Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 256.677
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 41: 181-205, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37126417

ABSTRACT

There is a dramatic remodeling of the T cell compartment during aging. The most notorious changes are the reduction of the naive T cell pool and the accumulation of memory-like T cells. Memory-like T cells in older people acquire a phenotype of terminally differentiated cells, lose the expression of costimulatory molecules, and acquire properties of senescent cells. In this review, we focus on the different subsets of age-associated T cells that accumulate during aging. These subsets include extremely cytotoxic T cells with natural killer properties, exhausted T cells with altered cytokine production, and regulatory T cells that gain proinflammatory features. Importantly, all of these subsets lose their lymph node homing capacity and migrate preferentially to nonlymphoid tissues, where they contribute to tissue deterioration and inflammaging.


Subject(s)
Aging , T-Lymphocyte Subsets , Humans , Animals , T-Lymphocytes, Regulatory , Cell Differentiation
2.
Annu Rev Immunol ; 38: 315-340, 2020 04 26.
Article in English | MEDLINE | ID: mdl-31986068

ABSTRACT

The age-associated B cell subset has been the focus of increasing interest over the last decade. These cells have a unique cell surface phenotype and transcriptional signature, and they rely on TLR7 or TLR9 signals in the context of Th1 cytokines for their formation and activation. Most are antigen-experienced memory B cells that arise during responses to microbial infections and are key to pathogen clearance and control. Their increasing prevalence with age contributes to several well-established features of immunosenescence, including reduced B cell genesis and damped immune responses. In addition, they are elevated in autoimmune and autoinflammatory diseases, and in these settings they are enriched for characteristic autoantibody specificities. Together, these features identify age-associated B cells as a subset with pivotal roles in immunological health, disease, and aging. Accordingly, a detailed understanding of their origins, functions, and physiology should make them tractable translational targets in each of these settings.


Subject(s)
Aging/physiology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Animals , Autoimmunity , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Biomarkers , Cytokines/metabolism , Disease Susceptibility , Homeostasis , Humans , Immunologic Memory , Immunosenescence , Lymphocyte Activation/immunology
3.
Cell ; 187(11): 2657-2681, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788689

ABSTRACT

Turnover-constant component production and destruction-is ubiquitous in biology. Turnover occurs across organisms and scales, including for RNAs, proteins, membranes, macromolecular structures, organelles, cells, hair, feathers, nails, antlers, and teeth. For many systems, turnover might seem wasteful when degraded components are often fully functional. Some components turn over with shockingly high rates and others do not turn over at all, further making this process enigmatic. However, turnover can address fundamental problems by yielding powerful properties, including regeneration, rapid repair onset, clearance of unpredictable damage and errors, maintenance of low constitutive levels of disrepair, prevention of stable hazards, and transitions. I argue that trade-offs between turnover benefits and metabolic costs, combined with constraints on turnover, determine its presence and rates across distinct contexts. I suggest that the limits of turnover help explain aging and that turnover properties and the basis for its levels underlie this fundamental component of life.


Subject(s)
Aging , Animals , Humans , Proteins/metabolism , Regeneration
4.
Cell ; 187(13): 3165-3186, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38906093

ABSTRACT

Patterned morphologies, such as segments, spirals, stripes, and spots, frequently emerge during embryogenesis through self-organized coordination between cells. Yet, complex patterns also emerge in adults, suggesting that the capacity for spontaneous self-organization is a ubiquitous property of biological tissues. We review current knowledge on the principles and mechanisms of self-organized patterning in embryonic tissues and explore how these principles and mechanisms apply to adult tissues that exhibit features of patterning. We discuss how and why spontaneous pattern generation is integral to homeostasis and healing of tissues, illustrating it with examples from regenerative biology. We examine how aberrant self-organization underlies diverse pathological states, including inflammatory skin disorders and tumors. Lastly, we posit that based on such blueprints, targeted engineering of pattern-driving molecular circuits can be leveraged for synthetic biology and the generation of organoids with intricate patterns.


Subject(s)
Body Patterning , Animals , Humans , Embryonic Development , Homeostasis , Organoids/metabolism , Aging
5.
Cell ; 187(11): 2601-2627, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788685

ABSTRACT

Mitochondria reside at the crossroads of catabolic and anabolic metabolism-the essence of life. How their structure and function are dynamically tuned in response to tissue-specific needs for energy, growth repair, and renewal is being increasingly understood. Mitochondria respond to intrinsic and extrinsic stresses and can alter cell and organismal function by inducing metabolic signaling within cells and to distal cells and tissues. Here, we review how the centrality of mitochondrial functions manifests in health and a broad spectrum of diseases and aging.


Subject(s)
Mitochondria , Humans , Mitochondria/metabolism , Animals , Aging/metabolism , Signal Transduction , Energy Metabolism
6.
Cell ; 187(16): 4193-4212.e24, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38942014

ABSTRACT

Neuroimmune interactions mediate intercellular communication and underlie critical brain functions. Microglia, CNS-resident macrophages, modulate the brain through direct physical interactions and the secretion of molecules. One such secreted factor, the complement protein C1q, contributes to complement-mediated synapse elimination in both developmental and disease models, yet brain C1q protein levels increase significantly throughout aging. Here, we report that C1q interacts with neuronal ribonucleoprotein (RNP) complexes in an age-dependent manner. Purified C1q protein undergoes RNA-dependent liquid-liquid phase separation (LLPS) in vitro, and the interaction of C1q with neuronal RNP complexes in vivo is dependent on RNA and endocytosis. Mice lacking C1q have age-specific alterations in neuronal protein synthesis in vivo and impaired fear memory extinction. Together, our findings reveal a biophysical property of C1q that underlies RNA- and age-dependent neuronal interactions and demonstrate a role of C1q in critical intracellular neuronal processes.


Subject(s)
Aging , Brain , Complement C1q , Homeostasis , Microglia , Neurons , Ribonucleoproteins , Animals , Complement C1q/metabolism , Mice , Microglia/metabolism , Aging/metabolism , Brain/metabolism , Ribonucleoproteins/metabolism , Neurons/metabolism , Mice, Inbred C57BL , Humans
7.
Cell ; 187(8): 1955-1970.e23, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38503282

ABSTRACT

Characterizing somatic mutations in the brain is important for disentangling the complex mechanisms of aging, yet little is known about mutational patterns in different brain cell types. Here, we performed whole-genome sequencing (WGS) of 86 single oligodendrocytes, 20 mixed glia, and 56 single neurons from neurotypical individuals spanning 0.4-104 years of age and identified >92,000 somatic single-nucleotide variants (sSNVs) and small insertions/deletions (indels). Although both cell types accumulate somatic mutations linearly with age, oligodendrocytes accumulated sSNVs 81% faster than neurons and indels 28% slower than neurons. Correlation of mutations with single-nucleus RNA profiles and chromatin accessibility from the same brains revealed that oligodendrocyte mutations are enriched in inactive genomic regions and are distributed across the genome similarly to mutations in brain cancers. In contrast, neuronal mutations are enriched in open, transcriptionally active chromatin. These stark differences suggest an assortment of active mutagenic processes in oligodendrocytes and neurons.


Subject(s)
Aging , Brain , Neurons , Oligodendroglia , Humans , Aging/genetics , Aging/pathology , Chromatin/genetics , Chromatin/metabolism , Mutation , Neurons/metabolism , Neurons/pathology , Oligodendroglia/metabolism , Oligodendroglia/pathology , Single-Cell Gene Expression Analysis , Whole Genome Sequencing , Brain/metabolism , Brain/pathology , Polymorphism, Single Nucleotide , INDEL Mutation , Biological Specimen Banks , Oligodendrocyte Precursor Cells/metabolism , Oligodendrocyte Precursor Cells/pathology
8.
Cell ; 187(15): 3919-3935.e19, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38908368

ABSTRACT

In aging, physiologic networks decline in function at rates that differ between individuals, producing a wide distribution of lifespan. Though 70% of human lifespan variance remains unexplained by heritable factors, little is known about the intrinsic sources of physiologic heterogeneity in aging. To understand how complex physiologic networks generate lifespan variation, new methods are needed. Here, we present Asynch-seq, an approach that uses gene-expression heterogeneity within isogenic populations to study the processes generating lifespan variation. By collecting thousands of single-individual transcriptomes, we capture the Caenorhabditis elegans "pan-transcriptome"-a highly resolved atlas of non-genetic variation. We use our atlas to guide a large-scale perturbation screen that identifies the decoupling of total mRNA content between germline and soma as the largest source of physiologic heterogeneity in aging, driven by pleiotropic genes whose knockdown dramatically reduces lifespan variance. Our work demonstrates how systematic mapping of physiologic heterogeneity can be applied to reduce inter-individual disparities in aging.


Subject(s)
Aging , Caenorhabditis elegans , Gene Regulatory Networks , Longevity , Transcriptome , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Animals , Aging/genetics , Transcriptome/genetics , Longevity/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics
9.
Cell ; 187(18): 4833-4858, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39241746

ABSTRACT

The dysfunction of blood-vessel-lining endothelial cells is a major cause of mortality. Although endothelial cells, being present in all organs as a single-cell layer, are often conceived as a rather inert cell population, the vascular endothelium as a whole should be considered a highly dynamic and interactive systemically disseminated organ. We present here a holistic view of the field of vascular research and review the diverse functions of blood-vessel-lining endothelial cells during the life cycle of the vasculature, namely responsive and relaying functions of the vascular endothelium and the responsive roles as instructive gatekeepers of organ function. Emerging translational perspectives in regenerative medicine, preventive medicine, and aging research are developed. Collectively, this review is aimed at promoting disciplinary coherence in the field of angioscience for a broader appreciation of the importance of the vasculature for organ function, systemic health, and healthy aging.


Subject(s)
Endothelial Cells , Endothelium, Vascular , Humans , Endothelium, Vascular/metabolism , Animals , Endothelial Cells/metabolism , Aging/physiology , Regenerative Medicine , Health
10.
Cell ; 187(4): 981-998.e25, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38325365

ABSTRACT

The female reproductive tract (FRT) undergoes extensive remodeling during reproductive cycling. This recurrent remodeling and how it shapes organ-specific aging remains poorly explored. Using single-cell and spatial transcriptomics, we systematically characterized morphological and gene expression changes occurring in ovary, oviduct, uterus, cervix, and vagina at each phase of the mouse estrous cycle, during decidualization, and into aging. These analyses reveal that fibroblasts play central-and highly organ-specific-roles in FRT remodeling by orchestrating extracellular matrix (ECM) reorganization and inflammation. Our results suggest a model wherein recurrent FRT remodeling over reproductive lifespan drives the gradual, age-related development of fibrosis and chronic inflammation. This hypothesis was directly tested using chemical ablation of cycling, which reduced fibrotic accumulation during aging. Our atlas provides extensive detail into how estrus, pregnancy, and aging shape the organs of the female reproductive tract and reveals the unexpected cost of the recurrent remodeling required for reproduction.


Subject(s)
Aging , Genitalia, Female , Animals , Female , Mice , Pregnancy , Genitalia, Female/cytology , Genitalia, Female/metabolism , Inflammation/metabolism , Uterus/cytology , Vagina/cytology , Single-Cell Analysis
11.
Cell ; 187(12): 3090-3107.e21, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38749423

ABSTRACT

Platelet dysregulation is drastically increased with advanced age and contributes to making cardiovascular disorders the leading cause of death of elderly humans. Here, we reveal a direct differentiation pathway from hematopoietic stem cells into platelets that is progressively propagated upon aging. Remarkably, the aging-enriched platelet path is decoupled from all other hematopoietic lineages, including erythropoiesis, and operates as an additional layer in parallel with canonical platelet production. This results in two molecularly and functionally distinct populations of megakaryocyte progenitors. The age-induced megakaryocyte progenitors have a profoundly enhanced capacity to engraft, expand, restore, and reconstitute platelets in situ and upon transplantation and produce an additional platelet population in old mice. The two pools of co-existing platelets cause age-related thrombocytosis and dramatically increased thrombosis in vivo. Strikingly, aging-enriched platelets are functionally hyper-reactive compared with the canonical platelet populations. These findings reveal stem cell-based aging as a mechanism for platelet dysregulation and age-induced thrombosis.


Subject(s)
Aging , Blood Platelets , Cell Differentiation , Hematopoietic Stem Cells , Thrombosis , Animals , Hematopoietic Stem Cells/metabolism , Blood Platelets/metabolism , Thrombosis/pathology , Thrombosis/metabolism , Mice , Humans , Megakaryocytes/metabolism , Mice, Inbred C57BL , Megakaryocyte Progenitor Cells/metabolism , Male
12.
Cell ; 187(15): 3885-3887, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39059365

ABSTRACT

Immunosenescence poses a significant challenge to tumor immunotherapy in elderly individuals. In this issue of Cell, Zhivaki et al. elucidate that dendritic cells "hyperactivated" by specific adjuvants elicit TH1-skewed CD4+ T cell responses in a manner contingent on the NLRP3 inflammasome, which can eliminate tumors in aged mice.


Subject(s)
Dendritic Cells , Animals , Dendritic Cells/immunology , Mice , Neoplasms/immunology , Neoplasms/therapy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Inflammasomes/immunology , Immunotherapy/methods , CD4-Positive T-Lymphocytes/immunology , Humans , Aging/immunology , Th1 Cells/immunology , Immunosenescence
13.
Cell ; 187(15): 3888-3903.e18, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38870946

ABSTRACT

Defective host defenses later in life are associated with changes in immune cell activities, suggesting that age-specific considerations are needed in immunotherapy approaches. In this study, we found that PD-1 and CTLA4-based cancer immunotherapies are unable to eradicate tumors in elderly mice. This defect in anti-tumor activity correlated with two known age-associated immune defects: diminished abundance of systemic naive CD8+ T cells and weak migratory activities of dendritic cells (DCs). We identified a vaccine adjuvant, referred to as a DC hyperactivator, which corrects DC migratory defects in the elderly. Vaccines containing tumor antigens and DC hyperactivators induced T helper type 1 (TH1) CD4+ T cells with cytolytic activity that drive anti-tumor immunity in elderly mice. When administered early in life, DC hyperactivators were the only adjuvant identified that elicited anti-tumor CD4+ T cells that persisted into old age. These results raise the possibility of correcting age-associated immune defects through DC manipulation.


Subject(s)
CD4-Positive T-Lymphocytes , Dendritic Cells , Mice, Inbred C57BL , Dendritic Cells/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Mice , Aging/immunology , CD8-Positive T-Lymphocytes/immunology , Immunotherapy/methods , Cancer Vaccines/immunology , Female , Neoplasms/immunology , Neoplasms/therapy , Programmed Cell Death 1 Receptor/metabolism , CTLA-4 Antigen/metabolism , Cell Movement , Antigens, Neoplasm/immunology
14.
Cell ; 187(15): 4030-4042.e13, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38908367

ABSTRACT

Insufficient telomerase activity, stemming from low telomerase reverse transcriptase (TERT) gene transcription, contributes to telomere dysfunction and aging pathologies. Besides its traditional function in telomere synthesis, TERT acts as a transcriptional co-regulator of genes pivotal in aging and age-associated diseases. Here, we report the identification of a TERT activator compound (TAC) that upregulates TERT transcription via the MEK/ERK/AP-1 cascade. In primary human cells and naturally aged mice, TAC-induced elevation of TERT levels promotes telomere synthesis, blunts tissue aging hallmarks with reduced cellular senescence and inflammatory cytokines, and silences p16INK4a expression via upregulation of DNMT3B-mediated promoter hypermethylation. In the brain, TAC alleviates neuroinflammation, increases neurotrophic factors, stimulates adult neurogenesis, and preserves cognitive function without evident toxicity, including cancer risk. Together, these findings underscore TERT's critical role in aging processes and provide preclinical proof of concept for physiological TERT activation as a strategy to mitigate multiple aging hallmarks and associated pathologies.


Subject(s)
Aging , DNA Methylation , Telomerase , Telomerase/metabolism , Telomerase/genetics , Humans , Animals , Mice , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , Cellular Senescence , Promoter Regions, Genetic , DNA Methyltransferase 3B , Brain/metabolism , Telomere/metabolism , Mice, Inbred C57BL , Male , Transcription Factor AP-1/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Neurogenesis
15.
Cell ; 187(21): 6016-6034.e25, 2024 Oct 17.
Article in English | MEDLINE | ID: mdl-39243764

ABSTRACT

There is documented sex disparity in cutaneous melanoma incidence and mortality, increasing disproportionately with age and in the male sex. However, the underlying mechanisms remain unclear. While biological sex differences and inherent immune response variability have been assessed in tumor cells, the role of the tumor-surrounding microenvironment, contextually in aging, has been overlooked. Here, we show that skin fibroblasts undergo age-mediated, sex-dependent changes in their proliferation, senescence, ROS levels, and stress response. We find that aged male fibroblasts selectively drive an invasive, therapy-resistant phenotype in melanoma cells and promote metastasis in aged male mice by increasing AXL expression. Intrinsic aging in male fibroblasts mediated by EZH2 decline increases BMP2 secretion, which in turn drives the slower-cycling, highly invasive, and therapy-resistant melanoma cell phenotype, characteristic of the aged male TME. Inhibition of BMP2 activity blocks the emergence of invasive phenotypes and sensitizes melanoma cells to BRAF/MEK inhibition.


Subject(s)
Bone Morphogenetic Protein 2 , Drug Resistance, Neoplasm , Enhancer of Zeste Homolog 2 Protein , Melanoma , Tumor Microenvironment , Animals , Male , Mice , Melanoma/pathology , Melanoma/drug therapy , Melanoma/metabolism , Female , Humans , Cell Line, Tumor , Bone Morphogenetic Protein 2/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/pathology , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Fibroblasts/metabolism , Neoplasm Invasiveness , Axl Receptor Tyrosine Kinase , Receptor Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Cellular Senescence , Sex Characteristics , Cell Proliferation , Aging , Mice, Inbred C57BL
16.
Annu Rev Biochem ; 92: 299-332, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37001140

ABSTRACT

According to the endosymbiotic theory, most of the DNA of the original bacterial endosymbiont has been lost or transferred to the nucleus, leaving a much smaller (∼16 kb in mammals), circular molecule that is the present-day mitochondrial DNA (mtDNA). The ability of mtDNA to escape mitochondria and integrate into the nuclear genome was discovered in budding yeast, along with genes that regulate this process. Mitochondria have emerged as key regulators of innate immunity, and it is now recognized that mtDNA released into the cytoplasm, outside of the cell, or into circulation activates multiple innate immune signaling pathways. Here, we first review the mechanisms through which mtDNA is released into the cytoplasm, including several inducible mitochondrial pores and defective mitophagy or autophagy. Next, we cover how the different forms of released mtDNA activate specific innate immune nucleic acid sensors and inflammasomes. Finally, we discuss how intracellular and extracellular mtDNA release, including circulating cell-free mtDNA that promotes systemic inflammation, are implicated in human diseases, bacterial and viral infections, senescence and aging.


Subject(s)
DNA, Mitochondrial , Mitochondria , Animals , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Immunity, Innate/genetics , Aging/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Mammals/genetics
17.
Annu Rev Immunol ; 34: 449-78, 2016 05 20.
Article in English | MEDLINE | ID: mdl-27168243

ABSTRACT

Hematopoietic stem cells (HSCs) and downstream progenitors have long been studied based on phenotype, cell purification, proliferation, and transplantation into myeloablated recipients. These experiments, complemented by data on expression profiles, mouse mutants, and humans with hematopoietic defects, are the foundation for the current hematopoietic differentiation tree. However, there are fundamental gaps in our knowledge of the quantitative and qualitative operation of the HSC/progenitor system under physiological and pathological conditions in vivo. The hallmarks of HSCs, self-renewal and multipotency, are observed in in vitro assays and cell transplantation experiments; however, the extent to which these features occur naturally in HSCs and progenitors remains uncertain. We focus here on work that strives to address these unresolved questions, with emphasis on fate mapping and modeling of the hematopoietic flow from stem cells toward myeloid and lymphoid lineages during development and adult life.


Subject(s)
Aging/immunology , Cell Differentiation , Hematopoiesis , Hematopoietic Stem Cells/physiology , Lymphoid Progenitor Cells/physiology , Animals , Cell Lineage , Cell Self Renewal , Humans , Mice , Models, Theoretical , Transcriptome
18.
Cell ; 186(2): 233-235, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36669469

ABSTRACT

Reactivation of endogenous retroviruses (ERVs), the relics of ancient infections, has been implicated in a number of disease contexts. In this issue of Cell, Liu et al. show how reactivation of ERVs in old age can induce senescence. This awakening of ERVs is associated with their epigenetic derepression and contributes to age-associated chronic inflammation.


Subject(s)
Aging , Endogenous Retroviruses , Endogenous Retroviruses/genetics , Aging/genetics , Aging/pathology , Inflammation
19.
Cell ; 186(2): 243-278, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36599349

ABSTRACT

Aging is driven by hallmarks fulfilling the following three premises: (1) their age-associated manifestation, (2) the acceleration of aging by experimentally accentuating them, and (3) the opportunity to decelerate, stop, or reverse aging by therapeutic interventions on them. We propose the following twelve hallmarks of aging: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. These hallmarks are interconnected among each other, as well as to the recently proposed hallmarks of health, which include organizational features of spatial compartmentalization, maintenance of homeostasis, and adequate responses to stress.


Subject(s)
Aging , Cellular Senescence , Epigenesis, Genetic , Proteostasis , Stem Cells , Aging/genetics , Aging/pathology
20.
Cell ; 186(2): 305-326.e27, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36638792

ABSTRACT

All living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation. These data are consistent with the information theory of aging, which states that a loss of epigenetic information is a reversible cause of aging.


Subject(s)
Aging , Epigenesis, Genetic , Animals , Aging/genetics , DNA Methylation , Epigenome , Mammals/genetics , Nucleoproteins , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL