Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.648
Filter
Add more filters

Publication year range
1.
Am J Pathol ; 194(7): 1317-1328, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38548269

ABSTRACT

Two major constituents of exfoliation material, fibrillin-1 and lysyl oxidase-like 1 (encoded by FBN1 and LOXL1), are implicated in exfoliation glaucoma, yet their individual contributions to ocular phenotype are minor. To test the hypothesis that a combination of FBN1 mutation and LOXL1 deficiency exacerbates ocular phenotypes, the pan-lysyl oxidase inhibitor ß-aminopropionitrile (BAPN) was used to treat adult wild-type (WT) mice and mice heterozygous for a missense mutation in Fbn1 (Fbn1C1041G/+) for 8 weeks and their eyes were examined. Although intraocular pressure did not change and exfoliation material was not detected in the eyes, BAPN treatment worsened optic nerve and axon expansion in Fbn1C1041G/+ mice, an early sign of axonal damage in rodent models of glaucoma. Disruption of elastic fibers was detected only in Fbn1C1041G/+ mice, which increased with BAPN treatment, as shown by histologic and immunohistochemical staining of the optic nerve pia mater. Transmission electron microscopy showed that Fbn1C1041G/+ mice had fewer microfibrils, smaller elastin cores, and a lower density of elastic fibers compared with WT mice in control groups. BAPN treatment led to elastin core expansion in both WT and Fbn1C1041G/+ mice, but an increase in the density of elastic fiber was confined to Fbn1C1041G/+ mice. LOX inhibition had a stronger effect on optic nerve and elastic fiber parameters in the context of Fbn1 mutation, indicating the Marfan mouse model with LOX inhibition warrants further investigation for exfoliation glaucoma pathogenesis.


Subject(s)
Aminopropionitrile , Disease Models, Animal , Fibrillin-1 , Marfan Syndrome , Optic Nerve , Protein-Lysine 6-Oxidase , Animals , Protein-Lysine 6-Oxidase/metabolism , Protein-Lysine 6-Oxidase/antagonists & inhibitors , Marfan Syndrome/pathology , Marfan Syndrome/complications , Mice , Fibrillin-1/genetics , Aminopropionitrile/pharmacology , Optic Nerve/pathology , Optic Nerve/ultrastructure , Optic Nerve/drug effects , Elastic Tissue/pathology , Elastic Tissue/metabolism , Elastic Tissue/ultrastructure , Intraocular Pressure , Fibrillins/metabolism , Mice, Inbred C57BL , Amino Acid Oxidoreductases/metabolism , Amino Acid Oxidoreductases/antagonists & inhibitors , Amino Acid Oxidoreductases/genetics , Glaucoma/pathology , Microfilament Proteins/metabolism , Adipokines
2.
Mol Cell ; 65(2): 296-309, 2017 Jan 19.
Article in English | MEDLINE | ID: mdl-28065600

ABSTRACT

In mammalian cells, histone deacetylase (HDAC) and Sirtuin (SIRT) are two families responsible for removing acetyl groups from acetylated proteins. Here, we describe protein deacetylation coupled with deacetylimination as a function of lysyl oxidase (LOX) family members. LOX-like 3 (Loxl3) associates with Stat3 in the nucleus to deacetylate and deacetyliminate Stat3 on multiple acetyl-lysine sites. Surprisingly, Loxl3 N-terminal scavenger receptor cysteine-rich (SRCR) repeats, rather than the C-terminal oxidase catalytic domain, represent the major deacetylase/deacetyliminase activity. Loxl3-mediated deacetylation/deacetylimination disrupts Stat3 dimerization, abolishes Stat3 transcription activity, and restricts cell proliferation. In Loxl3-/- mice, Stat3 is constitutively acetylated and naive CD4+ T cells are potentiated in Th17/Treg cell differentiation. When overexpressed, the SRCR repeats from other LOX family members can catalyze protein deacetylation/deacetylimination. Thus, our findings delineate a hitherto-unknown mechanism of protein deacetylation and deacetylimination catalyzed by lysyl oxidases.


Subject(s)
Amino Acid Oxidoreductases/metabolism , CD4-Positive T-Lymphocytes/enzymology , Colitis/enzymology , Protein Processing, Post-Translational , STAT3 Transcription Factor/metabolism , Acetylation , Amino Acid Oxidoreductases/deficiency , Amino Acid Oxidoreductases/genetics , Animals , CD4-Positive T-Lymphocytes/immunology , Catalysis , Cell Differentiation , Cell Nucleus/enzymology , Cell Proliferation , Colitis/genetics , Colitis/immunology , Disease Models, Animal , Genotype , HEK293 Cells , HeLa Cells , Humans , MCF-7 Cells , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Protein Domains , Protein Multimerization , RNA Interference , STAT3 Transcription Factor/genetics , T-Lymphocytes, Regulatory/enzymology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/enzymology , Th17 Cells/immunology , Transcription, Genetic , Transfection
3.
Dev Biol ; 495: 54-62, 2023 03.
Article in English | MEDLINE | ID: mdl-36610533

ABSTRACT

Stickler syndrome is a multisystem collagenopathy with affected individuals exhibiting a high rate of ocular complications. Lysyl oxidase-like 3 (LOXL3) is a human disease gene candidate with a critical role in catalyzing collagen crosslinking. A homozygous missense variant of LOXL3 was reported in Stickler syndrome with severe myopia. However, the underlying mechanisms of the LOXL3 missense mutation that causes Stickler syndrome are unknown. In this study, a mouse model of Stickler syndrome induced by LOXL3 mutation (c.2027G â€‹> â€‹A, p.Cys676Try) was obtained using CRISPR/Cas9 gene editing techniques. The Loxl3 mutant mice exhibited perinatal death, spinal deformity, and cleft palate, and Loxl3 mutation also induced skeletal dysplasia and progressive visual degeneration. Furthermore, we observed the damage of the bruch's membrane (BrM) and an increase in the levels of glial fibrillary acidic protein (GFAP) and Rpe65 in the Loxl3 mutant mice. Thus, we provided the critical in vivo evidence that Loxl3 possibly has a pivotal role in maintaining the eye function.


Subject(s)
Connective Tissue Diseases , Eye Diseases, Hereditary , Retinal Detachment , Female , Pregnancy , Humans , Animals , Mice , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Retinal Detachment/genetics , Connective Tissue Diseases/genetics , Retina/metabolism , Mutation/genetics
4.
Respir Res ; 25(1): 230, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824593

ABSTRACT

BACKGROUND: Airway epithelium is an important component of airway structure and the initiator of airway remodeling in asthma. The changes of extracellular matrix (ECM), such as collagen deposition and structural disturbance, are typical pathological features of airway remodeling. Thus, identifying key mediators that derived from airway epithelium and capable of modulating ECM may provide valuable insights for targeted therapy of asthma. METHODS: The datasets from Gene Expression Omnibus database were analyzed to screen differentially expressed genes in airway epithelium of asthma. We collected bronchoscopic biopsies and serum samples from asthmatic and healthy subjects to assess lysyl oxidase like 2 (LOXL2) expression. RNA sequencing and various experiments were performed to determine the influences of LOXL2 knockdown in ovalbumin (OVA)-induced mouse models. The roles and mechanisms of LOXL2 in bronchial epithelial cells were explored using LOXL2 small interfering RNA, overexpression plasmid and AKT inhibitor. RESULTS: Both bioinformatics analysis and further experiments revealed that LOXL2 is highly expressed in airway epithelium of asthmatics. In vivo, LOXL2 knockdown significantly inhibited OVA-induced ECM deposition and epithelial-mesenchymal transition (EMT) in mice. In vitro, the transfection experiments on 16HBE cells demonstrated that LOXL2 overexpression increases the expression of N-cadherin and fibronectin and reduces the expression of E-cadherin. Conversely, after silencing LOXL2, the expression of E-cadherin is up-regulated. In addition, the remodeling and EMT process that induced by transforming growth factor-ß1 could be enhanced and weakened after LOXL2 overexpression and silencing in 16HBE cells. Combining the RNA sequencing of mouse lung tissues and experiments in vitro, LOXL2 was involved in the regulation of AKT signaling pathway. Moreover, the treatment with AKT inhibitor in vitro partially alleviated the consequences associated with LOXL2 overexpression. CONCLUSIONS: Taken together, the results demonstrated that epithelial LOXL2 plays a role in asthmatic airway remodeling partly via the AKT signaling pathway and highlighted the potential of LOXL2 as a therapeutic target for airway remodeling in asthma.


Subject(s)
Airway Remodeling , Amino Acid Oxidoreductases , Asthma , Ovalbumin , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Amino Acid Oxidoreductases/metabolism , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/biosynthesis , Ovalbumin/toxicity , Airway Remodeling/physiology , Proto-Oncogene Proteins c-akt/metabolism , Mice , Humans , Asthma/pathology , Asthma/metabolism , Asthma/enzymology , Asthma/genetics , Signal Transduction/physiology , Female , Mice, Inbred BALB C , Male , Epithelial-Mesenchymal Transition/physiology
5.
Mol Cell Biochem ; 479(4): 1011-1022, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37273040

ABSTRACT

Retinoblastoma (RB) is an intraocular malignancy that is most common in children and rare in adults. Addressing novel biomarkers and therapeutic targets for RB to modulate tumor progression has become a challenge. The aim of the present study was to investigate the function of long non-coding RNAs (LncRNAs) LOXL1-AS1 in RB cell proliferation and metastasis. It was found that LOXL1-AS1 was overexpressed in RB tissues and cells. In order to evaluate cell viability and colony formation potential, the knockdown of LOXL1-AS1 has been established. Knockdown of LOXL1-AS1 was also inhibited cells migration and invasion. In addition, the proportion of cells in the G2/M phase of the sh-LOXL1-AS1 group increased significantly, and the proportion of cells in the sh-NC group decreased significantly. In the xenograft model of RB, the tumors in the sh-LOXL1-AS1 group grow slowly compared to the sh-NC group. Western blot analysis revealed that LOXL1-AS1 can regulate the progression of RB cells through MAPK signaling pathway in vitro and in vivo. These results indicated that LncRNA LOXL1-AS1 promotes proliferation, invasion and inhibits apoptosis of retinoblastoma by regulating MAPK signaling pathway, and might be expected to be a novel basis for clinical diagnosis and treatment.


Subject(s)
RNA, Long Noncoding , Retinal Neoplasms , Retinoblastoma , Humans , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Apoptosis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Retinal Neoplasms/genetics , Retinoblastoma/genetics , RNA, Long Noncoding/metabolism , Signal Transduction
6.
Physiol Plant ; 176(3): e14371, 2024.
Article in English | MEDLINE | ID: mdl-38837414

ABSTRACT

The WRKY transcription factor (TF) genes form a large family in higher plants, with 72 members in Arabidopsis (Arabidopsis thaliana). The gaseous phytohormone ethylene (ET) regulates multiple physiological processes in plants. It is known that 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACSs, EC 4.4.1.14) limit the enzymatic reaction rate of ethylene synthesis. However, whether WRKY TFs regulate the expression of ACSs and/or ACC oxidases (ACOs, EC 1.14.17.4) remains largely elusive. Here, we demonstrated that Arabidopsis WRKY22 positively regulated the expression of a few ACS and ACO genes, thus promoting ethylene production. Inducible overexpression of WRKY22 caused shorter hypocotyls without ACC treatment. A qRT-PCR screening demonstrated that overexpression of WRKY22 activates the expression of several ACS and ACO genes. The promoter regions of ACS5, ACS11, and ACO5 were also activated by WRKY22, which was revealed by a dual luciferase reporter assay. A follow-up chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) and electrophoretic mobility shift assay (EMSA) showed that the promoter regions of ACS5 and ACO5 could be bound by WRKY22 directly. Moreover, wrky22 mutants had longer primary roots and more lateral roots than wild type, while WRKY22-overexpressing lines showed the opposite phenotype. In conclusion, this study revealed that WRKY22 acts as a novel TF activating, at least, the expression of ACS5 and ACO5 to increase ethylene synthesis and modulate root development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ethylenes , Gene Expression Regulation, Plant , Lyases , Plant Roots , Transcription Factors , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Ethylenes/metabolism , Ethylenes/biosynthesis , Transcription Factors/metabolism , Transcription Factors/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Lyases/genetics , Lyases/metabolism , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Promoter Regions, Genetic/genetics , Carbon-Carbon Lyases/metabolism , Carbon-Carbon Lyases/genetics , Transcriptional Activation/genetics
7.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Article in English | MEDLINE | ID: mdl-34580201

ABSTRACT

The mechanism by which molecular oxygen is activated by the organic cofactor pyridoxal phosphate (PLP) for oxidation reactions remains poorly understood. Recent work has identified arginine oxidases that catalyze desaturation or hydroxylation reactions. Here, we investigate a desaturase from the Pseudoalteromonas luteoviolacea indolmycin pathway. Our work, combining X-ray crystallographic, biochemical, spectroscopic, and computational studies, supports a shared mechanism with arginine hydroxylases, involving two rounds of single-electron transfer to oxygen and superoxide rebound at the 4' carbon of the PLP cofactor. The precise positioning of a water molecule in the active site is proposed to control the final reaction outcome. This proposed mechanism provides a unified framework to understand how oxygen can be activated by PLP-dependent enzymes for oxidation of arginine and elucidates a shared mechanistic pathway and intertwined evolutionary history for arginine desaturases and hydroxylases.


Subject(s)
Amino Acid Oxidoreductases/metabolism , Pyridoxal Phosphate/metabolism , Amino Acid Oxidoreductases/chemistry , Catalytic Domain , Crystallography, X-Ray , Evolution, Chemical , Mixed Function Oxygenases/metabolism , Protein Conformation
8.
Molecules ; 29(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38675681

ABSTRACT

Alpha-ketoglutaric acid (α-KG), as an intermediate product of the tricarboxylic acid cycle, plays a crucial role in peptide and amino acid synthesis. In order to reduce costs and improve efficiency in the oxidative production of α-ketoglutaric acid, this study successfully synthesized and expressed L-glutamate oxidase (LGOXStr) from Streptomyces viridosporus R111 and catalase (KatGEsc) from Escherichia coli H736. Two immobilization methods and the conditions for one-step whole-cell catalysis of α-ketoglutaric acid were investigated. α-Ketoglutaric acid has broad applications in the pharmaceutical, food, and chemical industries. The specific research results are as follows: (1) By fusing the sfGFP tag, L-glutamate oxidase (LGOXStr r) and catalase (KatGEsc) were successfully anchored to the outer membrane of Escherichia coli cells, achieving one-step whole-cell catalysis of α-ketoglutaric acid with a conversion efficiency of up to 75%. (2) Through the co-immobilization of LGOXStr and KatGEsc, optimization of the preparation parameters of immobilized cells, and exploration of the immobilization method using E.coli@ZIF-8, immobilized cells with conversion rates of over 60% were obtained even after 10 cycles of reuse. Under the optimal conditions, the production rate of α-ketoglutaric acid reached 96.7% in a 12 h reaction, which is 1.1 times that of E. coli@SA and 1.29 times that of free cells.


Subject(s)
Catalase , Escherichia coli , Ketoglutaric Acids , Ketoglutaric Acids/metabolism , Ketoglutaric Acids/chemistry , Escherichia coli/enzymology , Catalase/metabolism , Catalase/chemistry , Amino Acid Oxidoreductases/metabolism , Amino Acid Oxidoreductases/chemistry , Streptomyces/enzymology , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism
9.
J Biol Chem ; 298(3): 101708, 2022 03.
Article in English | MEDLINE | ID: mdl-35150746

ABSTRACT

Early studies revealed that chicken embryos incubated with a rare analog of l-proline, 4-oxo-l-proline, showed increased levels of the metabolite 4-hydroxy-l-proline. In 1962, 4-oxo-l-proline reductase, an enzyme responsible for the reduction of 4-oxo-l-proline, was partially purified from rabbit kidneys and characterized biochemically. However, only recently was the molecular identity of this enzyme solved. Here, we report the purification from rat kidneys, identification, and biochemical characterization of 4-oxo-l-proline reductase. Following mass spectrometry analysis of the purified protein preparation, the previously annotated mammalian cytosolic type 2 (R)-ß-hydroxybutyrate dehydrogenase (BDH2) emerged as the only candidate for the reductase. We subsequently expressed rat and human BDH2 in Escherichia coli, then purified it, and showed that it catalyzed the reversible reduction of 4-oxo-l-proline to cis-4-hydroxy-l-proline via chromatographic and tandem mass spectrometry analysis. Specificity studies with an array of compounds carried out on both enzymes showed that 4-oxo-l-proline was the best substrate, and the human enzyme acted with 12,500-fold higher catalytic efficiency on 4-oxo-l-proline than on (R)-ß-hydroxybutyrate. In addition, human embryonic kidney 293T (HEK293T) cells efficiently metabolized 4-oxo-l-proline to cis-4-hydroxy-l-proline, whereas HEK293T BDH2 KO cells were incapable of producing cis-4-hydroxy-l-proline. Both WT and KO HEK293T cells also produced trans-4-hydroxy-l-proline in the presence of 4-oxo-l-proline, suggesting that the latter compound might interfere with the trans-4-hydroxy-l-proline breakdown in human cells. We conclude that BDH2 is a mammalian 4-oxo-l-proline reductase that converts 4-oxo-l-proline to cis-4-hydroxy-l-proline and not to trans-4-hydroxy-l-proline, as originally thought. We also hypothesize that this enzyme may be a potential source of cis-4-hydroxy-l-proline in mammalian tissues.


Subject(s)
Amino Acid Oxidoreductases , Hydroxybutyrate Dehydrogenase , Amino Acid Oxidoreductases/chemistry , Amino Acid Oxidoreductases/metabolism , Animals , Chick Embryo , Escherichia coli/metabolism , HEK293 Cells , Humans , Hydroxybutyrate Dehydrogenase/chemistry , Hydroxybutyrate Dehydrogenase/metabolism , Hydroxyproline/chemistry , Hydroxyproline/metabolism , Mammals/metabolism , Proline/analogs & derivatives , Proline/metabolism , Rabbits , Rats
10.
J Cell Biochem ; 124(6): 797-807, 2023 06.
Article in English | MEDLINE | ID: mdl-37062903

ABSTRACT

Kidney fibrosis is closely associated with the progression of chronic kidney disease (CKD). Furthermore, copper-containing secretory amine oxidases, such as lysyl oxidase (LOX) and LOX-like 1-4 (LOXL1-4), play pivotal roles in the regulation of extracellular components and facilitate fibrosis. In this study, we investigated the regulation of LOX enzymes in human tubular epithelial HK2 cells to help clarify the role of LOX enzymes in kidney fibrosis. Among 5 LOX enzymes, LOXL2 expression is abundantly expressed in HK2 cells. LOX enzymes inhibitor, ß-aminopropionitrile, suppressed transforming growth factor-ß1 (TGF-ß1)-promoted epithelial-to-mesenchymal transition processes in HK2 cells, indicating that LOX enzymes are involved in TGF-ß1-mediated fibrotic processes. Recent studies suggest that LOX enzymes are secreted into the extracellular spaces by exosomes and promote fibrotic processes. Similar to the previous reports, we observed that exosomes secreted from HK2 cells carry LOXL2 into the extracellular spaces. Furthermore, we determined that N-glycosylation on the asparagine residues plays a key role in LOXL2 secretion. Amino acid mutations in three asparagine residues, which can be glycosylated, suppressed the secretion of mutated LOXL2. Moreover, N-acetylglucosaminyltransferase 5, an enzyme used for the biosynthesis of ß1,6N-acetylglucosamine-branched N-glycans, participated in LOXL2 secretion, and the N-glycosylation inhibitor, glucosamine hydrochloride (GS), inhibited TGF-ß1-mediated LOXL2 secretion and fibrotic processes. Overall, TGF-ß1 promotes LOXL2 secretion and may participate in kidney fibrosis. Our results provide novel insight into the antifibrotic properties of GS that contribute to the inhibition of CKD progression.


Subject(s)
Renal Insufficiency, Chronic , Transforming Growth Factor beta1 , Humans , Transforming Growth Factor beta1/metabolism , Glycosylation , Glucosamine , Asparagine , Fibrosis , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism
11.
FASEB J ; 36(7): e22374, 2022 07.
Article in English | MEDLINE | ID: mdl-35670745

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is characterized by long-term airflow obstruction with cigarette smoke as a key risk factor. Extracellular matrix (ECM) alterations in COPD may lead to small airway wall fibrosis. Altered collagen cross-linking, potentially mediated by the lysyl oxidase (LO) family of enzymes (LOX, LOXL1-4), orchestrates disturbed ECM homeostasis. In this study, we investigated the effects of smoking status and presence and severity of COPD on LOs gene and protein expression in the airways and the impact of LOs inhibition on airway contraction in an ex vivo mouse model. We used gene expression data from bronchial brushings, airway smooth muscle (ASM) cells in vitro and immunohistochemistry in lung tissue to assess smoke- and COPD-associated differences in LOs gene and protein expression in the small airways. We found higher LOX expression in current- compared to ex-smokers and higher LOXL1 expression in COPD compared to non-COPD patients. LOX and LOXL2 expression were upregulated in COPD ASM cells treated with cigarette smoke extract. LOXL1 and LOXL2 protein levels were higher in small airways from current- compared to non-smokers. In COPD patients, higher LOXL1 and lower LOX protein levels were observed, but no differences for LOXL2, LOXL3, and LOXL4 protein were detected in small airways. Inhibiting LOs activity increased airway contraction in murine lung slices. COPD-associated changes in LOs, in particular LOX and LOXL1, may be related to smoking and contribute to impaired airway function, providing potential novel targets for preventing or treating small airways changes in COPD.


Subject(s)
Protein-Lysine 6-Oxidase , Pulmonary Disease, Chronic Obstructive , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Animals , Humans , Lung/metabolism , Mice , Protein-Lysine 6-Oxidase/genetics , Protein-Lysine 6-Oxidase/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Smoking/adverse effects
12.
Chemphyschem ; 24(20): e202300431, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37540527

ABSTRACT

D-Arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) is an amine oxidase which catalyzes the conversion of D-arginine into iminoarginine. It contains a non-covalent FAD cofactor that is involved in the oxidation mechanism. Based on substrate, solvent, and multiple kinetic isotope effects studies, a stepwise hydride transfer mechanism is proposed. It was shown that D-arginine binds to the active site of enzyme as α-amino group protonated, and it is deprotonated before a hydride ion is transferred from its α-C to FAD. Based on a mutagenesis study, it was concluded that a water molecule is the most likely catalytic base responsible from the deprotonation of α-amino group. In this study, we formulated computational models based on ONIOM method to elucidate the oxidation mechanism of D-arginine into iminoarginine using the crystal structure of enzyme complexed with iminoarginine. The calculations showed that Arg222, Arg305, Tyr249, Glu87, His 48, and two active site water molecules play key roles in binding and catalysis. Model systems showed that the deprotonation step occurs prior to hydride transfer step, and active site water molecule(s) may have participated in the deprotonation process.


Subject(s)
Amino Acid Oxidoreductases , Protons , Models, Molecular , Amino Acid Oxidoreductases/chemistry , Amino Acid Oxidoreductases/metabolism , Oxidation-Reduction , Arginine/chemistry , Water , Kinetics
13.
Amino Acids ; 55(11): 1519-1529, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37814029

ABSTRACT

Lysyl oxidase-like 4 (LOXL4), a member of lysyl oxidase family, is a copper and lysine tyrosylquinone-dependent amine oxidase that serves the role of catalyzing the cross-linking of elastin and collagen in the extracellular matrix. Numerous studies have shown a significant association between LOXL4 expression levels and tumor proliferation, migration, invasion and patients' prognosis and overall survival in different types of tumors. Here we review their relationship and the molecular pathogenesis behind them, aiming to explore the possibilities of LOXL4 as a prognostic marker for diverse carcinomas and provide some indications for further research in this field.


Subject(s)
Carcinoma , Protein-Lysine 6-Oxidase , Humans , Protein-Lysine 6-Oxidase/genetics , Protein-Lysine 6-Oxidase/metabolism , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Prognosis , Collagen
14.
PLoS Genet ; 16(4): e1008732, 2020 04.
Article in English | MEDLINE | ID: mdl-32282821

ABSTRACT

Transcription termination has important regulatory functions, impacting mRNA stability, localization and translation potential. Failure to appropriately terminate transcription can also lead to read-through transcription and the synthesis of antisense RNAs which can have profound impact on gene expression. The Transcription-Export (THO/TREX) protein complex plays an important role in coupling transcription with splicing and export of mRNA. However, little is known about the role of the THO/TREX complex in the control of transcription termination. In this work, we show that two proteins of the THO/TREX complex, namely TREX COMPONENT 1 (TEX1 or THO3) and HYPER RECOMBINATION1 (HPR1 or THO1) contribute to the correct transcription termination at several loci in Arabidopsis thaliana. We first demonstrate this by showing defective termination in tex1 and hpr1 mutants at the nopaline synthase (NOS) terminator present in a T-DNA inserted between exon 1 and 3 of the PHO1 locus in the pho1-7 mutant. Read-through transcription beyond the NOS terminator and splicing-out of the T-DNA resulted in the generation of a near full-length PHO1 mRNA (minus exon 2) in the tex1 pho1-7 and hpr1 pho1-7 double mutants, with enhanced production of a truncated PHO1 protein that retained phosphate export activity. Consequently, the strong reduction of shoot growth associated with the severe phosphate deficiency of the pho1-7 mutant was alleviated in the tex1 pho1-7 and hpr1 pho1-7 double mutants. Additionally, we show that RNA termination defects in tex1 and hpr1 mutants leads to 3'UTR extensions in several endogenous genes. These results demonstrate that THO/TREX complex contributes to the regulation of transcription termination.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Transcription Termination, Genetic , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant
15.
Proc Natl Acad Sci U S A ; 117(13): 7516-7523, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32170009

ABSTRACT

Among CO2-fixing metabolic pathways in nature, the linear Wood-Ljungdahl pathway (WLP) in phylogenetically diverse acetate-forming acetogens comprises the most energetically efficient pathway, requires the least number of reactions, and converts CO2 to formate and then into acetyl-CoA. Despite two genes encoding glycine synthase being well-conserved in WLP gene clusters, the functional role of glycine synthase under autotrophic growth conditions has remained uncertain. Here, using the reconstructed genome-scale metabolic model iSL771 based on the completed genome sequence, transcriptomics, 13C isotope-based metabolite-tracing experiments, biochemical assays, and heterologous expression of the pathway in another acetogen, we discovered that the WLP and the glycine synthase pathway are functionally interconnected to fix CO2, subsequently converting CO2 into acetyl-CoA, acetyl-phosphate, and serine. Moreover, the functional cooperation of the pathways enhances CO2 consumption and cellular growth rates via bypassing reducing power required reactions for cellular metabolism during autotrophic growth of acetogens.


Subject(s)
Amino Acid Oxidoreductases/metabolism , Aminomethyltransferase/metabolism , Autotrophic Processes/physiology , Multienzyme Complexes/metabolism , Acetyl Coenzyme A/metabolism , Amino Acid Oxidoreductases/genetics , Aminomethyltransferase/genetics , Bacterial Proteins/metabolism , Carbon Cycle , Carbon Dioxide/metabolism , Carbon Monoxide/metabolism , Clostridium/metabolism , Metabolic Networks and Pathways , Multienzyme Complexes/genetics , Multigene Family , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism
16.
J Therm Biol ; 115: 103624, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37399743

ABSTRACT

A complex interplay exists within the tumor microenvironment and extracellular matrix, which could contribute to solid tumor progression. Collagen, a major component of the extracellular matrix, may correlate with cancer prognosis. While thermal ablation has shown promise as a minimally invasive treatment of solid tumors, its impact on collagen is still unknown. In this study, we demonstrate that thermal ablation, but not cryo-ablation, induces irreversible collagen denaturation in a neuroblastoma sphere model. Prolonged collagen denaturation resulted in a significant reduction in sphere stiffness, migration, and proliferation, and an increase in apoptosis. Mechanistic analysis revealed that collagen denaturation inhibited collagen cross-linking, reduced extracellular LOX/LOXL2 expression, and resulted in decreased phosphorylation of FAK. Downstream of FAK, we observed reduced epithelial to mesenchymal transition, attenuated CDC42 expression, and decreased migration. Collectively, these results suggest that denatured collagen presents a novel target for modulating the tumor microenvironment and treating solid cancers via the LOX1/LOXL2-FAK signaling pathway.


Subject(s)
Epithelial-Mesenchymal Transition , Neuroblastoma , Humans , Collagen/metabolism , Signal Transduction , Cell Proliferation , Cell Line, Tumor , Tumor Microenvironment , Amino Acid Oxidoreductases/metabolism
17.
Int J Mol Sci ; 24(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37047014

ABSTRACT

This Special Issue on lysyl oxidases, which are proteins derived from five related genes known as Lox, and Loxl1-Loxl4, brings together articles that reflect some of the diverse approaches and perspectives needed to better understand the biology of these multifunctional proteins [...].


Subject(s)
Amino Acid Oxidoreductases , Protein-Lysine 6-Oxidase , Protein-Lysine 6-Oxidase/genetics , Protein-Lysine 6-Oxidase/metabolism , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism
18.
Int J Mol Sci ; 24(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37511503

ABSTRACT

LOXL2, a copper-dependent amine oxidase, has emerged as a promising therapeutic target in hepatocellular carcinoma (HCC). Increased LOXL2 expression in HCC has been linked with an aggressive phenotype and represents a poor prognostic factor. Here, we focus on the mechanisms through which LOXL2 orchestrates multiple oncogenic functions in HCC development. We performed a review of the current knowledge on the roles LOXL2 performs in the modulation of the HCC tumor microenvironment, formation of premetastatic niches, and epithelial-mesenchymal transition. We also highlighted the complex interplay between LOXL2 and hypoxia, angiogenesis, and vasculogenic mimicry in HCC. At the end of the review, we summarize the current LOXL2 inhibitors and discuss their potential in HCC precision treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Phenotype , Morphogenesis , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics
19.
Molecules ; 28(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298909

ABSTRACT

Lysyl oxidase-like 2 (LOXL2) was initially described as an extracellular enzyme involved in extracellular matrix remodeling. Nevertheless, numerous recent reports have implicated intracellular LOXL2 in a wide variety of processes that impact on gene transcription, development, differentiation, proliferation, migration, cell adhesion, and angiogenesis, suggesting multiple different functions for this protein. In addition, increasing knowledge about LOXL2 points to a role in several types of human cancer. Moreover, LOXL2 is able to induce the epithelial-to-mesenchymal transition (EMT) process-the first step in the metastatic cascade. To uncover the underlying mechanisms of the great variety of functions of intracellular LOXL2, we carried out an analysis of LOXL2's nuclear interactome. This study reveals the interaction of LOXL2 with numerous RNA-binding proteins (RBPs) involved in several aspects of RNA metabolism. Gene expression profile analysis of cells silenced for LOXL2, combined with in silico identification of RBPs' targets, points to six RBPs as candidates to be substrates of LOXL2's action, and that deserve a more mechanistic analysis in the future. The results presented here allow us to hypothesize novel LOXL2 functions that might help to comprehend its multifaceted role in the tumorigenic process.


Subject(s)
Neoplasms , Humans , Epithelial-Mesenchymal Transition/genetics , Cell Differentiation , Extracellular Matrix/metabolism , Cell Adhesion , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism
20.
J Cell Mol Med ; 26(2): 475-490, 2022 01.
Article in English | MEDLINE | ID: mdl-34890108

ABSTRACT

At present, growing evidence indicates that long non-coding RNAs (lncRNAs) participate in the progression of glioma. The function of LOXL1-AS1 in vasculogenic mimicry (VM) in glioma remains unclear. First, the expressions of TIAR, the lncRNA LOXL1-AS1, miR-374b-5p and MMP14 were examined by qRT-PCR and Western blot in both, glioma tissues and glioma cell lines. Proliferation, migration, invasion and tube formation assays were conducted to evaluate the roles of TIAR, LOXL1-AS1, miR-374b-5p and MMP14 in malignant cellular behaviours in glioma cells. A nude mouse xenograft model and dual staining for CD34 and PAS were used to assess whether VM was affected by TIAR, LOXL1-AS1 or miR-374b-5p in vivo. In this study, low levels of TIAR and high levels of LOXL1-AS1 were found in glioma cells and tissues. TIAR downregulated the expression of LOXL1-AS1 by destabilizing it. LOXL1-AS1 acted like a miRNA sponge towards miR-374b-5p so that downregulation of the former greatly inhibited cell proliferation, migration, invasion and VM. Additionally, miR-374b-5p overexpression repressed malignant biological behaviours and VM in glioma by modifying MMP14. In summary, we demonstrated that TIAR combined with LOXL1-AS1 modulates VM in glioma via the miR-374b-5p/MMP14 axis, revealing novel targets for glioma therapy.


Subject(s)
Glioma , MicroRNAs , RNA, Long Noncoding , Amino Acid Oxidoreductases/metabolism , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Glioma/genetics , Glioma/pathology , Humans , Matrix Metalloproteinase 14/genetics , Matrix Metalloproteinase 14/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL