Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 299
Filter
Add more filters

Publication year range
1.
Blood ; 144(6): 657-671, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38635773

ABSTRACT

ABSTRACT: Pseudouridine is the most prevalent RNA modification, and its aberrant function is implicated in various human diseases. However, the specific impact of pseudouridylation on hematopoiesis remains poorly understood. Here, we investigated the role of transfer RNA (tRNA) pseudouridylation in erythropoiesis and its association with mitochondrial myopathy, lactic acidosis, and sideroblastic anemia syndrome (MLASA) pathogenesis. By using patient-specific induced pluripotent stem cells (iPSCs) carrying a genetic pseudouridine synthase 1 (PUS1) mutation and a corresponding mutant mouse model, we demonstrated impaired erythropoiesis in MLASA-iPSCs and anemia in the MLASA mouse model. Both MLASA-iPSCs and mouse erythroblasts exhibited compromised mitochondrial function and impaired protein synthesis. Mechanistically, we revealed that PUS1 deficiency resulted in reduced mitochondrial tRNA levels because of pseudouridylation loss, leading to aberrant mitochondrial translation. Screening of mitochondrial supplements aimed at enhancing respiration or heme synthesis showed limited effect in promoting erythroid differentiation. Interestingly, the mammalian target of rapamycin (mTOR) inhibitor rapamycin facilitated erythroid differentiation in MLASA-iPSCs by suppressing mTOR signaling and protein synthesis, and consistent results were observed in the MLASA mouse model. Importantly, rapamycin treatment partially ameliorated anemia phenotypes in a patient with MLASA. Our findings provide novel insights into the crucial role of mitochondrial tRNA pseudouridylation in governing erythropoiesis and present potential therapeutic strategies for patients with anemia facing challenges related to protein translation.


Subject(s)
Erythropoiesis , Induced Pluripotent Stem Cells , Mitochondria , RNA, Transfer , Animals , Mice , Humans , RNA, Transfer/genetics , RNA, Transfer/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Induced Pluripotent Stem Cells/metabolism , Pseudouridine/metabolism , Anemia, Sideroblastic/genetics , Anemia, Sideroblastic/metabolism , Anemia, Sideroblastic/pathology , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , Hydro-Lyases/metabolism , Hydro-Lyases/genetics , MELAS Syndrome/genetics , MELAS Syndrome/pathology , MELAS Syndrome/metabolism , Disease Models, Animal
2.
Haematologica ; 109(8): 2525-2532, 2024 08 01.
Article in English | MEDLINE | ID: mdl-38450522

ABSTRACT

The revised 4th edition of the World Health Organization (WHO4R) classification lists myelodysplastic syndromes with ring sideroblasts (MDS-RS) as a separate entity with single lineage (MDS-RS-SLD) or multilineage (MDS-RS-MLD) dysplasia. The more recent International Consensus Classification (ICC) distinguishes between MDS with SF3B1 mutation (MDS-SF3B1) and MDS-RS without SF3B1 mutation; the latter is instead included under the category of MDS not otherwise specified. The current study includes 170 Mayo Clinic patients with WHO4R-defined MDS-RS, including MDS-RS-SLD (N=83) and MDS-RSMLD (N=87); a subset of 145 patients were also evaluable for the presence of SF3B1 and other mutations, including 126 with (87%) and 19 (13%) without SF3B1 mutation. Median overall survival for all 170 patients was 6.6 years with 5- and 10-year survival rates of 59% and 25%, respectively. A significant difference in overall survival was apparent between MDS-RS-MLD and MDS-RS-SLD (P<0.01) but not between MDS-RS with and without SF3B1 mutation (P=0.36). Multivariable analysis confirmed the independent prognostic contribution of MLD (hazard ratio=1.8, 95% confidence interval: 1.1-2.8; P=0.01) and also identified age (P<0.01), transfusion need at diagnosis (P<0.01), and abnormal karyotype (P<0.01), as additional risk factors; the impact from SF3B1 or other mutations was not significant. Leukemia-free survival was independently affected by abnormal karyotype (P<0.01), RUNX1 (P=0.02) and IDH1 (P=0.01) mutations, but not by MLD or SF3B1 mutation. Exclusion of patients not meeting ICC-criteria for MDS-SF3B1 did not change the observations on overall survival. MLD-based, as opposed to SF3B1 mutation-based, disease classification for MDS-RS might be prognostically more relevant.


Subject(s)
Anemia, Sideroblastic , Mutation , Myelodysplastic Syndromes , Phosphoproteins , RNA Splicing Factors , Humans , RNA Splicing Factors/genetics , Male , Female , Aged , Middle Aged , Prognosis , Aged, 80 and over , Adult , Phosphoproteins/genetics , Anemia, Sideroblastic/genetics , Anemia, Sideroblastic/diagnosis , Anemia, Sideroblastic/mortality , Anemia, Sideroblastic/pathology , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/mortality , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/pathology , Ribonucleoprotein, U2 Small Nuclear/genetics , Cell Lineage , Young Adult
3.
Ann Hum Genet ; 87(4): 166-173, 2023 07.
Article in English | MEDLINE | ID: mdl-36916508

ABSTRACT

INTRODUCTION: Congenital sideroblastic anemias (CSAs) are a group of inherited bone-marrow disorders manifesting with erythroid hyperplasia and ineffective erythropoiesis. METHODS: We describe a detailed clinical and genetic characterization of three siblings with CSA. RESULTS: Two of them had limb-girdle myopathy and global developmental delay. The two elder siblings performed allogenic hematopoietic stem-cell transplantation 5 and 3 years prior with stabilization of the hematological features. Exome sequencing in the non-transplanted sibling revealed a novel homozygous nonsense variant in SLC25A38 gene NM_017875.2:c.559C > T; p.(Arg187*) causing autosomal-recessive sideroblastic anemia type-2, and a second homozygous pathogenic previously reported variant in GMPPB gene NM_013334.3:c.458C > T; p.(Thr153Ile) causing autosomal-recessive muscular dystrophy-dystroglycanopathy type B14. With the established diagnosis, hematopoietic stem cell transplantation is now being scheduled for the youngest sibling, and a trial therapy with acetylcholine esterase inhibitors was started for the two neurologically affected patients with partial clinical improvement. CONCLUSION: This family emphasizes the importance of whole-exome sequencing for familial cases with complex phenotypes and vague neurological manifestations.


Subject(s)
Anemia, Sideroblastic , Humans , Anemia, Sideroblastic/genetics , Anemia, Sideroblastic/diagnosis , Anemia, Sideroblastic/pathology , Siblings , Genotype , Phenotype , Mutation
4.
Muscle Nerve ; 65(4): 374-390, 2022 04.
Article in English | MEDLINE | ID: mdl-34985130

ABSTRACT

The diagnostic evaluation of a patient with suspected hereditary muscle disease can be challenging. Clinicians rely largely on clinical history and examination features, with additional serological, electrodiagnostic, radiologic, histopathologic, and genetic investigations assisting in definitive diagnosis. Hematological testing is inexpensive and widely available, but frequently overlooked in the hereditary myopathy evaluation. Hematological abnormalities are infrequently encountered in this setting; however, their presence provides a valuable clue, helps refine the differential diagnosis, tailors further investigation, and assists interpretation of variants of uncertain significance. A diverse spectrum of hematological abnormalities is associated with hereditary myopathies, including anemias, leukocyte abnormalities, and thrombocytopenia. Recurrent rhabdomyolysis in certain glycolytic enzymopathies co-occurs with hemolytic anemia, often chronic and mild in phosphofructokinase and phosphoglycerate kinase deficiencies, or acute and fever-associated in aldolase-A and triosephosphate isomerase deficiency. Sideroblastic anemia, commonly severe, accompanies congenital-to-childhood onset mitochondrial myopathies including Pearson marrow-pancreas syndrome and mitochondrial myopathy, lactic acidosis, and sideroblastic anemia phenotypes. Congenital megaloblastic macrocytic anemia and mitochondrial dysfunction characterize SFXN4-related myopathy. Neutropenia, chronic or cyclical, with recurrent infections, infantile-to-childhood onset skeletal myopathy and cardiomyopathy are typical of Barth syndrome, while chronic neutropenia without infection occurs rarely in DNM2-centronuclear myopathy. Peripheral eosinophilia may accompany eosinophilic inflammation in recessive calpainopathy. Lipid accumulation in leukocytes on peripheral blood smear (Jordans' anomaly) is pathognomonic for neutral lipid storage diseases. Mild thrombocytopenia occurs in autosomal dominant, childhood-onset STIM1 tubular aggregate myopathy, STIM1 and ORAI1 deficiency syndromes, and GNE myopathy. Herein, we review these hereditary myopathies in which hematological features play a prominent role.


Subject(s)
Anemia, Sideroblastic , Lipid Metabolism, Inborn Errors , Mitochondrial Diseases , Mitochondrial Myopathies , Myopathies, Structural, Congenital , Anemia, Sideroblastic/genetics , Anemia, Sideroblastic/pathology , Child , Humans , Mitochondrial Myopathies/genetics , Mutation , Myopathies, Structural, Congenital/genetics
5.
Blood ; 133(1): 59-69, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30401706

ABSTRACT

The sideroblastic anemias (SAs) are a group of inherited and acquired bone marrow disorders defined by pathological iron accumulation in the mitochondria of erythroid precursors. Like most hematological diseases, the molecular genetic basis of the SAs has ridden the wave of technology advancement. Within the last 30 years, with the advent of positional cloning, the human genome project, solid-state genotyping technologies, and next-generation sequencing have evolved to the point where more than two-thirds of congenital SA cases, and an even greater proportion of cases of acquired clonal disease, can be attributed to mutations in a specific gene or genes. This review focuses on an analysis of the genetics of these diseases and how understanding these defects may contribute to the design and implementation of rational therapies.


Subject(s)
Anemia, Sideroblastic/genetics , Erythroid Precursor Cells/pathology , Genetic Diseases, X-Linked/genetics , Iron/metabolism , Anemia, Sideroblastic/metabolism , Anemia, Sideroblastic/pathology , Genetic Diseases, X-Linked/metabolism , Genetic Diseases, X-Linked/pathology , Humans
6.
Am J Hematol ; 96(3): 379-394, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33428785

ABSTRACT

DISEASE OVERVIEW: Ring sideroblasts (RS) are erythroid precursors with abnormal perinuclear mitochondrial iron accumulation. Two myeloid neoplasms defined by the presence of RS, include myelodysplastic syndromes with RS (MDS-RS) and MDS/myeloproliferative neoplasm with RS and thrombocytosis (MDS/MPN-RS-T). DIAGNOSIS: MDS-RS is a lower risk MDS, with single or multilineage dysplasia (MDS-RS-SLD/MLD), <5% bone marrow (BM) blasts, <1% peripheral blood blasts and ≥15% BM RS (≥5% in the presence of SF3B1 mutations). MDS/MPN-RS-T, now a formal entity in the MDS/MPN overlap syndromes, has diagnostic features of MDS-RS-SLD, along with a platelet count ≥450 × 109 /L and large atypical megakaryocytes. MUTATIONS AND KARYOTYPE: Mutations in SF3B1 are seen in ≥80% of patients with MDS-RS-SLD and MDS/MPN-RS-T, and strongly correlate with the presence of BM RS; MDS/MPN-RS-T patients also demonstrate JAK2V617F (50%), DNMT3A, TET2 and ASXL1 mutations. Cytogenetic abnormalities are uncommon in both. RISK STRATIFICATION: Most patients with MDS-RS-SLD are stratified into lower risk groups by the revised-IPSS. Disease outcome in MDS/MPN-RS-T is better than that of MDS-RS-SLD, but worse than that of essential thrombocythemia (MPN). Both diseases are associated with a low risk of leukemic transformation. TREATMENT: Anemia and iron overload are complications seen in both and are managed similar to lower risk MDS and MPN. Luspatercept, a first-in-class erythroid maturation agent is now approved for the management of anemia in patients with MDS-RS and MDS/MPN-RS-T. Aspirin therapy is reasonable in MDS/MPN-RS-T, especially in the presence of JAK2V617F, but the value of platelet-lowering drugs remains to be defined.


Subject(s)
Anemia, Sideroblastic , Myelodysplastic-Myeloproliferative Diseases , Allografts , Anemia, Sideroblastic/diagnosis , Anemia, Sideroblastic/etiology , Anemia, Sideroblastic/pathology , Anemia, Sideroblastic/therapy , Bone Marrow/pathology , Cell Lineage , Clone Cells/pathology , Combined Modality Therapy , DNA Methylation/drug effects , Disease Management , Erythroblasts/ultrastructure , Ferritins/analysis , Hematinics/therapeutic use , Hematopoietic Stem Cell Transplantation , Humans , Iron Chelating Agents/therapeutic use , Mitochondria/chemistry , Mutation , Myelodysplastic-Myeloproliferative Diseases/diagnosis , Myelodysplastic-Myeloproliferative Diseases/genetics , Myelodysplastic-Myeloproliferative Diseases/therapy , Phosphoproteins/genetics , Prognosis , RNA Splicing Factors/genetics , Risk Assessment , Thrombocytosis/diagnosis , Thrombocytosis/therapy
7.
Pediatr Blood Cancer ; 67(10): e28623, 2020 10.
Article in English | MEDLINE | ID: mdl-32790119

ABSTRACT

BACKGROUND: Congenital sideroblastic anemia (CSA) constitutes an uncommon category of inherited anemia often associated with pathologic iron accumulation. Pathogenic variants in several genes have been identified as causative for CSA. Autosomal recessive pathogenic variants in the mitochondrial glycine transporter SLC25A38 have been implicated in a subset of patients with CSA. PROCEDURE: We describe seven individuals of Canadian Cree descent with a known or inferred homozygous novel founder missense variant in SLC25A38 (c.560G>A, p.Arg187Gln). RESULTS: All individuals presented as young children (median age 6 months) with severe microcytic, hypochromic anemia associated with pretransfusion iron overload, requiring red cell transfusion support and iron chelation. Six individuals received pyridoxine supplementation; two demonstrating transient partial responses. Three individuals underwent allogeneic hematopoietic stem cell transplantation (HSCT). One individual with significant iron loading died in the posttransplant period due to complications of sepsis. The other two individuals remain transfusion-free following HSCT. CONCLUSIONS: Despite a common genetic etiology, phenotypic variability was noted in this cohort. A transient response to pyridoxine was noted in two individuals but should not be considered a long-term therapeutic strategy. HSCT was curative when performed before significant iron loading occurred. Early identification of CSA and timely HSCT can result in excellent long-term outcomes.


Subject(s)
Anemia, Sideroblastic/therapy , Genetic Diseases, X-Linked/therapy , Hematopoietic Stem Cell Transplantation/methods , Mitochondrial Membrane Transport Proteins/genetics , Mutation , Anemia, Sideroblastic/genetics , Anemia, Sideroblastic/pathology , Child, Preschool , Female , Follow-Up Studies , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/pathology , Humans , Infant , Male , Prognosis , Retrospective Studies
8.
Br J Haematol ; 187(4): 530-542, 2019 11.
Article in English | MEDLINE | ID: mdl-31338833

ABSTRACT

Congenital sideroblastic anaemia (CSA) is a rare disease caused by germline mutations of genes involved in haem and iron-sulphur cluster formation, and mitochondrial protein biosynthesis. We performed a retrospective multicentre European study of a cohort of childhood-onset CSA patients to explore genotype/phenotype correlations. We studied 23 females and 20 males with symptoms of CSA. Among the patients, the most frequently mutated genes were ALAS2 (n = 10; 23·3%) and SLC25A38 (n = 8; 18·6%), causing isolated forms of microcytic anaemia of varying severity. Five patients with SLC19A2 mutations suffered from thiamine-responsive megaloblastic anaemia and three exhibited the 'anaemia, deafness and diabetes' triad. Three patients with TRNT1 mutations exhibited severe early onset microcytic anaemia associated with thrombocytosis, and two exhibited B-cell immunodeficiency, inflammatory syndrome and psychomotor delay. The prognoses of patients with TRNT1 and SLC2A38 mutations were generally dismal because of comorbidities or severe iron overload. No molecular diagnosis could be established in 14/43 cases. This study emphasizes the frequency of ALAS2 and SLC25A38 mutations and provides the largest comprehensive analysis to date of genotype/phenotype correlations in CSA. Further studies of CSA patients with data recorded in an international registry would be helpful to improve patient management and establish standardized guidelines.


Subject(s)
5-Aminolevulinate Synthetase/genetics , Anemia, Sideroblastic/genetics , Genetic Association Studies , Genetic Diseases, X-Linked/genetics , Mitochondrial Membrane Transport Proteins/genetics , Anemia, Sideroblastic/pathology , Child , Cohort Studies , Europe , Female , Genetic Diseases, X-Linked/pathology , Humans , Male , Mutation , Nucleotidyltransferases/genetics , Retrospective Studies
9.
Pediatr Blood Cancer ; 66(4): e27591, 2019 04.
Article in English | MEDLINE | ID: mdl-30588737

ABSTRACT

BACKGROUND: Sideroblastic anemia represents a heterogeneous group of inherited or acquired diseases with disrupted erythroblast iron utilization, ineffective erythropoiesis, and variable systemic iron overload. In a cohort of 421 patients with multisystem mitochondrial diseases, refractory anemia was found in 8 children. RESULTS: Five children had sideroblastic anemia with increased numbers of ring sideroblasts >15%. Two of the children had a fatal course of MLASA1 syndrome (mitochondrial myopathy, lactic acidosis, and sideroblastic anemia [SA]) due to a homozygous, 6-kb deletion in the PUS1 gene, part of the six-member family of pseudouridine synthases (pseudouridylases). Large homozygous deletions represent a novel cause of presumed PUS1-loss-of-function phenotype. The other three children with SA had Pearson syndrome (PS) due to mtDNA deletions of 4 to 8 kb; two of these children showed early onset of PS and died due to repeated sepsis; the other child had later onset of PS and survived as the hematological parameters normalized and the disease transitioned to Kearns-Sayre syndrome. In addition, anemia without ring sideroblasts was found in three other patients with mitochondrial disorders, including two children with later onset of PS and one child with failure to thrive, microcephaly, developmental delay, hypertrophic cardiomyopathy, and renal tubular acidosis due to the heterozygous mutations c.610A>G (p.Asn204Asp) and c.674C>T (p.Pro225Leu) in the COX10 gene encoding the cytochrome c oxidase assembly factor. CONCLUSIONS: Sideroblastic anemia was found in fewer than 1.2% of patients with multisystem mitochondrial disease, and it was usually associated with an unfavorable prognosis.


Subject(s)
Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Anemia, Sideroblastic , Iron Overload , Lipid Metabolism, Inborn Errors , MELAS Syndrome , Mitochondrial Diseases , Muscular Diseases , Acyl-CoA Dehydrogenase, Long-Chain/genetics , Acyl-CoA Dehydrogenase, Long-Chain/metabolism , Anemia, Sideroblastic/genetics , Anemia, Sideroblastic/metabolism , Anemia, Sideroblastic/pathology , Child , Child, Preschool , Congenital Bone Marrow Failure Syndromes , Female , Humans , Iron Overload/genetics , Iron Overload/metabolism , Iron Overload/pathology , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/metabolism , Lipid Metabolism, Inborn Errors/pathology , MELAS Syndrome/genetics , MELAS Syndrome/metabolism , Male , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Muscular Diseases/genetics , Muscular Diseases/metabolism , Muscular Diseases/pathology
10.
PLoS Genet ; 12(1): e1005783, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26821380

ABSTRACT

Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia.


Subject(s)
Anemia, Sideroblastic/genetics , Folic Acid/metabolism , Genetic Diseases, X-Linked/genetics , Glycine/metabolism , Hemoglobins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Anemia, Sideroblastic/metabolism , Anemia, Sideroblastic/pathology , Animals , Folic Acid/administration & dosage , Genetic Diseases, X-Linked/metabolism , Genetic Diseases, X-Linked/pathology , Glycine/administration & dosage , Heme/biosynthesis , Hemoglobins/drug effects , Humans , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Membrane Transport Proteins/metabolism , Mutation , Saccharomyces cerevisiae , Zebrafish
12.
Blood ; 128(15): 1913-1917, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27488349

ABSTRACT

The congenital sideroblastic anemias (CSAs) are a heterogeneous group of inherited blood disorders characterized by pathological mitochondrial iron deposition in erythroid precursors. Each known cause has been attributed to a mutation in a protein associated with heme biosynthesis, iron-sulfur cluster biogenesis, mitochondrial translation, or a component of the mitochondrial respiratory chain. Here, we describe a recurring mutation, c.276_278del, p.F93del, in NDUFB11, a mitochondrial respiratory complex I-associated protein encoded on the X chromosome, in 5 males with a variably syndromic, normocytic CSA. The p.F93del mutation results in respiratory insufficiency and loss of complex I stability and activity in patient-derived fibroblasts. Targeted introduction of this allele into K562 erythroleukemia cells results in a proliferation defect with minimal effect on erythroid differentiation potential, suggesting the mechanism of anemia in this disorder.


Subject(s)
Anemia, Sideroblastic/genetics , Base Sequence , Chromosomes, Human, X/genetics , Electron Transport Complex I/genetics , Genetic Diseases, X-Linked/genetics , Sequence Deletion , Adolescent , Adult , Aged , Anemia, Sideroblastic/metabolism , Anemia, Sideroblastic/pathology , Child , Child, Preschool , Chromosomes, Human, X/metabolism , Electron Transport Complex I/metabolism , Female , Genetic Diseases, X-Linked/metabolism , Humans , K562 Cells , Male , Middle Aged
13.
Nature ; 491(7425): 608-12, 2012 Nov 22.
Article in English | MEDLINE | ID: mdl-23135403

ABSTRACT

Defects in the availability of haem substrates or the catalytic activity of the terminal enzyme in haem biosynthesis, ferrochelatase (Fech), impair haem synthesis and thus cause human congenital anaemias. The interdependent functions of regulators of mitochondrial homeostasis and enzymes responsible for haem synthesis are largely unknown. To investigate this we used zebrafish genetic screens and cloned mitochondrial ATPase inhibitory factor 1 (atpif1) from a zebrafish mutant with profound anaemia, pinotage (pnt (tq209)). Here we describe a direct mechanism establishing that Atpif1 regulates the catalytic efficiency of vertebrate Fech to synthesize haem. The loss of Atpif1 impairs haemoglobin synthesis in zebrafish, mouse and human haematopoietic models as a consequence of diminished Fech activity and elevated mitochondrial pH. To understand the relationship between mitochondrial pH, redox potential, [2Fe-2S] clusters and Fech activity, we used genetic complementation studies of Fech constructs with or without [2Fe-2S] clusters in pnt, as well as pharmacological agents modulating mitochondrial pH and redox potential. The presence of [2Fe-2S] cluster renders vertebrate Fech vulnerable to perturbations in Atpif1-regulated mitochondrial pH and redox potential. Therefore, Atpif1 deficiency reduces the efficiency of vertebrate Fech to synthesize haem, resulting in anaemia. The identification of mitochondrial Atpif1 as a regulator of haem synthesis advances our understanding of the mechanisms regulating mitochondrial haem homeostasis and red blood cell development. An ATPIF1 deficiency may contribute to important human diseases, such as congenital sideroblastic anaemias and mitochondriopathies.


Subject(s)
Erythroblasts/metabolism , Erythropoiesis , Heme/biosynthesis , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Proteins/metabolism , Anemia, Sideroblastic/genetics , Anemia, Sideroblastic/metabolism , Anemia, Sideroblastic/pathology , Animals , Disease Models, Animal , Erythroblasts/cytology , Ferrochelatase/metabolism , Genetic Complementation Test , Humans , Hydrogen-Ion Concentration , Mice , Mitochondria/pathology , Mitochondrial Proteins/deficiency , Mitochondrial Proteins/genetics , Oxidation-Reduction , Proteins/genetics , Zebrafish/metabolism , ATPase Inhibitory Protein
14.
Int J Mol Sci ; 19(7)2018 06 28.
Article in English | MEDLINE | ID: mdl-29958424

ABSTRACT

Biosynthesis of heme represents a complex process that involves multiple stages controlled by different enzymes. The first of these proteins is a pyridoxal 5'-phosphate (PLP)-dependent homodimeric enzyme, 5-aminolevulinate synthase (ALAS), that catalyzes the rate-limiting step in heme biosynthesis, the condensation of glycine with succinyl-CoA. Genetic mutations in human erythroid-specific ALAS (ALAS2) are associated with two inherited blood disorders, X-linked sideroblastic anemia (XLSA) and X-linked protoporphyria (XLPP). XLSA is caused by diminished ALAS2 activity leading to decreased ALA and heme syntheses and ultimately ineffective erythropoiesis, whereas XLPP results from "gain-of-function" ALAS2 mutations and consequent overproduction of protoporphyrin IX and increase in Zn2+-protoporphyrin levels. All XLPP-linked mutations affect the intrinsically disordered C-terminal tail of ALAS2. Our earlier molecular dynamics (MD) simulation-based analysis showed that the activity of ALAS2 could be regulated by the conformational flexibility of the active site loop whose structural features and dynamics could be changed due to mutations. We also revealed that the dynamic behavior of the two protomers of the ALAS2 dimer differed. However, how the structural dynamics of ALAS2 active site loop and C-terminal tail dynamics are related to each other and contribute to the homodimer asymmetry remained unanswered questions. In this study, we used bioinformatics and computational biology tools to evaluate the role(s) of the C-terminal tail dynamics in the structure and conformational dynamics of the murine ALAS2 homodimer active site loop. To assess the structural correlation between these two regions, we analyzed their structural displacements and determined their degree of correlation. Here, we report that the dynamics of ALAS2 active site loop is anti-correlated with the dynamics of the C-terminal tail and that this anti-correlation can represent a molecular basis for the functional and dynamic asymmetry of the ALAS2 homodimer.


Subject(s)
5-Aminolevulinate Synthetase/chemistry , Anemia, Sideroblastic/genetics , Genetic Diseases, X-Linked/genetics , Heme/chemistry , 5-Aminolevulinate Synthetase/genetics , Anemia, Sideroblastic/pathology , Animals , Catalytic Domain , Computational Biology , Genetic Diseases, X-Linked/pathology , Heme/biosynthesis , Heme/genetics , Humans , Mice , Molecular Dynamics Simulation , Mutation/genetics , Protein Multimerization/genetics
15.
Curr Opin Hematol ; 24(3): 191-197, 2017 May.
Article in English | MEDLINE | ID: mdl-28072603

ABSTRACT

PURPOSE OF REVIEW: Myelodysplastic syndromes (MDS) are heterogeneous diseases of the hematopoietic stem cell in the elderly. Anemia is the main symptom that mostly correlates with dysplastic erythropoiesis in the bone marrow. We will review the recent advances in understanding the diverse mechanisms of dyserythropoiesis. RECENT FINDINGS: Dyserythropoiesis defined as 10% dysplastic erythroid cells in the bone marrow is found in more than 80% of early MDS. Immature erythroblasts accumulate at the expense of mature erythroblasts due to differentiation arrest and apoptosis. In early MDS with dyserythropoiesis, caspase-dependent cleavage of the erythroid transcription factor GATA-1 occurring in basophilic erythroblasts accounts for impairment of final maturation. Depending on initiating genetic alteration, specific mechanisms contribute to erythroid defect. In MDS with 5q deletion, the haploinsufficiency of ribosomal protein gene, RPS14, opposes the transition of immature to mature erythroblasts by inducing a p53-dependent ribosome stress, cell cycle arrest and apoptosis. Recent work identifies the activation of a p53-S100A8/9 innate immune pathway that both intrinsically and extrinsically contributes to defective erythropoiesis. In MDS with ring sideroblasts, a paradigm of dyserythropoiesis, a unique mutation in SF3B1 splicing factor gene induces a multiplicity of alterations at RNA level that deeply modifies the patterns of gene expression. SUMMARY: Insights in the pathophysiology of MDS with dyserythropoiesis may guide the choice of the appropriate therapy, for instance lenalidomide in MDS with del(5q). A better understanding of the mechanisms of dyserthropoiesis is required to treat anemia in non-del(5q) MDS, especially in case of resistance to first-line therapy by erythropoiesis-stimulating agents.


Subject(s)
Bone Marrow Cells/metabolism , Bone Marrow/metabolism , Erythropoiesis , Myelodysplastic Syndromes/etiology , Myelodysplastic Syndromes/metabolism , Anemia, Macrocytic/genetics , Anemia, Macrocytic/metabolism , Anemia, Macrocytic/pathology , Anemia, Sideroblastic/etiology , Anemia, Sideroblastic/metabolism , Anemia, Sideroblastic/pathology , Animals , Bone Marrow/pathology , Bone Marrow Cells/pathology , Chromosome Deletion , Chromosomes, Human, Pair 5/genetics , Chromosomes, Human, Pair 5/metabolism , Erythroid Cells/cytology , Erythroid Cells/metabolism , Erythroid Cells/pathology , Erythropoiesis/genetics , GATA1 Transcription Factor/genetics , GATA1 Transcription Factor/metabolism , Gene Expression Regulation , Humans , Immunity, Innate , Mitochondria/genetics , Mitochondria/immunology , Mitochondria/metabolism , Myelodysplastic Syndromes/diagnosis , RNA Splicing , Signal Transduction
17.
Pediatr Blood Cancer ; 64(5)2017 05.
Article in English | MEDLINE | ID: mdl-27808451

ABSTRACT

Symptomatic ß-thalassemia is one of the globally most common inherited disorders. The initial clinical presentation is variable. Although common hematological analyses are typically sufficient to diagnose the disease, sometimes the diagnosis can be more challenging. We describe a series of patients with ß-thalassemia whose diagnosis was delayed, required bone marrow examination in one affected member of each family, and revealed ringed sideroblasts, highlighting the association of this morphological finding with these disorders. Thus, in the absence of characteristic congenital sideroblastic mutations or causes of acquired sideroblastic anemia, the presence of ringed sideroblasts should raise the suspicion of ß-thalassemia.


Subject(s)
Anemia, Sideroblastic/pathology , Bone Marrow Cells/pathology , Erythroblasts/pathology , beta-Thalassemia/pathology , Adolescent , Adult , Anemia, Sideroblastic/diagnosis , Bone Marrow Cells/cytology , Bone Marrow Examination , Child , Erythroblasts/cytology , Erythrocytes, Abnormal , Female , Hematologic Diseases/complications , Humans , Infant , Male , beta-Thalassemia/diagnosis
18.
Klin Padiatr ; 229(6): 329-334, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29132164

ABSTRACT

Individuals with Fanconi anemia (FA) have a high risk of developing myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), yet the secondary somatic mutations lending to these malignancies remain to be further elucidated. We employed a next-generation sequencing myeloid neoplasia gene panel to determine the mutational spectrum of FA-related MDS/AML. Ten of 16 patients showed missense, nonsense, insertion or duplication mutations in 13 genes. In contrast to findings in MDS in the general population, mutations in genes involved in RNA splicing were rarely affected. Mutations in RUNX1 and genes of the RAS pathway appeared more instrumental in the pathogenesis of FA myeloid malignancies. RUNX1 mutations were associated with more advanced disease. Interestingly, one patient with refractory anemia with ring sideroblasts harbored the SF3B1 p.K700E mutation highlighting the mutation's causative role in MDS with ring sideroblasts even in the context of FA. On the whole, our findings implicate a different genetic architecture of FA MDS/AML from adult sporadic MDS. Notably, the genetic events resemble those described in pediatric MDS.


Subject(s)
Anemia, Sideroblastic/genetics , Fanconi Anemia/genetics , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , RNA Splicing Factors/genetics , Adult , Anemia, Sideroblastic/pathology , Child , Fanconi Anemia/pathology , Humans , Leukemia, Myeloid, Acute/pathology , Mutation , Myelodysplastic Syndromes/pathology , Phosphoproteins , RNA Splicing Factors/metabolism
20.
Br J Haematol ; 174(6): 847-58, 2016 09.
Article in English | MEDLINE | ID: mdl-27391606

ABSTRACT

Myeloid neoplasms with ring sideroblasts are currently categorized within the myelodysplastic syndromes (MDS) or myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in the World Health Organization classification. Recent findings have identified that the presence of ring sideroblasts in these disorders has a unique molecular basis, i.e., the somatic mutation of SF3B1, a gene encoding a splicing factor. Mutations of SF3B1 occur in up to 90% of patients with refractory anaemia with unilineage dysplasia (RARS) and 70% of those with refractory cytopenia with multilineage dysplasia and ring sideroblasts or RARS associated with marked thrombocytosis. Experimental evidence has shown that mutant SF3B1 results in the abnormal splicing of several genes, primarily due to misrecognition of 3' splice sites. The resulting aberrant mRNAs undergo nonsense-mediated mRNA decay (NMD), resulting in haploinsufficiency of canonical transcripts and protein expression. In addition, it is also possible that NMD-insensitive aberrant transcripts are translated into proteins with altered function. Patients with MDS carrying the SF3B1 mutation show a homogeneous disease phenotype characterized by isolated erythroid dysplasia and mild dysplasia in granulocytic or megakaryocytic lineages, supporting the notion that the SF3B1 mutation identifies a distinct entity within MDS. The available evidence suggests that these findings may have relevant impact on the diagnosis, classification and management of patients with these neoplasms.


Subject(s)
Erythroid Precursor Cells/pathology , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/etiology , Anemia, Sideroblastic/etiology , Anemia, Sideroblastic/metabolism , Anemia, Sideroblastic/pathology , Bone Marrow/metabolism , Bone Marrow/pathology , Erythroid Precursor Cells/metabolism , Humans , Iron/metabolism , Mitochondria/metabolism , Mutation , Myelodysplastic Syndromes/mortality , Myelodysplastic Syndromes/therapy , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/etiology , Phenotype , Phosphoproteins/genetics , Prognosis , RNA Splicing , RNA Splicing Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL