Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 797
Filter
Add more filters

Publication year range
1.
Genes Dev ; 33(13-14): 828-843, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31171701

ABSTRACT

Adenovirus transformed cells have a dedifferentiated phenotype. Eliminating E1A in transformed human embryonic kidney cells derepressed ∼2600 genes, generating a gene expression profile closely resembling mesenchymal stem cells (MSCs). This was associated with a dramatic change in cell morphology from one with scant cytoplasm and a globular nucleus to one with increased cytoplasm, extensive actin stress fibers, and actomyosin-dependent flattening against the substratum. E1A-induced hypoacetylation at histone H3 Lys27 and Lys18 (H3K27/18) was reversed. Most of the increase in H3K27/18ac was in enhancers near TEAD transcription factors bound by Hippo signaling-regulated coactivators YAP and TAZ. E1A causes YAP/TAZ cytoplasmic sequestration. After eliminating E1A, YAP/TAZ were transported into nuclei, where they associated with poised enhancers with DNA-bound TEAD4 and H3K4me1. This activation of YAP/TAZ required RHO family GTPase signaling and caused histone acetylation by p300/CBP, chromatin remodeling, and cohesin loading to establish MSC-associated enhancers and then superenhancers. Consistent results were also observed in primary rat embryo kidney cells, human fibroblasts, and human respiratory tract epithelial cells. These results together with earlier studies suggest that YAP/TAZ function in a developmental checkpoint controlled by signaling from the actin cytoskeleton that prevents differentiation of a progenitor cell until it is in the correct cellular and tissue environment.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adenovirus E1A Proteins/metabolism , Cell Differentiation/genetics , Gene Silencing , Intracellular Signaling Peptides and Proteins/genetics , Phosphoproteins/genetics , Actin Cytoskeleton/metabolism , Adenoviridae , Animals , Cells, Cultured , HEK293 Cells , Humans , Rats , Signal Transduction , Trans-Activators , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins
2.
Mol Cell ; 71(4): 554-566.e7, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30078722

ABSTRACT

Chromosomal rearrangements resulting in the fusion of TMPRSS2, an androgen-regulated gene, and the ETS family transcription factor ERG occur in over half of prostate cancers. However, the mechanism by which ERG promotes oncogenic gene expression and proliferation remains incompletely understood. Here, we identify a binding interaction between ERG and the mammalian SWI/SNF (BAF) ATP-dependent chromatin remodeling complex, which is conserved among other oncogenic ETS factors, including ETV1, ETV4, and ETV5. We find that ERG drives genome-wide retargeting of BAF complexes in a manner dependent on binding of ERG to the ETS DNA motif. Moreover, ERG requires intact BAF complexes for chromatin occupancy and BAF complex ATPase activity for target gene regulation. In a prostate organoid model, BAF complexes are required for ERG-mediated basal-to-luminal transition, a hallmark of ERG activity in prostate cancer. These observations suggest a fundamental interdependence between ETS transcription factors and BAF chromatin remodeling complexes in cancer.


Subject(s)
Carcinogenesis/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Nuclear Proteins/genetics , Oncogene Proteins, Fusion/genetics , Prostatic Neoplasms/genetics , Serine Endopeptidases/genetics , Adenovirus E1A Proteins/genetics , Adenovirus E1A Proteins/metabolism , Animals , Binding Sites , Cell Line, Tumor , Cell Proliferation , Chromatin/chemistry , Chromatin/metabolism , Chromatin Assembly and Disassembly , DNA/genetics , DNA/metabolism , DNA-Binding Proteins/metabolism , HEK293 Cells , Humans , Male , Mice, Transgenic , Nuclear Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Organoids/metabolism , Organoids/pathology , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Binding , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-ets , Serine Endopeptidases/metabolism , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/metabolism
3.
Genes Dev ; 31(14): 1456-1468, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28827401

ABSTRACT

CIC (also known as Capicua) is a transcriptional repressor negatively regulated by RAS/MAPK signaling. Whereas the functions of Cic have been well characterized in Drosophila, little is known about its role in mammals. CIC is inactivated in a variety of human tumors and has been implicated recently in the promotion of lung metastases. Here, we describe a mouse model in which we inactivated Cic by selectively disabling its DNA-binding activity, a mutation that causes derepression of its target genes. Germline Cic inactivation causes perinatal lethality due to lung differentiation defects. However, its systemic inactivation in adult mice induces T-cell acute lymphoblastic lymphoma (T-ALL), a tumor type known to carry CIC mutations, albeit with low incidence. Cic inactivation in mice induces T-ALL by a mechanism involving derepression of its well-known target, Etv4 Importantly, human T-ALL also relies on ETV4 expression for maintaining its oncogenic phenotype. Moreover, Cic inactivation renders T-ALL insensitive to MEK inhibitors in both mouse and human cell lines. Finally, we show that Ras-induced mouse T-ALL as well as human T-ALL carrying mutations in the RAS/MAPK pathway display a genetic signature indicative of Cic inactivation. These observations illustrate that CIC inactivation plays a key role in this human malignancy.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Repressor Proteins/genetics , Adenovirus E1A Proteins/metabolism , Alleles , Animals , Brain Neoplasms/genetics , Cell Line, Tumor , Embryonic Development/genetics , Fibroblasts/metabolism , Genes, ras , Humans , MAP Kinase Signaling System/drug effects , Mice , Mutation , Oligodendroglioma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/enzymology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-ets/genetics , Transcription, Genetic
4.
J Virol ; 97(8): e0070023, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37578239

ABSTRACT

Human adenovirus (HAdV) is ubiquitous in the human population, constituting a significant burden of global respiratory diseases. Children and individuals with low immunity are at risk of developing severe infections without approved antiviral treatment for HAdV. Our study demonstrated that TRIM35 inhibited HAdV-C5 early gene transcription, early protein expression, genome replication, and infectious virus progeny production. Furthermore, TRIM35 was found to inhibit HAdV replication by attenuating E1A expression. Mechanistically, TRIM35 interacts with and degrades E1A by promoting its K48-linked ubiquitination. Additionally, K253 and K285 are the key sites necessary for TRIM35 degradation. Moreover, an oncolytic adenovirus carrying shTRIM35 was constructed and observed to exhibit improved oncolysis in vivo, providing new ideas for clinical tumor treatment. Our results expand the broad antiviral activity of TRIM35 and mechanically support its application as a HAdV replication inhibitor. IMPORTANCE E1A is an essential human adenovirus (HAdV) protein responsible for the early replication of adenovirus while interacting with multiple host proteins. Understanding the interaction between HAdV E1A and TRIM35 helps identify effective antiviral therapeutic targets. The viral E1A protein is a crucial activator and regulator of viral transcription during the early infection stages. We first reported that TRIM35 interacts with E1A to resist adenovirus infection. Our study demonstrated that TRIM35 targets E1A to resist adenovirus, indicating the applicability of targeting virus-dependent host factors as a suitable antiviral strategy.


Subject(s)
Adenovirus E1A Proteins , Adenoviruses, Human , Apoptosis Regulatory Proteins , Virus Replication , Humans , Adenovirus E1A Proteins/genetics , Adenovirus E1A Proteins/metabolism , Adenoviruses, Human/physiology , Antiviral Agents/pharmacology , Apoptosis Regulatory Proteins/metabolism
5.
J Virol ; 97(12): e0099323, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37962355

ABSTRACT

IMPORTANCE: Inactivation of EP300/CREBB paralogous cellular lysine acetyltransferases (KATs) during the early phase of infection is a consistent feature of DNA viruses. The cell responds by stabilizing transcription factor IRF3 which activates transcription of scores of interferon-stimulated genes (ISGs), inhibiting viral replication. Human respiratory adenoviruses counter this by assembling a CUL4-based ubiquitin ligase complex that polyubiquitinylates RUVBL1 and 2 inducing their proteasomal degradation. This inhibits accumulation of active IRF3 and the expression of anti-viral ISGs, allowing replication of the respiratory HAdVs in the face of inhibition of EP300/CBEBBP KAT activity by the N-terminal region of E1A.


Subject(s)
ATPases Associated with Diverse Cellular Activities , Adenovirus E1A Proteins , Carrier Proteins , DNA Helicases , Immunity, Innate , Proteasome Endopeptidase Complex , Stress, Physiological , Humans , Adenovirus E1A Proteins/metabolism , Adenoviruses, Human/enzymology , Adenoviruses, Human/metabolism , ATPases Associated with Diverse Cellular Activities/metabolism , Carrier Proteins/metabolism , Cullin Proteins/metabolism , DNA Helicases/metabolism , Interferons/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Structure, Quaternary , Ubiquitin-Protein Ligase Complexes/chemistry , Ubiquitin-Protein Ligase Complexes/metabolism , Ubiquitination , Virus Replication
6.
J Virol ; 97(6): e0037023, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37219458

ABSTRACT

DNA replication of E1-deleted first-generation adenoviruses (AdV) in cultured cancer cells has been reported repeatedly and it was suggested that certain cellular proteins could functionally compensate for E1A, leading to the expression of the early region 2 (E2)-encoded proteins and subsequently virus replication. Referring to this, the observation was named E1A-like activity. In this study, we investigated different cell cycle inhibitors with respect to their ability to increase viral DNA replication of dl70-3, an E1-deleted adenovirus. Our analyses of this issue revealed that in particular inhibition of cyclin-dependent kinases 4/6 (CDK4/6i) increased E1-independent adenovirus E2-expression and viral DNA replication. Detailed analysis of the E2-expression in dl70-3 infected cells by RT-qPCR showed that the increase in E2-expression originated from the E2-early promoter. Mutations of the two E2F-binding sites in the E2-early promoter (pE2early-LucM) caused a significant reduction in E2-early promoter activity in trans-activation assays. Accordingly, mutations of the E2F-binding sites in the E2-early promoter in a virus named dl70-3/E2Fm completely abolished CDK4/6i induced viral DNA replication. Thus, our data show that E2F-binding sites in the E2-early promoter are crucial for E1A independent adenoviral DNA replication of E1-deleted vectors in cancer cells. IMPORTANCE E1-deleted AdV vectors are considered replication deficient and are important tools for the study of virus biology, gene therapy, and large-scale vaccine development. However, deletion of the E1 genes does not completely abolish viral DNA replication in cancer cells. Here, we report, that the two E2F-binding sites in the adenoviral E2-early promoter contribute substantially to the so-called E1A-like activity in tumor cells. With this finding, on the one hand, the safety profile of viral vaccine vectors can be increased and, on the other hand, the oncolytic property for cancer therapy might be improved through targeted manipulation of the host cell.


Subject(s)
Adenoviridae , Cell Cycle , DNA Replication , Virus Replication , Adenoviridae/genetics , Adenoviridae/metabolism , Adenovirus E1A Proteins/genetics , Adenovirus E1A Proteins/metabolism , Binding Sites , Cell Cycle/drug effects , Cell Line, Tumor , Cells/drug effects , Cells/virology , DNA Replication/drug effects , DNA, Viral/metabolism , Gene Expression Regulation, Viral/drug effects , Mutation , Promoter Regions, Genetic/genetics , Protein Kinase Inhibitors/pharmacology , Virus Replication/physiology , Humans
7.
J Virol ; 95(6)2021 02 24.
Article in English | MEDLINE | ID: mdl-33361423

ABSTRACT

Human adenovirus (HAdV) is used extensively as a vector for gene delivery for a variety of purposes, including gene therapy and vaccine development. Most adenoviral vectors used for these approaches have a deletion of early region 1 (E1), which is complemented by the cell line. Most commonly, these are 293 cells for HAdV serotype 2 or 5. The 293 cells have the left end of HAdV5 integrated into chromosome 19 and express the E1 genes and protein IX. We observed that viruses with the E1 region deleted often grow less well on 293 cells than E1 wild-type viruses. Therefore, we investigated whether this poor growth is caused by splicing differences between the E1A RNA provided by the cell line (in trans) and the E1A RNA provided by the infecting viral genome (in cis). We observed that E1A RNA that was expressed from the genomes of 293 cells was spliced differently during infection with an E1A-deleted dl312 virus than E1A RNA from the same cells infected with dl309 or wt300. Importantly, 293 cells were not able to fully complement the late E1A transcripts, specifically 11S, 10S, and 9S RNA, which express the E1A217R, E1A171R, and E1A55R isoforms, respectively. We observed that these splicing differences likely arise due to different subnuclear localizations of E1A RNA. E1A RNA expressed from the viral genome was localized to viral replication centers, while E1A RNA expressed from the cell's genome was not. This loss of the late E1A mRNAs and their associated proteins impacts viral growth, gene expression, and protein levels. Complementation of the late E1A mRNAs in 293 cells restored some of the growth defect observed with dl312 and resulted in higher virus growth.IMPORTANCE Human adenovirus has become an important tool for medicine and research, and 293 cells and various similar cell lines are used extensively for virus production in situations where high viral yields are important. Such complementing cell lines are used for the production of viral vectors and vaccines, which often have deletions and replacements in various viral genes. Deletions in essential genes, such as E1, are often complemented by the cell line that is used for virus propagation in trans Here, we show that even complete genetic complementation of a viral gene does not result in full protein complementation, a defect that compromises virus growth. This is particularly important when high viral yields are crucial, as in virus production for vaccine development or gene therapy.


Subject(s)
Adenovirus E1A Proteins/genetics , Adenoviruses, Human/genetics , RNA Splicing/genetics , RNA, Messenger/metabolism , Adenovirus E1A Proteins/metabolism , Adenoviruses, Human/growth & development , Gene Expression Regulation, Viral , Genetic Complementation Test , HEK293 Cells , Humans , Mutation , RNA Isoforms/genetics , RNA Isoforms/metabolism , RNA, Messenger/genetics , Viral Replication Compartments/metabolism , Virus Replication
8.
Biochem Biophys Res Commun ; 548: 98-103, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33640611

ABSTRACT

E1A is an adenoviral protein which is expressed at the early phase after viral infection and contains four conserved regions (CR1, CR2, CR3 and CR4). Our previous work suggests that E1A facilitates the formation of cyclin A-CDK2 complex and thereby enhances CDK2 activity. However, the molecular function of E1A in CDK2 activation has been unclear. Here, we studied the mechanism of enhancement of CDK2 activity by E1A, using the E1A variant forms which selectively contain CR domains. We isolated four E1A variant forms, i.e. 13S (containing CR1, CR2, CR3, CR4), 12S (CR1, CR2, CR4), 10S (CR2, CR4) and 9S (CR4), derived from HEK293 cells which express E1A. 13S promoted G2/M-phase arrest, upon CDK2 hyper-activation by co-expressing a stabilized cyclin A mutant, most strongly among those E1A variant forms. Concomitantly, the specific activity of the 13S-associated CDK2 was highest among them. 10S exhibited lower affinity for CDK2 than the 13S while the affinity for CDK2 was comparable between 13S and 12S. Nonetheless, 12S did not enhance the CDK2 specific activity. On the other hand, a mutation in CR2 domain, which is essential for binding to p107, suppressed both the binding and activation of CDK2. These results suggest that CR1 domain, in addition to CR2 domain via p107 interaction, is important for binding to CycA-CDK2 complex while CR3 domain facilitates CDK2 activation. Since the function of CR3 in cell cycle regulation has been relatively unknown, we propose the enhancement of CDK2 activity as a novel function of CR3 domain.


Subject(s)
Adenovirus E1A Proteins/chemistry , Adenovirus E1A Proteins/metabolism , Cyclin-Dependent Kinase 2/metabolism , Cell Cycle , Enzyme Activation , HEK293 Cells , Humans , Protein Domains
9.
Int J Mol Sci ; 22(4)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33670684

ABSTRACT

Adenovirus infections tend to be mild, but they may pose a serious threat for young and immunocompromised individuals. The treatment is complicated because there are no approved safe and specific drugs for adenovirus infections. Here, we present evidence that 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG), an inhibitor of Hsp90 chaperone, decreases the rate of human adenovirus 5 (HAdV-5) replication in cell cultures by 95%. 17-AAG inhibited the transcription of early and late genes of HAdV-5, replication of viral DNA, and expression of viral proteins. 6 h after infection, Hsp90 inhibition results in a 6.3-fold reduction of the newly synthesized E1A protein level without a decrease in the E1A mRNA level. However, the Hsp90 inhibition does not increase the decay rate of the E1A protein that was constitutively expressed in the cell before exposure to the inhibitor. The co-immunoprecipitation proved that E1A protein interacted with Hsp90. Altogether, the presented results show, for the first time. that Hsp90 chaperones newly synthesized, but not mature, E1A protein. Because E1A serves as a transcriptional co-activator of adenovirus early genes, the anti-adenoviral activity of the Hsp90 inhibitor might be explained by the decreased E1A level.


Subject(s)
Adenoviridae/physiology , Adenovirus E1A Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Virus Replication/physiology , A549 Cells , Adenoviridae/drug effects , Adenoviridae/genetics , Benzoquinones/pharmacology , DNA Replication/drug effects , HEK293 Cells , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Humans , Lactams, Macrocyclic/pharmacology , Protein Binding/drug effects , Proteolysis/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Virus/metabolism , Transcription, Genetic/drug effects , Virus Replication/genetics
10.
J Virol ; 93(10)2019 05 15.
Article in English | MEDLINE | ID: mdl-30842325

ABSTRACT

Human adenovirus expresses several early proteins that control various aspects of the viral replication program, including an orchestrated expression of viral genes. Two of the earliest viral transcriptional units activated after viral genome entry into the host cell nucleus are the E1 and E4 units, which each express a variety of proteins. Chief among these are the E1A proteins that function to reprogram the host cell and activate transcription of all other viral genes. The E4 gene encodes multiple proteins, including E4orf3, which functions to disrupt cellular antiviral defenses, including the DNA damage response pathway and activation of antiviral genes. Here we report that E1A directly interacts with E4orf3 via the conserved N terminus of E1A to regulate the expression of viral genes. We show that E4orf3 indiscriminately drives high nucleosomal density of viral genomes, which is restrictive to viral gene expression and which E1A overcomes via a direct interaction with E4orf3. We also show that during infection E1A colocalizes with E4orf3 to nuclear tracks that are associated with heterochromatin formation. The inability of E1A to interact with E4orf3 has a significant negative impact on overall viral replication, the ability of the virus to reprogram the host cell, and the levels of viral gene expression. Together these results show that E1A and E4orf3 work together to fine-tune the viral replication program during the course of infection and highlight a novel mechanism that regulates viral gene expression.IMPORTANCE To successfully replicate, human adenovirus needs to carry out a rapid yet ordered transcriptional program that executes and drives viral replication. Early in infection, the viral E1A proteins are the key activators and regulators of viral transcription. Here we report, for the first time, that E1A works together with E4orf3 to perfect the viral transcriptional program and identify a novel mechanism by which the virus can adjust viral gene expression by modifying its genome's nucleosomal organization via cooperation between E1A and E4orf3.


Subject(s)
Adenovirus E1A Proteins/metabolism , Adenovirus E4 Proteins/metabolism , Chromatin/metabolism , A549 Cells , Adenoviridae/genetics , Adenoviridae Infections/virology , Adenovirus E1A Proteins/physiology , Adenovirus E4 Proteins/physiology , Adenoviruses, Human/physiology , Cell Line , Cell Nucleus/virology , Chromatin/virology , Cytoplasm/metabolism , Gene Expression Regulation, Viral/genetics , Gene Expression Regulation, Viral/physiology , Genes, Viral , Humans , Nuclear Proteins/metabolism , Protein Binding , Transcription Factors/metabolism , Virus Replication
11.
Proc Natl Acad Sci U S A ; 114(21): 5337-5342, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28484034

ABSTRACT

Intrinsic tumor-suppressive mechanisms protect normal cells against aberrant proliferation. Although cellular signaling pathways engaged in tumor repression have been largely identified, how they are orchestrated to fulfill their function still remains elusive. Here, we built a tumor-suppressive network model composed of three modules responsible for the regulation of cell proliferation, activation of p53, and induction of apoptosis. Numerical simulations show a rich repertoire of network dynamics when normal cells are subject to serum stimulation and adenovirus E1A overexpression. We showed that oncogenic signaling induces ARF and that ARF further promotes p53 activation to inhibit proliferation. Mitogenic signaling activates E2F activators and promotes Akt activation. p53 and E2F1 cooperate to induce apoptosis, whereas Akt phosphorylates p21 to repress caspase activation. These prosurvival and proapoptotic signals compete to dictate the cell fate of proliferation, cell-cycle arrest, or apoptosis. The cellular outcome is also impacted by the kinetic mode (ultrasensitivity or bistability) of p53. When cells are exposed to serum deprivation and recovery under fixed E1A, the shortest starvation time required for apoptosis induction depends on the terminal serum concentration, which was interpreted in terms of the dynamics of caspase-3 activation and cytochrome c release. We discovered that caspase-3 can be maintained active at high serum concentrations and that E1A overexpression sensitizes serum-starved cells to apoptosis. This work elucidates the roles of tumor repressors and prosurvival factors in tumor repression based on a dynamic network analysis and provides a framework for quantitatively exploring tumor-suppressive mechanisms.


Subject(s)
Adenovirus E1A Proteins/metabolism , Models, Biological , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis , Cyclin-Dependent Kinase Inhibitor p16 , Cyclin-Dependent Kinase Inhibitor p18/metabolism , Cytochromes c/metabolism , E2F Transcription Factors/metabolism , Signal Transduction
12.
J Biol Chem ; 293(15): 5478-5491, 2018 04 13.
Article in English | MEDLINE | ID: mdl-29475951

ABSTRACT

Syntaxins are a conserved family of SNARE proteins and contain C-terminal transmembrane anchors required for their membrane fusion activity. Here we show that Stx3 (syntaxin 3) unexpectedly also functions as a nuclear regulator of gene expression. We found that alternative splicing creates a soluble isoform that we termed Stx3S, lacking the transmembrane anchor. Soluble Stx3S binds to the nuclear import factor RanBP5 (RAN-binding protein 5), targets to the nucleus, and interacts physically and functionally with several transcription factors, including ETV4 (ETS variant 4) and ATF2 (activating transcription factor 2). Stx3S is differentially expressed in normal human tissues, during epithelial cell polarization, and in breast cancer versus normal breast tissue. Inhibition of endogenous Stx3S expression alters the expression of cancer-associated genes and promotes cell proliferation. Similar nuclear-targeted, soluble forms of other syntaxins were identified, suggesting that nuclear signaling is a conserved, novel function common among these membrane-trafficking proteins.


Subject(s)
Adenovirus E1A Proteins/metabolism , Cell Nucleus/metabolism , Cell Proliferation , Gene Expression Regulation , Proto-Oncogene Proteins/metabolism , Qa-SNARE Proteins/metabolism , Signal Transduction , beta Karyopherins/metabolism , Adenovirus E1A Proteins/genetics , Animals , COS Cells , Caco-2 Cells , Cell Nucleus/genetics , Chlorocebus aethiops , Dogs , HEK293 Cells , HeLa Cells , Humans , Madin Darby Canine Kidney Cells , Protein Binding , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-ets , Qa-SNARE Proteins/genetics , Solubility , beta Karyopherins/genetics
13.
J Virol ; 92(8)2018 04 15.
Article in English | MEDLINE | ID: mdl-29367252

ABSTRACT

The E1A proteins of the various human adenovirus (HAdV) species perform the critical task of converting an infected cell into a setting primed for virus replication. While E1A proteins differ in both sequence and mechanism, the evolutionary pressure on viruses with limited coding capacity ensures that these proteins often have significant overlap in critical functions. HAdV-5 E1A is known to use mimicry to rewire cyclic AMP (cAMP) signaling by decoupling protein kinase A (PKA) from cellular A kinase-anchoring proteins (AKAPs) and utilizing PKA to its own advantage. We show here that E1As from other species of HAdV also possess this viral AKAP (vAKAP) function and examine how they manipulate PKA. E1A from most species of HAdV examined contain a small AKAP-like motif in their N terminus which targets the docking-dimerization domain of PKA as the binding interface for a conserved protein-protein interaction. This motif is also responsible for an E1A-mediated relocalization of PKA regulatory subunits from the cytoplasm into the nucleus, with species-specific E1A proteins having preference for one particular isoform of PKA subunit over another. Importantly, we showed that these newly characterized vAKAPs can integrate into cAMP-responsive transcription as well as contribute to viral genome replication and infectious progeny production for several distinct HAdV species.IMPORTANCE These data enhance the mechanistic knowledge on how HAdV E1A manipulates cellular PKA to benefit infection. The work establishes that mimicry of AKAPs and subversion of PKA-mediated cAMP signaling are conserved features for numerous human adenoviruses. This study also highlights the molecular determinants conferring selective protein-protein interactions between distinct PKA regulatory subunits and the different E1A proteins of these viruses. Additionally, it further emphasizes the utility of using viral proteins like E1A as tools for studying the molecular biology of cellular regulatory pathways.


Subject(s)
A Kinase Anchor Proteins , Adenoviridae , Adenovirus E1A Proteins , Cyclic AMP-Dependent Protein Kinases/metabolism , Second Messenger Systems , A Kinase Anchor Proteins/genetics , A Kinase Anchor Proteins/metabolism , A549 Cells , Adenoviridae/genetics , Adenoviridae/metabolism , Adenovirus E1A Proteins/genetics , Adenovirus E1A Proteins/metabolism , Amino Acid Motifs , Amino Acids, Cyclic , Cyclic AMP-Dependent Protein Kinases/genetics , HEK293 Cells , HeLa Cells , Humans , Species Specificity
14.
J Virol ; 92(14)2018 07 15.
Article in English | MEDLINE | ID: mdl-29743362

ABSTRACT

Far-upstream element (FUSE) binding protein 1 (FUBP1) was originally identified as a regulator of the oncogene c-Myc via binding to the FUSE within the c-Myc promoter and activating the expression of the gene. Recent studies have identified FUBP1 as a regulator of transcription, translation, and splicing via its DNA and RNA binding activities. Here we report the identification of FUBP1 as a novel binding partner of E1A. FUBP1 binds directly to E1A via the N terminus (residues 1 to 82) and conserved region 3 (residues 139 to 204) of adenovirus 5 E1A. The depletion of FUBP1 via short interfering RNAs (siRNA) reduces virus growth and drives the upregulation of the cellular stress response by activating the expression of p53-regulated genes. During infection, FUBP1 is relocalized within the nucleus, and it is recruited to viral promoters together with E1A while at the same time being lost from the FUSE upstream of the c-Myc promoter. The depletion of FUBP1 affects viral and cellular gene expression. Importantly, in FUBP1-depleted cells, p53-responsive genes are upregulated, p53 occupancy on target promoters is enhanced, and histone H3 lysine 9 is hyperacetylated. This is likely due to the loss of the FUBP1-mediated suppression of p53 DNA binding. We also observed that E1A stabilizes the FUBP1-p53 complex, preventing p53 promoter binding. Together, our results identify, for the first time, FUBP1 as a novel E1A binding protein that participates in aspects of viral replication and is involved in the E1A-mediated suppression of p53 function.IMPORTANCE Viral infection triggers innate cellular defense mechanisms that have evolved to block virus replication. To overcome this, viruses have counterevolved mechanisms that ensure that cellular defenses are either disarmed or not activated to guarantee successful replication. One of the key regulators of cellular stress is the tumor suppressor p53 that responds to a variety of cellular stress stimuli and safeguards the integrity of the genome. During infection, many viruses target the p53 pathway in order to deactivate it. Here we report that human adenovirus 5 coopts the cellular protein FUBP1 to prevent the activation of the p53 stress response pathway that would block viral replication. This finding adds to our understanding of p53 deactivation by adenovirus and highlights its importance in infection and innate immunity.


Subject(s)
Adenoviridae Infections/virology , Adenoviridae/physiology , Adenovirus E1A Proteins/metabolism , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Host-Pathogen Interactions , Tumor Suppressor Protein p53/metabolism , Virus Replication , Adenoviridae Infections/metabolism , Adenovirus E1A Proteins/genetics , Cells, Cultured , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/virology , Gene Expression Regulation, Viral , Humans , Promoter Regions, Genetic , Protein Binding , RNA-Binding Proteins , Transcriptional Activation , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics
15.
BMC Cancer ; 19(1): 516, 2019 May 29.
Article in English | MEDLINE | ID: mdl-31142289

ABSTRACT

BACKGROUND: Adult T-cell leukemia/lymphoma (ATL) is a peripheral T-cell malignancy caused by long-term human T-cell leukemia virus type I (HTLV-1) infection. Survivin-responsive, conditionally replicating adenoviruses regulated by multiple tumor-specific factors (Surv.m-CRAs), in which the expression of the adenoviral early region 1A gene is regulated by the survivin (BIRC5) promoter, can be used to treat several cancers. As survivin is overexpressed in ATL, we examined the effects of Surv.m-CRAs on ATL-selective replication and survival. METHODS: We tested two ATL cell lines and four HTLV-1-infected T-cell lines. The cells were subjected to infection with either E1-deleted, replication-defective adenoviruses or Surv.m-CRAs at various multiplicities of infection. RESULTS: Strong activation of survivin promoter was observed in all six cell lines. Moreover, the expression of the coxsackie and adenovirus receptor (CAR), which is important for adenoviral infection, was high in the cell lines. In contrast, we observed the absence of survivin promoter activity and a low expression of CAR in activated peripheral blood lymphocytes (PBLs) from healthy subjects. Surv.m-CRAs actively replicated and induced cytocidal effects in five out of six cell lines; conversely, we observed minimal viral replication and no marked cytotoxicity in normal activated PBLs. CONCLUSIONS: This is the first report demonstrating that Surv.m-CRAs constitute attractive potential anti-ATL agents.


Subject(s)
Adenoviridae/physiology , Leukemia-Lymphoma, Adult T-Cell/genetics , Survivin/genetics , Adenoviridae/genetics , Adenoviridae/metabolism , Adenovirus E1A Proteins/genetics , Adenovirus E1A Proteins/metabolism , Cell Line, Tumor , Humans , Leukemia-Lymphoma, Adult T-Cell/therapy , Promoter Regions, Genetic , Virus Replication
16.
Virol J ; 16(1): 161, 2019 12 21.
Article in English | MEDLINE | ID: mdl-31864392

ABSTRACT

BACKGROUND: Adenovirus (AdV) infection is ubiquitous in the human population and causes acute infection in the respiratory and gastrointestinal tracts. In addition to lytic infections in epithelial cells, AdV can persist in a latent form in mucosal lymphocytes, and nearly 80% of children contain viral DNA in the lymphocytes of their tonsils and adenoids. Reactivation of latent AdV is thought to be the source of deadly viremia in pediatric transplant patients. Adenovirus latency and reactivation in lymphocytes is not well studied, though immune cell activation has been reported to promote productive infection from latency. Lymphocyte activation induces global changes in cellular gene expression along with robust changes in metabolic state. The ratio of free cytosolic NAD+/NADH can impact gene expression via modulation of transcriptional repressor complexes. The NAD-dependent transcriptional co-repressor C-terminal Binding Protein (CtBP) was discovered 25 years ago due to its high affinity binding to AdV E1A proteins, however, the role of this interaction in the viral life cycle remains unclear. METHODS: The dynamics of persistently- and lytically-infected cells are evaluated. RT-qPCR is used to evaluate AdV gene expression following lymphocyte activation, treatment with nicotinamide, or disruption of CtBP-E1A binding. RESULTS: PMA and ionomycin stimulation shifts the NAD+/NADH ratio in lymphocytic cell lines and upregulates viral gene expression. Direct modulation of NAD+/NADH by nicotinamide treatment also upregulates early and late viral transcripts in persistently-infected cells. We found differential expression of the NAD-dependent CtBP protein homologs between lymphocytes and epithelial cells, and inhibition of CtBP complexes upregulates AdV E1A expression in T lymphocyte cell lines but not in lytically-infected epithelial cells. CONCLUSIONS: Our data provide novel insight into factors that can regulate AdV infections in activated human lymphocytes and reveal that modulation of cellular NAD+/NADH can de-repress adenovirus gene expression in persistently-infected lymphocytes. In contrast, disrupting the NAD-dependent CtBP repressor complex interaction with PxDLS-containing binding partners paradoxically alters AdV gene expression. Our findings also indicate that CtBP activities on viral gene expression may be distinct from those occurring upon metabolic alterations in cellular NAD+/NADH ratios or those occurring after lymphocyte activation.


Subject(s)
Adenoviridae/growth & development , Adenovirus E1A Proteins/metabolism , Alcohol Oxidoreductases/metabolism , DNA-Binding Proteins/metabolism , Host-Pathogen Interactions , Lymphocytes/virology , NAD/metabolism , Virus Activation , Adenoviridae/genetics , Adenovirus Infections, Human/virology , Cell Line , Gene Expression Regulation, Viral , Humans , Lymphocyte Activation , Protein Binding , Virus Latency
17.
Nature ; 498(7454): 390-4, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-23783631

ABSTRACT

Allostery is an intrinsic property of many globular proteins and enzymes that is indispensable for cellular regulatory and feedback mechanisms. Recent theoretical and empirical observations indicate that allostery is also manifest in intrinsically disordered proteins, which account for a substantial proportion of the proteome. Many intrinsically disordered proteins are promiscuous binders that interact with multiple partners and frequently function as molecular hubs in protein interaction networks. The adenovirus early region 1A (E1A) oncoprotein is a prime example of a molecular hub intrinsically disordered protein. E1A can induce marked epigenetic reprogramming of the cell within hours after infection, through interactions with a diverse set of partners that include key host regulators such as the general transcriptional coactivator CREB binding protein (CBP), its paralogue p300, and the retinoblastoma protein (pRb; also called RB1). Little is known about the allosteric effects at play in E1A-CBP-pRb interactions, or more generally in hub intrinsically disordered protein interaction networks. Here we used single-molecule fluorescence resonance energy transfer (smFRET) to study coupled binding and folding processes in the ternary E1A system. The low concentrations used in these high-sensitivity experiments proved to be essential for these studies, which are challenging owing to a combination of E1A aggregation propensity and high-affinity binding interactions. Our data revealed that E1A-CBP-pRb interactions have either positive or negative cooperativity, depending on the available E1A interaction sites. This striking cooperativity switch enables fine-tuning of the thermodynamic accessibility of the ternary versus binary E1A complexes, and may permit a context-specific tuning of associated downstream signalling outputs. Such a modulation of allosteric interactions is probably a common mechanism in molecular hub intrinsically disordered protein function.


Subject(s)
Adenovirus E1A Proteins/chemistry , Adenovirus E1A Proteins/metabolism , Allosteric Regulation , Amino Acid Motifs , Animals , Anisotropy , CREB-Binding Protein/chemistry , CREB-Binding Protein/metabolism , Fluorescence Resonance Energy Transfer , Humans , Mice , Models, Molecular , Protein Binding , Protein Folding , Protein Structure, Tertiary , Retinoblastoma Protein/chemistry , Retinoblastoma Protein/metabolism , Thermodynamics , p300-CBP Transcription Factors/chemistry
18.
Nucleic Acids Res ; 45(5): 2223-2241, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28161714

ABSTRACT

Autoinhibition enables spatial and temporal regulation of cellular processes by coupling protein activity to surrounding conditions, often via protein partnerships or signaling pathways. We report the molecular basis of DNA-binding autoinhibition of ETS transcription factors ETV1, ETV4 and ETV5, which are often overexpressed in prostate cancer. Inhibitory elements that cooperate to repress DNA binding were identified in regions N- and C-terminal of the ETS domain. Crystal structures of these three factors revealed an α-helix in the C-terminal inhibitory domain that packs against the ETS domain and perturbs the conformation of its DNA-recognition helix. Nuclear magnetic resonance spectroscopy demonstrated that the N-terminal inhibitory domain (NID) is intrinsically disordered, yet utilizes transient intramolecular interactions with the DNA-recognition helix of the ETS domain to mediate autoinhibition. Acetylation of selected lysines within the NID activates DNA binding. This investigation revealed a distinctive mechanism for DNA-binding autoinhibition in the ETV1/4/5 subfamily involving a network of intramolecular interactions not present in other ETS factors. These distinguishing inhibitory elements provide a platform through which cellular triggers, such as protein-protein interactions or post-translational modifications, may specifically regulate the function of these oncogenic proteins.


Subject(s)
Adenovirus E1A Proteins/chemistry , DNA-Binding Proteins/chemistry , DNA/chemistry , Intrinsically Disordered Proteins/chemistry , Protein Processing, Post-Translational , Proto-Oncogene Proteins/chemistry , Transcription Factors/chemistry , Acetylation , Adenovirus E1A Proteins/genetics , Adenovirus E1A Proteins/metabolism , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , DNA/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Kinetics , Lysine/chemistry , Lysine/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-ets , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
19.
J Biol Chem ; 292(22): 9420-9430, 2017 06 02.
Article in English | MEDLINE | ID: mdl-28408625

ABSTRACT

Prostate cancer is a very common malignant disease and a leading cause of death for men in the Western world. Tumorigenesis and progression of prostate cancer involves multiple signaling pathways, including the Hippo pathway. Yes-associated protein (YAP) is the downstream transcriptional co-activator of the Hippo pathway, is overexpressed in prostate cancer, and plays a vital role in the tumorigenesis and progression of prostate cancer. However, the role of the YAP paralog and another downstream effector of the Hippo pathway, transcriptional co-activator with PDZ-binding motif (TAZ), in prostate cancer has not been fully elucidated. Here, we show that TAZ is a basal cell marker for the prostate epithelium. We found that overexpression of TAZ promotes the epithelial-mesenchymal transition (EMT), cell migration, and anchorage-independent growth in the RWPE1 prostate epithelial cells. Of note, knock down of TAZ in the DU145 prostate cancer cells inhibited cell migration and metastasis. We also found that SH3 domain binding protein 1 (SH3BP1), a RhoGAP protein that drives cell motility, is a direct target gene of TAZ in the prostate cancer cells, mediating TAZ function in enhancing cell migration. Moreover, the prostate cancer-related oncogenic E26 transformation-specific (ETS) transcription factors, ETV1, ETV4, and ETV5, were required for TAZ gene transcription in PC3 prostate cancer cells. MAPK inhibitor U0126 treatment decreased TAZ expression in RWPE1 cells, and ETV4 overexpression rescued TAZ expression in RWPE1 cells with U0126 treatment. Our results show a regulatory mechanism of TAZ transcription and suggest a significant role for TAZ in the progression of prostate cancer.


Subject(s)
Adenovirus E1A Proteins/metabolism , Cell Movement , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins/metabolism , Transcription Factors/metabolism , Acyltransferases , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adenovirus E1A Proteins/genetics , Animals , Cell Adhesion , Cell Line, Tumor , DNA-Binding Proteins/genetics , Humans , Male , Mice , Mice, Nude , Neoplasm Metastasis , Phosphoproteins/genetics , Phosphoproteins/metabolism , Prostatic Neoplasms/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-ets , Transcription Factors/genetics , YAP-Signaling Proteins
20.
Prostate ; 78(15): 1140-1156, 2018 11.
Article in English | MEDLINE | ID: mdl-30009471

ABSTRACT

BACKGROUND: Mutations or truncation of the ligand-binding domain (LBD) of androgen receptor (AR) underlie treatment resistance for prostate cancer (PCa). Thus, targeting the AR N-terminal domain (NTD) could overcome such resistance. METHODS: Luciferase reporter assays after transient transfection of various DNA constructs were used to assess effects of E1A proteins on AR-mediated transcription. Immunofluorescence microscopy and subcellular fractionation were applied to assess intracellular protein localization. Immunoprecipitation and mammalian two-hybrid assays were used to detect protein-protein interactions. qRT-PCR was employed to determine RNA levels. Western blotting was used to detect protein expression in cells. Effects of adenoviruses on prostate cancer cell survival were evaluated with CellTiter-Glo assays. RESULTS: Adenovirus 12 E1A (E1A12) binds specifically to the AR. Interestingly, the full-length E1A12 (266 aa) preferentially binds to full-length AR, while the small E1A12 variant (235 aa) interacts more strongly with AR-V7. E1A12 promotes AR nuclear translocation, likely through mediating intramolecular AR NTD-LBD interactions. In the nucleus, AR and E1A12 co-expression in AR-null PCa cells results in E1A12 redistribution from nuclear foci containing CBX4 (also known as Pc2), suggesting a preferential AR-E1A12 interaction over other E1A12 interactors. E1A12 represses AR-mediated transcription in reporter gene assays and endogenous AR target genes such as ATAD2 and MYC in AR-expressing PCa cells. AR-expressing PCa cells are more sensitive to death induced by a recombinant adenovirus expressing E1A12 (Ad-E1A12) than AR-deficient PCa cells, which could be attributed to the increased viral replication promoted by androgen stimulation. Targeting the AR by E1A12 promotes apoptosis in PCa cells that express the full-length AR or C-terminally truncated AR variants. Importantly, inhibition of mTOR signaling that blocks the expression of anti-apoptotic proteins markedly augments Ad-E1A12-induced apoptosis of AR-expressing cells. Mechanistically, Ad-E1A12 infection triggers apoptotic response while activating the PI3K-AKT-mTOR signaling axis; thus, mTOR inhibition enhances apoptosis in AR-expressing PCa cells infected by Ad-E1A12. CONCLUSION: Ad12 E1A inhibits AR-mediated transcription and suppresses PCa cell survival, suggesting that targeting the AR by E1A12 might have therapeutic potential for treating advanced PCa with heightened AR signaling.


Subject(s)
Adenovirus E1A Proteins/metabolism , Prostatic Neoplasms/therapy , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Adenovirus E1A Proteins/genetics , Adenoviruses, Human/genetics , Adenoviruses, Human/metabolism , Cell Line, Tumor , Cell Survival/physiology , HEK293 Cells , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/virology , Protein Domains , Transcriptional Activation , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL