ABSTRACT
A system for programmable export of RNA molecules from living cells would enable both non-destructive monitoring of cell dynamics and engineering of cells capable of delivering executable RNA programs to other cells. We developed genetically encoded cellular RNA exporters, inspired by viruses, that efficiently package and secrete cargo RNA molecules from mammalian cells within protective nanoparticles. Exporting and sequencing RNA barcodes enabled non-destructive monitoring of cell population dynamics with clonal resolution. Further, by incorporating fusogens into the nanoparticles, we demonstrated the delivery, expression, and functional activity of exported mRNA in recipient cells. We term these systems COURIER (controlled output and uptake of RNA for interrogation, expression, and regulation). COURIER enables measurement of cell dynamics and establishes a foundation for hybrid cell and gene therapies based on cell-to-cell delivery of RNA.
Subject(s)
Cytological Techniques , Genetic Techniques , RNA , Animals , Biological Transport , Mammals/metabolism , RNA/genetics , RNA/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Viruses/genetics , Molecular Typing , Sequence Analysis, RNAABSTRACT
Methods to deliver gene editing agents in vivo as ribonucleoproteins could offer safety advantages over nucleic acid delivery approaches. We report the development and application of engineered DNA-free virus-like particles (eVLPs) that efficiently package and deliver base editor or Cas9 ribonucleoproteins. By engineering VLPs to overcome cargo packaging, release, and localization bottlenecks, we developed fourth-generation eVLPs that mediate efficient base editing in several primary mouse and human cell types. Using different glycoproteins in eVLPs alters their cellular tropism. Single injections of eVLPs into mice support therapeutic levels of base editing in multiple tissues, reducing serum Pcsk9 levels 78% following 63% liver editing, and partially restoring visual function in a mouse model of genetic blindness. In vitro and in vivo off-target editing from eVLPs was virtually undetected, an improvement over AAV or plasmid delivery. These results establish eVLPs as promising vehicles for therapeutic macromolecule delivery that combine key advantages of both viral and nonviral delivery.
Subject(s)
Drug Delivery Systems , Genetic Engineering , Proteins/therapeutic use , Virion/genetics , Animals , Base Sequence , Blindness/genetics , Blindness/therapy , Brain/metabolism , DNA/metabolism , Disease Models, Animal , Fibroblasts/metabolism , Gene Editing , HEK293 Cells , Humans , Liver/pathology , Mice , Mice, Inbred C57BL , Proprotein Convertase 9/metabolism , Retinal Pigment Epithelium/pathology , Retroviridae , Virion/ultrastructure , Vision, OcularABSTRACT
A major consequence of aging and stress, in yeast to humans, is an increased accumulation of protein aggregates at distinct sites within the cells. Using genetic screens, immunoelectron microscopy, and three-dimensional modeling in our efforts to elucidate the importance of aggregate annexation, we found that most aggregates in yeast accumulate near the surface of mitochondria. Further, we show that virus-like particles (VLPs), which are part of the retrotransposition cycle of Ty elements, are markedly enriched in these sites of protein aggregation. RNA interference-mediated silencing of Ty expression perturbed aggregate sequestration to mitochondria, reduced overall protein aggregation, mitigated toxicity of a Huntington's disease model, and expanded the replicative lifespan of yeast in a partially Hsp104-dependent manner. The results are in line with recent data demonstrating that VLPs might act as aging factors in mammals, including humans, and extend these findings by linking VLPs to a toxic accumulation of protein aggregates and raising the possibility that they might negatively influence neurological disease progression.
Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Animals , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Protein Aggregates , Longevity , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , DNA Replication , Mammals/metabolismABSTRACT
The retina-specific ABCA transporter, ABCA4, is essential for vision, and its genetic variants are associated with a wide range of inherited retinal degenerative diseases, leading to blindness. Of the 1630 identified missense variants in ABCA4, â¼50% are of unknown pathogenicity (variants of unknown significance, VUS). This genetic uncertainty presents three main challenges: (i) inability to predict disease-causing variants in relatives of inherited retinal degenerative disease patients with multiple ABCA4 mutations; (ii) limitations in developing variant-specific treatments; and (iii) difficulty in using these variants for future disease prediction, affecting patients' life-planning and clinical trial participation. To unravel the clinical significance of ABCA4 genetic variants at the level of protein function, we have developed a virus-like particle-based system that expresses the ABCA4 protein and its variants. We validated the efficacy of this system in the enzymatic characterization (ATPase activity) of VLPs harboring ABCA4 and two variants of established pathogenicity: p.N965S and p.C1488R. Our results were consistent with previous reports and clinical phenotypes. We also applied this platform to characterize the VUS p.Y1779F and observed a functional impairment, suggesting a potential pathogenic impact. This approach offers an efficient, high-throughput method for ABCA4 VUS characterization. Our research points to the significant promise of the VLP-based system in the functional analysis of membrane proteins, offering important perspectives on the disease-causing potential of genetic variants and shedding light on genetic conditions involving such proteins.
Subject(s)
ATP-Binding Cassette Transporters , Humans , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Mutation, Missense , Genetic Variation , HEK293 Cells , Virion/genetics , Virion/metabolism , AnimalsABSTRACT
The Envelope (E) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an integral structural protein in the virus particles. However, its role in the assembly of virions and the underlying molecular mechanisms are yet to be elucidated, including whether the function of E protein is regulated by post-translational modifications. In the present study, we report that SARS-CoV-2 E protein is palmitoylated at C40, C43, and C44 by palmitoyltransferases zDHHC3, 6, 12, 15, and 20. Mutating these three cysteines to serines (C40/43/44S) reduced the stability of E protein, decreased the interaction of E with structural proteins Spike, Membrane, and Nucleocapsid, and thereby inhibited the production of virus-like particles (VLPs) and VLP-mediated luciferase transcriptional delivery. Specifically, the C40/43/44S mutation of E protein reduced the density of VLPs. Collectively, these results demonstrate that palmitoylation of E protein is vital for its function in the assembly of SARS-CoV-2 particles.IMPORTANCEIn this study, we systematically examined the biochemistry of palmitoylation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) E protein and demonstrated that palmitoylation of SARS-CoV-2 E protein is required for virus-like particle (VLP) production and maintaining normal particle density. These results suggest that palmitoylated E protein is central for proper morphogenesis of SARS-CoV-2 VLPs in densities required for viral infectivity. This study presents a significant advancement in the understanding of how palmitoylation of viral proteins is vital for assembling SARS-CoV-2 particles and supports that palmitoyl acyltransferases can be potential therapeutic targets for the development of SARS-CoV-2 inhibitors.
Subject(s)
Acyltransferases , Coronavirus Envelope Proteins , Lipoylation , SARS-CoV-2 , Virion , Virus Assembly , Humans , SARS-CoV-2/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Coronavirus Envelope Proteins/metabolism , Coronavirus Envelope Proteins/genetics , Virion/metabolism , Acyltransferases/metabolism , Acyltransferases/genetics , COVID-19/virology , COVID-19/metabolism , HEK293 Cells , Protein Processing, Post-Translational , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , MutationABSTRACT
Norovirus (NoV) virus-like particles (VLPs) adjuvanted with aluminum hydroxide (Alum) are common vaccine candidates in clinical studies. Alum adjuvants usually inefficiently assist recombinant proteins to induce cellular immune responses. Thus, novel adjuvants are required to develop NoV vaccines that could induce both efficient humoral and robust cellular immune responses. Lipid nanoparticles (LNPs) are well-known mRNA delivery vehicles. Increasing evidence suggests that LNPs may have intrinsic adjuvant activity and can be used as adjuvants for recombinant protein vaccines; however, the underlying mechanism remains poorly understood. In this study, we compared the adjuvant effect of LNPs and Alum for a bivalent GI.1/GII.4 NoV VLP vaccine. Compared with Alum, LNP-adjuvanted vaccines induced earlier production of binding, blocking, and neutralizing antibodies and promoted a more balanced IgG2a/IgG1 ratio. It is crucial that LNP-adjuvanted vaccines induced stronger Th1-type cytokine-producing CD4+ T cell and CD8+ T cell responses than Alum. The adjuvant activity of LNPs depended on the ionizable lipid components. Mechanistically, LNPs activated innate immune responses in a type I IFN-dependent manner and were partially dependent on Toll-like receptor (TLR) 9, thus affecting the adaptive immune responses of the vaccine. This conclusion was supported by RNA-seq analysis and in vitro cell experiments and by the deeply blunted T cell responses in IFNαR1-/- mice immunized with LNP-adjuvanted vaccines. This study not only identified LNPs as a high quality adjuvant for NoV VLP vaccines, but also clarified the underlying mechanism of LNPs as a potent immunostimulatory component for improving protein subunit vaccines.IMPORTANCEWith the rapid development of mRNA vaccines, recurrent studies show that lipid nanoparticles (LNPs) have adjuvant activity. However, the mechanism of its adjuvant effect in protein vaccines remains unknown. In this study, we found that the LNP-adjuvanted norovirus bivalent virus-like particle vaccines led to durable antibody responses as well as Th1-type cytokine-producing CD4+ T cell and CD8+ T cell responses, which exceeded the efficiency of the conventional adjuvant aluminum hydroxide. Mechanistically, LNPs activated innate immune responses in a type I IFN-dependent manner and were partially dependent on Toll-like receptor 9, thus affecting the adaptive immune responses of the vaccine. This work unveils that LNPs as a potent immunostimulatory component may be ideal for generating CD8+ T cell and B cell responses for recombinant protein vaccines.
ABSTRACT
Rabbit hemorrhagic disease virus (RHDV) poses a significant threat to rabbits, causing substantial economic losses in rabbit farming. The virus also endangers wild populations of rabbit species and the predatory animals that rely on rabbits as a food source, thereby disturbing the ecological balance. However, the structural understanding of RHDV has been limited due to the lack of high-resolution structures. Here, we present the first high-resolution cryo-EM structures of the mature virion and virus-like particles (VLPs) derived from both full-length and N-terminal arm (NTA)-truncated VP60. These structures reveal intricate structural details of the icosahedral capsid and crucial NTA-mediated interactions essential for capsid assembly. In addition, dramatic conformational differences are unexpectedly observed between the mature virion and VLP. The protruding spikes of the A-B dimers adopt a "raised" state in the mature virion and a "resting" state in the VLP. These findings enhance our understanding of the structure, assembly, and conformational dynamics of the RHDV capsid, laying the essential groundwork for further virological research and therapeutic advancements.IMPORTANCERHDV is a pathogen with significant economic and ecological impact. By presenting the first high-resolution cryo-EM structures of RHDV, we have uncovered detailed interactions among neighboring VP60 subunits of the icosahedral capsid. The NTA of VP60 is uniquely clustered around the threefold axis of the capsid, probably play a critical role in dragging the six VP60 dimers around the threefold axis during capsid assembly. Additionally, we observed dramatic conformational differences between the mature virion and VLPs. VLPs are commonly used for vaccine development, under the assumption that their structure closely resembles that of the mature virion. Our findings significantly advance the understanding of the RHDV capsid structure, which may be used for developing potential therapeutic strategies against RHDV.
ABSTRACT
Nowadays, viruses are not only seen as causative agents of viral infectious diseases but also as valuable research materials for various biomedical purposes, including recombinant protein production. When expressed in living or cell-free expression systems, viral structural proteins self-assemble into virus-like particles (VLPs). Mimicking the native form and size of viruses and lacking the genetic material, VLPs are safe and highly immunogenic and thus can be exploited to develop antiviral vaccines. Some vaccines based on VLPs against various infectious pathogens have already been licenced for human use and are available in the commercial market, the latest of which is a VLP-based vaccine to protect against the novel Coronavirus. Despite the success and popularity of VLP subunit vaccines, many more VLPs are still in different stages of design, production, and approval. There are still many challenges that require to be addressed in the future before this surface display system can be widely used as an effective vaccine strategy in combating infectious diseases. In this review, we highlight the use of structural viral proteins to produce VLPs, emphasising their intrinsic properties, structural classification, and main expression host systems. We also compiled the recent scientific literature about VLP-based vaccines to underline the recent advances in their application as a vaccine strategy for preventing and fighting virulent human pathogens. Finally, we presented the key challenges and possible solutions for VLP-based vaccine production.
Subject(s)
Communicable Diseases , Vaccines, Virus-Like Particle , Viral Vaccines , Viruses , Humans , Viruses/genetics , VaccinationABSTRACT
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant contains extensive sequence changes relative to the earlier-arising B.1, B.1.1, and Delta SARS-CoV-2 variants that have unknown effects on viral infectivity and response to existing vaccines. Using SARS-CoV-2 virus-like particles (VLPs), we examined mutations in all four structural proteins and found that Omicron and Delta showed 4.6-fold higher luciferase delivery overall relative to the ancestral B.1 lineage, a property conferred mostly by enhancements in the S and N proteins, while mutations in M and E were mostly detrimental to assembly. Thirty-eight antisera samples from individuals vaccinated with Pfizer/BioNTech, Moderna, or Johnson & Johnson vaccines and convalescent sera from unvaccinated COVID-19 survivors had 15-fold lower efficacy to prevent cell transduction by VLPs containing the Omicron mutations relative to the ancestral B.1 spike protein. A third dose of Pfizer vaccine elicited substantially higher neutralization titers against Omicron, resulting in detectable neutralizing antibodies in eight out of eight subjects compared to one out of eight preboosting. Furthermore, the monoclonal antibody therapeutics casirivimab and imdevimab had robust neutralization activity against B.1 and Delta VLPs but no detectable neutralization of Omicron VLPs, while newly authorized bebtelovimab maintained robust neutralization across variants. Our results suggest that Omicron has similar assembly efficiency and cell entry compared to Delta and that its rapid spread is due mostly to reduced neutralization in sera from previously vaccinated subjects. In addition, most currently available monoclonal antibodies will not be useful in treating Omicron-infected patients with the exception of bebtelovimab.
Subject(s)
Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , COVID-19/virology , Humans , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/geneticsABSTRACT
Many virus-like particles (VLPs) have good chemical, thermal, and mechanical stabilities compared to those of other biologics. However, their stability needs to be improved for the commercialization and use in translation of VLP-based materials. We developed an endoskeleton-armored strategy for enhancing VLP stability. Specifically, the VLPs of physalis mottle virus (PhMV) and Qß were used to demonstrate this concept. We built an internal polymer "backbone" using a maleimide-PEG15-maleimide cross-linker to covalently interlink viral coat proteins inside the capsid cavity, while the native VLPs are held together by only noncovalent bonding between subunits. Endoskeleton-armored VLPs exhibited significantly improved thermal stability (95 °C for 15 min), increased resistance to denaturants (i.e., surfactants, pHs, chemical denaturants, and organic solvents), and enhanced mechanical performance. Single-molecule force spectroscopy demonstrated a 6-fold increase in rupture distance and a 1.9-fold increase in rupture force of endoskeleton-armored PhMV. Overall, this endoskeleton-armored strategy provides more opportunities for the development and applications of materials.
Subject(s)
Capsid Proteins , Capsid , Capsid Proteins/chemistry , Capsid/chemistry , Maleimides/analysisABSTRACT
Virus-like particles (VLPs) are protein-based nanoparticles frequently used as carriers in conjugate vaccine platforms. VLPs have been used to display foreign antigens for vaccination and to deliver immunotherapy against diseases. Hemolysin-coregulated proteins 1 (Hcp1) is a protein component of the Burkholderia type 6 secretion system, which participates in intracellular invasion and dissemination. This protein has been reported as a protective antigen and is used in multiple vaccine candidates with various platforms against melioidosis, a severe infectious disease caused by the intracellular pathogen Burkholderia pseudomallei. In this study, we used P22 VLPs as a surface platform for decoration with Hcp1 using chemical conjugation. C57BL/6 mice were intranasally immunized with three doses of either PBS, VLPs, or conjugated Hcp1-VLPs. Immunization with Hcp1-VLPs formulation induced Hcp1-specific IgG, IgG1, IgG2c, and IgA antibody responses. Furthermore, the serum from Hcp1-VLPs immunized mice enhanced the bacterial uptake and opsonophagocytosis by macrophages in the presence of complement. This study demonstrated an alternative strategy to develop a VLPs-based vaccine platform against Burkholderia species.
Subject(s)
Burkholderia pseudomallei , Burkholderia , Animals , Mice , Hemolysin Proteins , Mice, Inbred C57BL , Immunoglobulin G , Mice, Inbred BALB CABSTRACT
In the current biopharmaceutical scenario, constant bioprocess monitoring is crucial for the quality and integrity of final products. Thus, process analytical techniques, such as those based on Raman spectroscopy, have been used as multiparameter tracking methods in pharma bioprocesses, which can be combined with chemometric tools, like Partial Least Squares (PLS) and Artificial Neural Networks (ANN). In some cases, applying spectra pre-processing techniques before modeling can improve the accuracy of chemometric model fittings to observed values. One of the biological applications of these techniques could have as a target the virus-like particles (VLP), a vaccine production platform for viral diseases. A disease that has drawn attention in recent years is Zika, with large-scale production sometimes challenging without an appropriate monitoring approach. This work aimed to define global models for Zika VLP upstream production monitoring with Raman considering different laser intensities (200 mW and 495 mW), sample clarification (with or without cells), spectra pre-processing approaches, and PLS and ANN modeling techniques. Six experiments were performed in a benchtop bioreactor to collect the Raman spectral and biochemical datasets for modeling calibration. The best models generated presented a mean absolute error and mean relative error respectively of 3.46 × 105 cell/mL and 35 % for viable cell density (Xv); 4.1 % and 5 % for cell viability (CV); 0.245 g/L and 3 % for glucose (Glc); 0.006 g/L and 18 % for lactate (Lac); 0.115 g/L and 26 % for glutamine (Gln); 0.132 g/L and 18 % for glutamate (Glu); 0.0029 g/L and 3 % for ammonium (NH4+); and 0.0103 g/L and 2 % for potassium (K+). Sample without conditioning (with cells) improved the models' adequacy, except for Glutamine. ANN better predicted CV, Gln, Glu, and K+, while Xv, Glc, Lac, and NH4+ presented no statistical difference between the chemometric tools. For most of the assessed experimental parameters, there was no statistical need for spectra pre-filtering, for which the models based on the raw spectra were selected as the best ones. Laser intensity impacts quality model predictions in some parameters, Xv, Gln, and K+ had a better performance with 200 mW of intensity (for PLS, ANN, and ANN, respectively), for CV the 495 mW laser intensity was better (for PLS), and for the other biochemical variables, the use of 200 or 495 mW did not impact model fitting adequacy.
Subject(s)
Spectrum Analysis, Raman , Zika Virus , Spectrum Analysis, Raman/methods , Bioreactors , Least-Squares Analysis , Neural Networks, Computer , Lasers , Humans , Zika Virus Infection/virology , AnimalsABSTRACT
A number of small molecule and protein therapeutic candidates have been developed in the last four years against SARS-CoV-2 spike. However, there are hardly a few molecules that have advanced through the subsequent discovery steps to eventually work as a therapeutic agent. This is majorly because of the hurdles in determining the affinity of potential therapeutics with live SARS-CoV-2 virus. Furthermore, affinity determined for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, at times, fails to mimic physiological conditions of the host-virus interaction. To bridge this gap between in vitro and in vivo methods of therapeutic agent screening, we report an improved screening protocol for therapeutic candidates using SARS-CoV-2 virus like particles (VLPs). To minimise the interference from the bulkier reporters like GPF in the affinity studies, a smaller hemagglutinin (HA) tag has been fused to one of the proteins of VLP. This HA tag serves as readout, when probed with fluorescent anti-HA antibodies. Outcome of this study sheds light on the lesser known virus neutralisation capabilities of AM type miniprotein mimics. Further, to assess the stability of SARS-CoV-2 spike - miniprotein complex, we have performed molecular dynamic simulations on the membrane embedded protein complex. Simulation results reveal extremely stable intermolecular interactions between RBD and one of the AM type miniproteins, AM1. Furthermore, we discovered a robust network of intramolecular interactions that help stabilise AM1. Findings from our in vitro and in silico experiments concurrently highlight advantages and capabilities of mimic based miniprotein therapeutics.
Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Humans , COVID-19/virology , COVID-19/immunology , Protein Binding , Virion/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , HEK293 CellsABSTRACT
Virus-like particles (VLPs) are nanostructures composed of one or more structural proteins, exhibiting stable and symmetrical structures. Their precise compositions and dimensions provide versatile opportunities for modifications, enhancing their functionality. Consequently, VLP-based nanomaterials have gained widespread adoption across diverse domains. This review focuses on three key aspects: the mechanisms of viral capsid protein self-assembly into VLPs, design methods for constructing multifunctional VLPs, and strategies for synthesizing multidimensional nanomaterials using VLPs. It provides a comprehensive overview of the advancements in virus-inspired functional nanomaterials, encompassing VLP assembly, functionalization, and the synthesis of multidimensional nanomaterials. Additionally, this review explores future directions, opportunities, and challenges in the field of VLP-based nanomaterials, aiming to shed light on potential advancements and prospects in this exciting area of research.
Subject(s)
Nanostructures , Virion , Nanostructures/chemistry , Virion/chemistry , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Viruses/chemistryABSTRACT
The production of influenza vaccines in plants is achieved through transient expression of viral hemagglutinins (HAs), a process mediated by the bacterial vector Agrobacterium tumefaciens. HA proteins are then produced and matured through the secretory pathway of plant cells, before being trafficked to the plasma membrane where they induce formation of virus-like particles (VLPs). Production of VLPs unavoidably impacts plant cells, as do viral suppressors of RNA silencing (VSRs) that are co-expressed to increase recombinant protein yields. However, little information is available on host molecular responses to foreign protein expression. This work provides a comprehensive overview of molecular changes occurring in Nicotiana benthamiana leaf cells transiently expressing the VSR P19, or co-expressing P19 and an influenza HA. Our data identifies general responses to Agrobacterium-mediated expression of foreign proteins, including shutdown of chloroplast gene expression, activation of oxidative stress responses and reinforcement of the plant cell wall through lignification. Our results also indicate that P19 expression promotes salicylic acid (SA) signalling, a process dampened by co-expression of the HA protein. While reducing P19 level, HA expression also induces specific signatures, with effects on lipid metabolism, lipid distribution within membranes and oxylipin-related signalling. When producing VLPs, dampening of P19 responses thus likely results from lower expression of the VSR, crosstalk between SA and oxylipin pathways, or a combination of both outcomes. Consistent with the upregulation of oxidative stress responses, we finally show that reduction of oxidative stress damage through exogenous application of ascorbic acid improves plant biomass quality during production of VLPs.
Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae , Humans , Nicotiana/genetics , Plants, Genetically Modified/genetics , Oxylipins/metabolism , Agrobacterium tumefaciens/genetics , Orthomyxoviridae/genetics , Plant Leaves/geneticsABSTRACT
The unfolded protein response (UPR) allows cells to cope with endoplasmic reticulum (ER) stress induced by accumulation of misfolded proteins in the ER. Due to its sensitivity to Agrobacterium tumefaciens, the model plant Nicotiana benthamiana is widely employed for transient expression of recombinant proteins of biopharmaceutical interest, including antibodies and virus surface proteins used for vaccine production. As such, study of the plant UPR is of practical significance, since enforced expression of complex secreted proteins often results in ER stress. After 6 days of expression, we recently reported that influenza haemagglutinin H5 induces accumulation of UPR proteins. Since up-regulation of corresponding UPR genes was not detected at this time, accumulation of UPR proteins was hypothesized to be independent of transcriptional induction, or associated with early but transient UPR gene up-regulation. Using time course sampling, we here show that H5 expression does result in early and transient activation of the UPR, as inferred from unconventional splicing of NbbZIP60 transcripts and induction of UPR genes with varied functions. Transient nature of H5-induced UPR suggests that this response was sufficient to cope with ER stress provoked by expression of the secreted protein, as opposed to an antibody that triggered stronger and more sustained UPR activation. As up-regulation of defence genes responding to H5 expression was detected after the peak of UPR activation and correlated with high increase in H5 protein accumulation, we hypothesize that these immune responses, rather than the UPR, were responsible for onset of the necrotic symptoms on H5-expressing leaves.
Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Nicotiana/genetics , Hemagglutinins , Unfolded Protein Response/genetics , Endoplasmic Reticulum Stress/geneticsABSTRACT
Despite remarkable progress in the treatment of hepatitis C virus (HCV) infection, it remains a significant global health burden, necessitating the development of an effective prophylactic vaccine. This review paper presents the current landscape of HCV vaccine candidates and approaches, including more traditional, based on inactivated virus, and more modern, such as subunit protein, vectored, based on nucleic acids (DNA and mRNA) and virus-like particles. The concept of the HCV vaccine is first put in the context of viral genetic diversity and adaptive responses to HCV infection, an understanding of which is crucial in guiding the development of an effective vaccine against such a complex virus. Because ethical dimensions are also significant in vaccine research, development, and potential deployment, we also address them in this paper. The road to a safe and effective vaccine to prevent HCV infection remains bumpy due to the genetic variation of HCV and its ability to evade immune responses. The progress in cell-culture systems allowed for the production of an inactivated HCV vaccine candidate, which can induce cross-neutralizing antibodies in vitro, but whether this could prevent infection in humans is unknown. Subunit protein vaccine candidates that entered clinical trials elicited HCV-specific humoral and cellular responses, though it remains to be shown whether they translate into effective prevention of HCV infection or progression of infection to a chronic state. Such responses were also induced by a clinically tested vector-based vaccine candidate, which decreased the viral HCV load but did not prevent chronic HCV infection. These disappointments were not readily predicted from preclinical animal studies. The vaccine platforms employing virus-like particles, DNA, and mRNA provide opportunities for the HCV vaccine, but their potential in this context has yet to be shown. Ensuring the designed vaccine is based on conserved epitope(s) and elicits broadly neutralizing immune responses is also essential. Given failures in developing a prophylactic HCV vaccine, it is crucial to continue supporting national strategies, including funding for screening and treatment programs. However, these actions are likely insufficient to permanently control the HCV burden, encouraging further mobilization of significant resources for HCV vaccine research as a missing element in the elimination of viral hepatitis as a global public health.
Subject(s)
Hepacivirus , Hepatitis C , Vaccine Development , Viral Hepatitis Vaccines , Humans , Viral Hepatitis Vaccines/immunology , Hepatitis C/prevention & control , Hepatitis C/immunology , Hepacivirus/immunology , Hepacivirus/genetics , Antibodies, Neutralizing/immunology , Vaccines, Subunit/immunology , Animals , Vaccines, Inactivated/immunologyABSTRACT
The widespread prevalence of bovine coronavirus (BCoV) disease worldwide has impacted the livestock industry economically. No effective vaccine is available in China. In this study, we produced BCoV virus-like particles (VLPs) containing E, M, N, S, and hemagglutinin-esterase (HE) proteins using a baculovirus expression system. Five recombinant baculoviruses were co-infected with Sf9 cells, and the VLPs were assembled and characterized. Mice and cattle were immunized by VLPs mixed with MF59 and CpG 55.2 adjuvants. Two doses of the VLPs/MF59/CpG vaccine were administered in mice and cattle. The immune effect of the VLPs/MF59/CpG vaccine was measured using indirect ELISA and neutralization assays. After immunization, the serum IgG-specific antibody titer against S protein and neutralization antibody titer increased to 1:1.28 × 104 (p < 0.01) and 1:128 (p < 0.01) in mice, respectively. Interestingly, the high IgG antibody and neutralizing antibody titers were maintained for seven days in mice. In addition, the serum IgG-specific antibody titer against S proteins and neutralization antibody titer increased to 1:1.024 × 105 and 1:512 (p < 0.05) in cattle, respectively. The high IgG antibody and neutralizing antibody titers were maintained for 21 days in cattle. Notably, BCoV VLPs group interferon-gamma (IFN-γ) lymphocytes in spleens were significantly increased (p < 0.01). These findings suggest that BCoV VLPs induced strong cellular and humoral immune responses in mice and cattle. These findings suggest that BCoV VLPs could serve as a potent immunogen for vaccine development.
ABSTRACT
Feline coronavirus (FCoV) infection is a leading cause of death in cats. In this study, we produced FCoV-I virus-like particles (VLPs) containing E, M, N, and S proteins using a baculovirus expression system and mixed VLPs with the adjuvants MF59 and CpG 55.2 to prepare an VLP/MF59/CpG vaccine. After immunization of mice with the vaccine, IgG specific antibodies titers against S and N proteins increased to 1:12,800, and IFN-γ+ and IL-4+ splenocytes were significantly increased. Following immunization of FCoV-negative cats, the S protein antibodies in immunized cats (5/5) increased significantly, with a peak of 1:12,800. Notably, after booster vaccination in FCoV-positive cats, a significant reduction in viral load was observed in the feces of partial cats (4/5), and the FCoV-I negative conversion was found in two immunized cats (2/5). Therefore, the VLP/MF59/CpG vaccine is a promising candidate vaccine to prevent the FCoV infection.
Subject(s)
Adjuvants, Immunologic , Antibodies, Viral , Coronavirus, Feline , Immunoglobulin G , Vaccines, Virus-Like Particle , Viral Load , Animals , Cats , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Antibodies, Viral/blood , Antibodies, Viral/immunology , Mice , Coronavirus, Feline/immunology , Immunoglobulin G/blood , Adjuvants, Immunologic/administration & dosage , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Interleukin-4/metabolism , Interferon-gamma/metabolism , Mice, Inbred BALB C , Feces/virology , Adjuvants, Vaccine , Polysorbates/administration & dosage , Female , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Immunogenicity, Vaccine , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Spleen/immunology , Cat Diseases/prevention & control , Cat Diseases/immunology , Cat Diseases/virology , Baculoviridae/genetics , Vaccination , Immunization, Secondary , SqualeneABSTRACT
Porcine circovirus type 2 (PCV2) is a globally prevalent infectious pathogen affecting swine, with its capsid protein (Cap) being the sole structural protein critical for vaccine development. Prior research has demonstrated that PCV2 Cap proteins produced in Escherichia coli (E. coli) can form virus-like particles (VLPs) in vitro, and nuclear localization signal peptides (NLS) play a pivotal role in stabilizing PCV2 VLPs. Recently, PCV2d has emerged as an important strain within the PCV2 epidemic. In this study, we systematically optimized the PCV2d Cap protein and successfully produced intact PCV2d VLPs containing NLS using E. coli. The recombinant PCV2d Cap protein was purified through affinity chromatography, yielding 7.5 mg of recombinant protein per 100 ml of bacterial culture. We augmented the conventional buffer system with various substances such as arginine, ß-mercaptoethanol, glycerol, polyethylene glycol, and glutathione to promote VLP assembly. The recombinant PCV2d Cap self-assembled into VLPs approximately 20 nm in diameter, featuring uniform distribution and exceptional stability in the optimized buffer. We developed the vaccine and immunized pigs and mice, evaluating the immunogenicity of the PCV2d VLPs vaccine by measuring PCV2-IgG, IL-4, TNF-α, and IFN-γ levels, comparing them to commercial vaccines utilizing truncated PCV2 Cap antigens. The HE staining and immunohistochemical tests confirmed that the PCV2 VLPs vaccine offered robust protection. The results revealed that animals vaccinated with the PCV2d VLPs vaccine exhibited high levels of PCV2 antibodies, with TNF-α and IFN-γ levels rapidly increasing at 14 days post-immunization, which were higher than those observed in commercially available vaccines, particularly in the mouse trial. This could be due to the fact that full-length Cap proteins can assemble into more stable PCV2d VLPs in the assembling buffer. In conclusion, our produced PCV2d VLPs vaccine elicited stronger immune responses in pigs and mice compared to commercial vaccines. The PCV2d VLPs from this study serve as an excellent candidate vaccine antigen, providing insights for PCV2d vaccine research.