry , Animals , Apoptosis/genetics , Arginine/chemistry , Arginine/genetics , Coenzyme A Ligases/chemistry , Coenzyme A Ligases/genetics , Crystallography, X-Ray , Death Domain/genetics , Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli Proteins/genetics , Guanidine/chemistry , Humans , Manganese/chemistry , Mice , Mutagenesis , TNF Receptor-Associated Death Domain Protein/chemistry , TNF Receptor-Associated Death Domain Protein/genetics , Virulence Factors/genetics
9.
Proc Natl Acad Sci U S A ; 121(17): e2322363121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38640341

ABSTRACT

Anti-microbial resistance (AMR) is one of the greatest threats to global health. The continual battle between the emergence of AMR and the development of drugs will be extremely difficult to stop as long as traditional anti-biotic approaches are taken. In order to overcome this impasse, we here focused on the type III secretion system (T3SS), which is highly conserved in many Gram-negative pathogenic bacteria. The T3SS is known to be indispensable in establishing disease processes but not essential for pathogen survival. Therefore, T3SS inhibitors may be innovative anti-infective agents that could dramatically reduce the evolutionary selective pressure on strains resistant to treatment. Based on this concept, we previously identified a polyketide natural product, aurodox (AD), as a specific T3SS inhibitor using our original screening system. However, despite its promise as a unique anti-infective drug of AD, the molecular target of AD has remained unclear. In this paper, using an innovative chemistry and genetic biology-based approach, we show that AD binds to adenylosuccinate synthase (PurA), which suppresses the production of the secreted proteins from T3SS, resulting in the expression of bacterial virulence both in vitro and in vivo experiments. Our findings illuminate the potential of PurA as a target of anti-infective drugs and vaccination and could open a avenue for application of PurA in the regulation of T3SS.


Subject(s)
Aurodox , Type III Secretion Systems , Type III Secretion Systems/metabolism , Aurodox/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gram-Negative Bacteria/metabolism , Bacterial Proteins/metabolism
10.
Proc Natl Acad Sci U S A ; 121(20): e2310348121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709922

ABSTRACT

The evolutionary conserved YopJ family comprises numerous type-III-secretion system (T3SS) effectors of diverse mammalian and plant pathogens that acetylate host proteins to dampen immune responses. Acetylation is mediated by a central acetyltransferase domain that is flanked by conserved regulatory sequences, while a nonconserved N-terminal extension encodes the T3SS-specific translocation signal. Bartonella spp. are facultative-intracellular pathogens causing intraerythrocytic bacteremia in their mammalian reservoirs and diverse disease manifestations in incidentally infected humans. Bartonellae do not encode a T3SS, but most species possess a type-IV-secretion system (T4SS) to translocate Bartonella effector proteins (Beps) into host cells. Here we report that the YopJ homologs present in Bartonellae species represent genuine T4SS effectors. Like YopJ family T3SS effectors of mammalian pathogens, the "Bartonella YopJ-like effector A" (ByeA) of Bartonella taylorii also targets MAP kinase signaling to dampen proinflammatory responses, however, translocation depends on a functional T4SS. A split NanoLuc luciferase-based translocation assay identified sequences required for T4SS-dependent translocation in conserved regulatory regions at the C-terminus and proximal to the N-terminus of ByeA. The T3SS effectors YopP from Yersinia enterocolitica and AvrA from Salmonella Typhimurium were also translocated via the Bartonella T4SS, while ByeA was not translocated via the Yersinia T3SS. Our data suggest that YopJ family T3SS effectors may have evolved from an ancestral T4SS effector, such as ByeA of Bartonella. In this evolutionary scenario, the signal for T4SS-dependent translocation encoded by N- and C-terminal sequences remained functional in the derived T3SS effectors due to the essential role these sequences coincidentally play in regulating acetyltransferase activity.


Subject(s)
Bacterial Proteins , Bartonella , Type IV Secretion Systems , Bartonella/metabolism , Bartonella/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Humans , Type IV Secretion Systems/metabolism , Type IV Secretion Systems/genetics , Protein Transport , Animals
11.
J Biol Chem ; 300(9): 107613, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39079629

ABSTRACT

Shigella spp. are highly pathogenic members of the Enterobacteriaceae family, causing ∼269 million cases of bacillary dysentery and >200,000 deaths each year. Like many Gram-negative pathogens, Shigella rely on their type three secretion system (T3SS) to inject effector proteins into eukaryotic host cells, driving both cellular invasion and evasion of host immune responses. Exposure to the bile salt deoxycholate (DOC) significantly enhances Shigella virulence and is proposed to serve as a critical environmental signal present in the small intestine that prepares Shigella's T3SS for efficient infection of the colonic epithelium. Here, we uncover critical mechanistic details of the Shigella-specific DOC signaling process by describing the role of a π-helix secondary structure element within the T3SS tip protein invasion plasmid antigen D (IpaD). Biophysical characterization and high-resolution structures of IpaD mutants lacking the π-helix show that it is not required for global protein structure, but that it defines the native DOC binding site and prevents off target interactions. Additionally, Shigella strains expressing the π-helix deletion mutants illustrate the pathogenic importance of its role in guiding DOC interaction as flow cytometry and gentamycin protection assays show that the IpaD π-helix is essential for DOC-mediated apparatus maturation and enhanced invasion of eukaryotic cells. Together, these findings add to our understanding of the complex Shigella pathogenesis pathway and its evolution to respond to environmental bile salts by identifying the π-helix in IpaD as a critical structural element required for translating DOC exposure to virulence enhancement.

12.
Annu Rev Microbiol ; 74: 221-245, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32660389

ABSTRACT

Microbial pathogens have evolved complex mechanisms to interface with host cells in order to evade host defenses and replicate. However, mammalian innate immune receptors detect the presence of molecules unique to the microbial world or sense the activity of virulence factors, activating antimicrobial and inflammatory pathways. We focus on how studies of the major virulence factor of one group of microbial pathogens, the type III secretion system (T3SS) of human pathogenic Yersinia, have shed light on these important innate immune responses. Yersinia are largely extracellular pathogens, yet they insert T3SS cargo into target host cells that modulate the activity of cytosolic innate immune receptors. This review covers both the host pathways that detect the Yersinia T3SS and the effector proteins used by Yersinia to manipulate innate immune signaling.


Subject(s)
Cytosol/immunology , Host-Pathogen Interactions/immunology , Immunity, Innate , Type III Secretion Systems/immunology , Yersinia/immunology , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Cytosol/microbiology , Humans , Inflammasomes , Pyroptosis , Signal Transduction , Virulence Factors/metabolism , Yersinia/metabolism , Yersinia/pathogenicity
13.
Bioessays ; 45(9): e2300078, 2023 09.
Article in English | MEDLINE | ID: mdl-37329195

ABSTRACT

The type III secretion system (T3SS) is a specialized nanomachine that enables bacteria to secrete proteins in a specific order and directly deliver a specific set of them, collectively known as effectors, into eukaryotic organisms. The core structure of the T3SS is a syringe-like apparatus composed of multiple building blocks, including both membrane-associated and soluble proteins. The cytosolic components organize together in a chamber-like structure known as the sorting platform (SP), responsible for recruiting, sorting, and initiating the substrates destined to engage this secretion pathway. In this article, we provide an overview of recent findings on the SP's structure and function, with a particular focus on its assembly pathway. Furthermore, we discuss the molecular mechanisms behind the recruitment and hierarchical sorting of substrates by this cytosolic complex. Overall, the T3SS is a highly specialized and complex system that requires precise coordination to function properly. A deeper understanding of how the SP orchestrates T3S could enhance our comprehension of this complex nanomachine, which is central to the host-pathogen interface, and could aid in the development of novel strategies to fight bacterial infections.


Subject(s)
Bacterial Proteins , Secretory Pathway , Bacterial Proteins/metabolism , Protein Transport , Type III Secretion Systems/chemistry , Type III Secretion Systems/metabolism , Cytosol/metabolism
14.
Proc Natl Acad Sci U S A ; 119(50): e2209383119, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36469780

ABSTRACT

Healthcare-associated infections are major causes of complications that lead to extended hospital stays and significant medical costs. The use of medical devices, including catheters, increases the risk of bacterial colonization and infection through the presence of a foreign surface. Two outcomes are observed for catheterized patients: catheter-associated asymptomatic bacteriuria and catheter-associated urinary tract infection (CAUTI). However, the relationship between these two events remains unclear. To understand this relationship, we studied a murine model of Pseudomonas aeruginosa CAUTI. In this model, we also observe two outcomes in infected animals: acute symptoms that is associated with CAUTI and chronic colonization that is associated with asymptomatic bacteriuria. The timing of the acute outcome takes place in the first week of infection, whereas chronic colonization occurs in the second week of infection. We further showed that mutants lacking genes encoding type III secretion system (T3SS), T3SS effector proteins, T3SS injection pore, or T3SS transcriptional activation all fail to cause acute symptoms of CAUTI. Nonetheless, all mutants defective for T3SS colonized the catheter and bladders at levels similar to the parental strain. In contrast, through induction of the T3SS master regulator ExsA, all infected animals showed acute phenotypes with bacteremia. Our results demonstrated that the acute symptoms, which are analogous to CAUTI, and chronic colonization, which is analogous to asymptomatic bacteriuria, are independent events that require distinct bacterial virulence factors. Experimental delineation of asymptomatic bacteriuria and CAUTI informs different strategies for the treatment and intervention of device-associated infections.


Subject(s)
Bacteriuria , Urinary Tract Infections , Mice , Animals , Pseudomonas aeruginosa/genetics , Bacteriuria/complications , Urinary Tract Infections/microbiology , Type III Secretion Systems , Catheters/adverse effects
15.
J Biol Chem ; 299(4): 104591, 2023 04.
Article in English | MEDLINE | ID: mdl-36894018

ABSTRACT

Bile acids are important for digestion of food and antimicrobial activity. Pathogenic Vibrio parahaemolyticus senses bile acids and induce pathogenesis. The bile acid taurodeoxycholate (TDC) was shown to activate the master regulator, VtrB, of this system, whereas other bile acids such as chenodeoxycholate (CDC) do not. Previously, VtrA-VtrC was discovered to be the co-component signal transduction system that binds bile acids and induces pathogenesis. TDC binds to the periplasmic domain of the VtrA-VtrC complex, activating a DNA-binding domain in VtrA that then activates VtrB. Here, we find that CDC and TDC compete for binding to the VtrA-VtrC periplasmic heterodimer. Our crystal structure of the VtrA-VtrC heterodimer bound to CDC revealed CDC binds in the same hydrophobic pocket as TDC but differently. Using isothermal titration calorimetry, we observed that most mutants in the binding pocket of VtrA-VtrC caused a decrease in bile acid binding affinity. Notably, two mutants in VtrC bound bile acids with a similar affinity as the WT protein but were attenuated for TDC-induced type III secretion system 2 activation. Collectively, these studies provide a molecular explanation for the selective pathogenic signaling by V. parahaemolyticus and reveal insight into a host's susceptibility to disease.


Subject(s)
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genetics , Bile Acids and Salts/metabolism , Signal Transduction , Chenodeoxycholic Acid , Bacterial Proteins/metabolism
16.
BMC Genomics ; 25(1): 777, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123115

ABSTRACT

BACKGROUND: Bacteria of the genus Xanthomonas cause economically significant diseases in various crops. Their virulence is dependent on the translocation of type III effectors (T3Es) into plant cells by the type III secretion system (T3SS), a process regulated by the master response regulator HrpG. Although HrpG has been studied for over two decades, its regulon across diverse Xanthomonas species, particularly beyond type III secretion, remains understudied. RESULTS: In this study, we conducted transcriptome sequencing to explore the HrpG regulons of 17 Xanthomonas strains, encompassing six species and nine pathovars, each exhibiting distinct host and tissue specificities. We employed constitutive expression of plasmid-borne hrpG*, which encodes a constitutively active form of HrpG, to induce the regulon. Our findings reveal substantial inter- and intra-specific diversity in the HrpG* regulons across the strains. Besides 21 genes directly involved in the biosynthesis of the T3SS, the core HrpG* regulon is limited to only five additional genes encoding the transcriptional activator HrpX, the two T3E proteins XopR and XopL, a major facility superfamily (MFS) transporter, and the phosphatase PhoC. Interestingly, genes involved in chemotaxis and genes encoding enzymes with carbohydrate-active and proteolytic activities are variably regulated by HrpG*. CONCLUSIONS: The diversity in the HrpG* regulon suggests that HrpG-dependent virulence in Xanthomonas might be achieved through several distinct strain-specific strategies, potentially reflecting adaptation to diverse ecological niches. These findings enhance our understanding of the complex role of HrpG in regulating various virulence and adaptive pathways, extending beyond T3Es and the T3SS.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Regulon , Xanthomonas , Xanthomonas/pathogenicity , Xanthomonas/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence/genetics , Transcriptome , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism , Gene Expression Profiling , Transcription Factors/genetics , Transcription Factors/metabolism
17.
BMC Genomics ; 25(1): 461, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734623

ABSTRACT

BACKGROUND: Pseudomonas syringae pv. actinidiae (Psa) is an important bacterial plant pathogen that causes severe damage to the kiwifruit industry worldwide. Three Psa strains were recently obtained from different kiwifruit orchards in Anhui Province, China. The present study mainly focused on the variations in virulence and genome characteristics of these strains based on the pathogenicity assays and comparative genomic analyses. RESULTS: Three strains were identified as biovar 3 (Psa3), along with strain QSY6 showing higher virulence than JZY2 and YXH1 in pathogenicity assays. The whole genome assembly revealed that each of the three strains had a circular chromosome and a complete plasmid. The chromosome sizes ranged from 6.5 to 6.6 Mb with a GC content of approximately 58.39 to 58.46%, and a predicted number of protein-coding sequences ranging from 5,884 to 6,019. The three strains clustered tightly with 8 Psa3 reference strains in terms of average nucleotide identity (ANI), whole-genome-based phylogenetic analysis, and pangenome analysis, while they were evolutionarily distinct from other biovars (Psa1 and Psa5). Variations were observed in the repertoire of effectors of the type III secretion system among all 15 strains. Moreover, synteny analysis of the three sequenced strains revealed eight genomic regions containing 308 genes exclusively present in the highly virulent strain QSY6. Further investigation of these genes showed that 16 virulence-related genes highlight several key factors, such as effector delivery systems (type III secretion systems) and adherence (type IV pilus), which might be crucial for the virulence of QSY6. CONCLUSION: Three Psa strains were identified and showed variant virulence in kiwifruit plant. Complete genome sequences and comparative genomic analyses further provided a theoretical basis for the potential pathogenic factors responsible for kiwifruit bacterial canker.


Subject(s)
Actinidia , Genome, Bacterial , Genomics , Phylogeny , Plant Diseases , Pseudomonas syringae , Pseudomonas syringae/genetics , Pseudomonas syringae/pathogenicity , China , Actinidia/microbiology , Virulence/genetics , Plant Diseases/microbiology
18.
Antimicrob Agents Chemother ; : e0069424, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269189

ABSTRACT

Treatment of Pseudomonas aeruginosa infection is challenging due to its intrinsic and acquired antibiotic resistance. As the number of current therapeutic options for P. aeruginosa infections is limited, developing novel treatments against the pathogen is an urgent clinical priority. The suppression of virulence of P. aeruginosa could be a new therapeutic option, and the type III secretion system (T3SS), which enables the bacteria to translocate various kinds of toxins into host cells and inhibits cellular functions, is considered as one possible target. In this report, we examined T3SS inhibition by COT-143/INFEX702, a humanized monoclonal antibody against PcrV, T3SS component, and present the crystal structure of the antibody-PcrV complex. COT-143 inhibited T3SS-dependent cytotoxicity and protected mice from the mortality caused by P. aeruginosa infection. The inhibition of cytotoxicity coincided with inhibition of translocon formation in a host cell membrane, which is necessary for T3SS intoxication. COT-143 protected murine neutrophils and facilitated phagocytosis of P. aeruginosa. These results suggest that COT-143 facilitates P. aeruginosa clearance by protecting neutrophil via inhibition of T3SS-dependent toxin translocation. This is the first report to show that an anti-PcrV antibody directly interferes with translocon formation to inhibit intoxication of host cells.

19.
Appl Environ Microbiol ; 90(8): e0098824, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39082807

ABSTRACT

Shigella bacteria utilize the type III secretion system (T3SS) to invade host cells and establish local infection. Invasion plasmid antigen D (IpaD), a component of Shigella T3SS, has garnered extensive interest as a vaccine target, primarily due to its pivotal role in the Shigella invasion, immunogenic property, and a high degree of conservation across Shigella species and serotypes. Currently, we are developing an epitope- and structure-based multivalent vaccine against shigellosis and require functional epitope antigens of key Shigella virulence determinants including IpaD. However, individual IpaD B-cell epitopes, their contributions to the overall immunogenicity, and functional activities attributing to bacteria invasion have not been fully characterized. In this study, we predicted continuous B-cell epitopes in silico and fused each epitope to a carrier protein. Then, we immunized mice intramuscularly with each epitope fusion protein, examined the IpaD-specific antibody responses, and measured antibodies from each epitope fusion for the activity against Shigella invasion in vitro. Data showed that all epitope fusion proteins induced similar levels of anti-IpaD IgG antibodies in mice, and differences were noted for antibody inhibition activity against Shigella invasion. IpaD epitope 1 (SPGGNDGNSV), IpaD epitope 2 (LGGNGEVVLDNA), and IpaD epitope 5 (SPNNTNGSSTET) induced antibodies significantly better in inhibiting invasion from Shigella flexneri 2a, and epitopes 1 and 5 elicited antibodies more effectively at preventing invasion of Shigella sonnei. These results suggest that IpaD epitopes 1 and 5 can be the IpaD representative antigens for epitope-based polyvalent protein construction and protein-based cross-protective Shigella vaccine development.IMPORTANCEShigella is a leading cause of diarrhea in children younger than 5 years in developing countries (children's diarrhea) and continues to be a major threat to public health. No licensed vaccines are currently available against the heterogeneous Shigella species and serotype strains. Aiming to develop a cross-protective multivalent vaccine against shigellosis and dysentery, we applied novel multiepitope fusion antigen (MEFA) technology to construct a broadly immunogenic polyvalent protein antigen, by presenting functional epitopes of multiple Shigella virulence determinants on a backbone protein. The functional IpaD epitopes identified from this study will essentially allow us to construct an optimal polyvalent Shigella immunogen, leading to the development of a cross-protective vaccine against shigellosis (and dysentery) and the improvement of global health. In addition, identifying functional epitopes from heterogeneous virulence determinants and using them as antigenic representatives for the development of cross-protective multivalent vaccines can be applied generally in vaccine development.


Subject(s)
Antigens, Bacterial , Epitopes, B-Lymphocyte , Shigella flexneri , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Animals , Mice , Shigella flexneri/immunology , Shigella flexneri/genetics , Epitopes, B-Lymphocyte/immunology , Shigella Vaccines/immunology , Shigella Vaccines/administration & dosage , Shigella Vaccines/genetics , Dysentery, Bacillary/prevention & control , Dysentery, Bacillary/immunology , Dysentery, Bacillary/microbiology , Mice, Inbred BALB C , Epitope Mapping , Female , Shigella/immunology , Shigella/genetics , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Shigella sonnei/immunology , Shigella sonnei/genetics , Type III Secretion Systems/immunology , Type III Secretion Systems/genetics
20.
Microb Cell Fact ; 23(1): 163, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824527

ABSTRACT

BACKGROUND: Type I interferons (IFN-I)-a group of cytokines with immunomodulatory, antiproliferative, and antiviral properties-are widely used as therapeutics for various cancers and viral diseases. Since IFNs are proteins, they are highly susceptible to degradation by proteases and by hydrolysis in the strong acid environment of the stomach, and they are therefore administered parenterally. In this study, we examined whether the intestinal bacterium, enteropathogenic Escherichia coli (EPEC), can be exploited for oral delivery of IFN-Is. EPEC survives the harsh conditions of the stomach and, upon reaching the small intestine, expresses a type III secretion system (T3SS) that is used to translocate effector proteins across the bacterial envelope into the eukaryotic host cells. RESULTS: In this study, we developed an attenuated EPEC strain that cannot colonize the host but can secrete functional human IFNα2 variant through the T3SS. We found that this bacteria-secreted IFN exhibited antiproliferative and antiviral activities similar to commercially available IFN. CONCLUSION: These findings present a potential novel approach for the oral delivery of IFN via secreting bacteria.


Subject(s)
Enteropathogenic Escherichia coli , Type III Secretion Systems , Enteropathogenic Escherichia coli/metabolism , Humans , Type III Secretion Systems/metabolism , Interferon-alpha/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Interferon alpha-2/metabolism , Cell Proliferation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL