Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37.063
Filter
Add more filters

Publication year range
2.
Mol Cell ; 80(1): 164-174.e4, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32877642

ABSTRACT

SARS-CoV-2 infections are rapidly spreading around the globe. The rapid development of therapies is of major importance. However, our lack of understanding of the molecular processes and host cell signaling events underlying SARS-CoV-2 infection hinders therapy development. We use a SARS-CoV-2 infection system in permissible human cells to study signaling changes by phosphoproteomics. We identify viral protein phosphorylation and define phosphorylation-driven host cell signaling changes upon infection. Growth factor receptor (GFR) signaling and downstream pathways are activated. Drug-protein network analyses revealed GFR signaling as key pathways targetable by approved drugs. The inhibition of GFR downstream signaling by five compounds prevents SARS-CoV-2 replication in cells, assessed by cytopathic effect, viral dsRNA production, and viral RNA release into the supernatant. This study describes host cell signaling events upon SARS-CoV-2 infection and reveals GFR signaling as a central pathway essential for SARS-CoV-2 replication. It provides novel strategies for COVID-19 treatment.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Mitogen-Activated Protein Kinases/genetics , Phosphatidylinositol 3-Kinase/genetics , Receptors, Growth Factor/genetics , Viral Proteins/genetics , Adrenal Cortex Hormones/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Antibodies, Neutralizing/therapeutic use , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , Caco-2 Cells , Gene Expression Regulation , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , Receptors, Growth Factor/antagonists & inhibitors , Receptors, Growth Factor/metabolism , SARS-CoV-2 , Signal Transduction , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism , Virus Replication/drug effects
3.
Development ; 151(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38284547

ABSTRACT

The renin-angiotensin-aldosterone system (RAAS) plays a well-characterized role regulating blood pressure in mammals. Pharmacological and genetic manipulation of the RAAS has been shown to extend lifespan in Caenorhabditis elegans, Drosophila and rodents, but its mechanism is not well defined. Here, we investigate the angiotensin-converting enzyme (ACE) inhibitor drug captopril, which extends lifespan in worms and mice. To investigate the mechanism, we performed a forward genetic screen for captopril-hypersensitive mutants. We identified a missense mutation that causes a partial loss of function of the daf-2 receptor tyrosine kinase gene, a powerful regulator of aging. The homologous mutation in the human insulin receptor causes Donohue syndrome, establishing these mutant worms as an invertebrate model of this disease. Captopril functions in C. elegans by inhibiting ACN-1, the worm homolog of ACE. Reducing the activity of acn-1 via captopril or RNA interference promoted dauer larvae formation, suggesting that acn-1 is a daf gene. Captopril-mediated lifespan extension was abrogated by daf-16(lf) and daf-12(lf) mutations. Our results indicate that captopril and acn-1 influence lifespan by modulating dauer formation pathways. We speculate that this represents a conserved mechanism of lifespan control.


Subject(s)
Caenorhabditis elegans Proteins , Captopril , Animals , Humans , Mice , Captopril/pharmacology , Captopril/metabolism , Caenorhabditis elegans/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/metabolism , Caenorhabditis elegans Proteins/metabolism , Aging , Longevity/physiology , Receptor, Insulin/metabolism , Mutation/genetics , Mammals/metabolism
4.
J Biol Chem ; 300(1): 105486, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992807

ABSTRACT

Testis angiotensin-converting enzyme (tACE) plays a critical role in male fertility, but the mechanism is unknown. By using ACE C-domain KO (CKO) mice which lack tACE activity, we found that ATP in CKO sperm was 9.4-fold lower than WT sperm. Similarly, an ACE inhibitor (ACEi) reduced ATP production in mouse sperm by 72%. Metabolic profiling showed that tACE inactivation severely affects oxidative metabolism with decreases in several Krebs cycle intermediates including citric acid, cis-aconitic acid, NAD, α-ketoglutaric acid, succinate, and L-malic acid. We found that sperms lacking tACE activity displayed lower levels of oxidative enzymes (CISY, ODO1, MDHM, QCR2, SDHA, FUMH, CPT2, and ATPA) leading to a decreased mitochondrial respiration rate. The reduced energy production in CKO sperms leads to defects in their physiological functions including motility, acrosine activity, and fertilization in vitro and in vivo. Male mice treated with ACEi show severe impairment in reproductive capacity when mated with female mice. In contrast, an angiotensin II receptor blocker (ARB) had no effect. CKO sperms express significantly less peroxisome proliferators-activated receptor gamma (PPARγ) transcription factor, and its blockade eliminates the functional differences between CKO and WT sperms, indicating PPARγ might mediate the effects of tACE on sperm metabolism. Finally, in a cohort of human volunteers, in vitro treatment with the ramipril or a PPARγ inhibitor reduced ATP production in human sperm and hence its motility and acrosine activity. These findings may have clinical significance since millions of people take ACEi daily, including men who are reproductively active.


Subject(s)
Fertilization , PPAR gamma , Peptidyl-Dipeptidase A , Spermatozoa , Animals , Female , Humans , Male , Mice , Adenosine Triphosphate/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Fertilization/genetics , PPAR gamma/genetics , PPAR gamma/metabolism , Spermatozoa/drug effects , Spermatozoa/metabolism , Testis/enzymology , Mice, Inbred C57BL , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Mitochondrial Proteins/genetics , Gene Knockout Techniques , Oxidative Phosphorylation
5.
N Engl J Med ; 387(22): 2021-2032, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36326117

ABSTRACT

BACKGROUND: Renin-angiotensin system (RAS) inhibitors - including angiotensin-converting-enzyme (ACE) inhibitors and angiotensin-receptor blockers (ARBs) - slow the progression of mild or moderate chronic kidney disease. However, the results of some studies have suggested that the discontinuation of RAS inhibitors in patients with advanced chronic kidney disease may increase the estimated glomerular filtration rate (eGFR) or slow its decline. METHODS: In this multicenter, open-label trial, we randomly assigned patients with advanced and progressive chronic kidney disease (eGFR, <30 ml per minute per 1.73 m2 of body-surface area) either to discontinue or to continue therapy with RAS inhibitors. The primary outcome was the eGFR at 3 years; eGFR values that were obtained after the initiation of renal-replacement therapy were excluded. Secondary outcomes included the development of end-stage kidney disease (ESKD); a composite of a decrease of more than 50% in the eGFR or the initiation of renal-replacement therapy, including ESKD; hospitalization; blood pressure; exercise capacity; and quality of life. Prespecified subgroups were defined according to age, eGFR, type of diabetes, mean arterial pressure, and proteinuria. RESULTS: At 3 years, among the 411 patients who were enrolled, the least-squares mean (±SE) eGFR was 12.6±0.7 ml per minute per 1.73 m2 in the discontinuation group and 13.3±0.6 ml per minute per 1.73 m2 in the continuation group (difference, -0.7; 95% confidence interval [CI], -2.5 to 1.0; P = 0.42), with a negative value favoring the outcome in the continuation group. No heterogeneity in outcome according to the prespecified subgroups was observed. ESKD or the initiation of renal-replacement therapy occurred in 128 patients (62%) in the discontinuation group and in 115 patients (56%) in the continuation group (hazard ratio, 1.28; 95% CI, 0.99 to 1.65). Adverse events were similar in the discontinuation group and continuation group with respect to cardiovascular events (108 vs. 88) and deaths (20 vs. 22). CONCLUSIONS: Among patients with advanced and progressive chronic kidney disease, the discontinuation of RAS inhibitors was not associated with a significant between-group difference in the long-term rate of decrease in the eGFR. (Funded by the National Institute for Health Research and the Medical Research Council; STOP ACEi EudraCT number, 2013-003798-82; ISRCTN number, 62869767.).


Subject(s)
Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Kidney Failure, Chronic , Renin-Angiotensin System , Humans , Angiotensin Receptor Antagonists/adverse effects , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Angiotensins/pharmacology , Antihypertensive Agents/adverse effects , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Glomerular Filtration Rate , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/drug therapy , Quality of Life , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Renin-Angiotensin System/drug effects
6.
N Engl J Med ; 387(11): 967-977, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36018037

ABSTRACT

BACKGROUND: A polypill that includes key medications associated with improved outcomes (aspirin, angiotensin-converting-enzyme [ACE] inhibitor, and statin) has been proposed as a simple approach to the secondary prevention of cardiovascular death and complications after myocardial infarction. METHODS: In this phase 3, randomized, controlled clinical trial, we assigned patients with myocardial infarction within the previous 6 months to a polypill-based strategy or usual care. The polypill treatment consisted of aspirin (100 mg), ramipril (2.5, 5, or 10 mg), and atorvastatin (20 or 40 mg). The primary composite outcome was cardiovascular death, nonfatal type 1 myocardial infarction, nonfatal ischemic stroke, or urgent revascularization. The key secondary end point was a composite of cardiovascular death, nonfatal type 1 myocardial infarction, or nonfatal ischemic stroke. RESULTS: A total of 2499 patients underwent randomization and were followed for a median of 36 months. A primary-outcome event occurred in 118 of 1237 patients (9.5%) in the polypill group and in 156 of 1229 (12.7%) in the usual-care group (hazard ratio, 0.76; 95% confidence interval [CI], 0.60 to 0.96; P = 0.02). A key secondary-outcome event occurred in 101 patients (8.2%) in the polypill group and in 144 (11.7%) in the usual-care group (hazard ratio, 0.70; 95% CI, 0.54 to 0.90; P = 0.005). The results were consistent across prespecified subgroups. Medication adherence as reported by the patients was higher in the polypill group than in the usual-care group. Adverse events were similar between groups. CONCLUSIONS: Treatment with a polypill containing aspirin, ramipril, and atorvastatin within 6 months after myocardial infarction resulted in a significantly lower risk of major adverse cardiovascular events than usual care. (Funded by the European Union Horizon 2020; SECURE ClinicalTrials.gov number, NCT02596126; EudraCT number, 2015-002868-17.).


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Cardiovascular Diseases , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Platelet Aggregation Inhibitors , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Aspirin/adverse effects , Aspirin/therapeutic use , Atorvastatin/adverse effects , Atorvastatin/therapeutic use , Cardiovascular Diseases/etiology , Cardiovascular Diseases/mortality , Cardiovascular Diseases/prevention & control , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Ischemic Stroke/prevention & control , Myocardial Infarction/complications , Myocardial Infarction/prevention & control , Myocardial Infarction/therapy , Platelet Aggregation Inhibitors/adverse effects , Platelet Aggregation Inhibitors/therapeutic use , Ramipril/adverse effects , Ramipril/therapeutic use , Secondary Prevention/methods
7.
J Virol ; 98(3): e0180223, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38334329

ABSTRACT

With a high incidence of acute kidney injury among hospitalized COVID-19 patients, considerable attention has been focussed on whether SARS-CoV-2 specifically targets kidney cells to directly impact renal function, or whether renal damage is primarily an indirect outcome. To date, several studies have utilized kidney organoids to understand the pathogenesis of COVID-19, revealing the ability for SARS-CoV-2 to predominantly infect cells of the proximal tubule (PT), with reduced infectivity following administration of soluble ACE2. However, the immaturity of standard human kidney organoids represents a significant hurdle, leaving the preferred SARS-CoV-2 processing pathway, existence of alternate viral receptors, and the effect of common hypertensive medications on the expression of ACE2 in the context of SARS-CoV-2 exposure incompletely understood. Utilizing a novel kidney organoid model with enhanced PT maturity, genetic- and drug-mediated inhibition of viral entry and processing factors confirmed the requirement for ACE2 for SARS-CoV-2 entry but showed that the virus can utilize dual viral spike protein processing pathways downstream of ACE2 receptor binding. These include TMPRSS- and CTSL/CTSB-mediated non-endosomal and endocytic pathways, with TMPRSS10 likely playing a more significant role in the non-endosomal pathway in renal cells than TMPRSS2. Finally, treatment with the antihypertensive ACE inhibitor, lisinopril, showed negligible impact on receptor expression or susceptibility of renal cells to infection. This study represents the first in-depth characterization of viral entry in stem cell-derived human kidney organoids with enhanced PTs, providing deeper insight into the renal implications of the ongoing COVID-19 pandemic. IMPORTANCE: Utilizing a human iPSC-derived kidney organoid model with improved proximal tubule (PT) maturity, we identified the mechanism of SARS-CoV-2 entry in renal cells, confirming ACE2 as the sole receptor and revealing redundancy in downstream cell surface TMPRSS- and endocytic Cathepsin-mediated pathways. In addition, these data address the implications of SARS-CoV-2 exposure in the setting of the commonly prescribed ACE-inhibitor, lisinopril, confirming its negligible impact on infection of kidney cells. Taken together, these results provide valuable insight into the mechanism of viral infection in the human kidney.


Subject(s)
Angiotensin-Converting Enzyme 2 , Kidney , Organoids , SARS-CoV-2 , Virus Internalization , Humans , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/virology , Kidney/cytology , Kidney/drug effects , Kidney/metabolism , Kidney/virology , Lisinopril/pharmacology , Lisinopril/metabolism , Organoids/cytology , Organoids/drug effects , Organoids/metabolism , Organoids/virology , Pandemics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , Peptidyl-Dipeptidase A/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Acute Kidney Injury/virology , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/virology , Receptors, Coronavirus/metabolism , Models, Biological , Serine Endopeptidases/metabolism , Endosomes/drug effects , Endosomes/metabolism , Endosomes/virology , Gene Expression Regulation/drug effects , Stem Cells/cytology
8.
Circ Res ; 132(10): 1320-1337, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37167353

ABSTRACT

The current epidemic of corona virus disease (COVID-19) has resulted in an immense health burden that became the third leading cause of death and potentially contributed to a decline in life expectancy in the United States. The severe acute respiratory syndrome-related coronavirus-2 binds to the surface-bound peptidase angiotensin-converting enzyme 2 (ACE2, EC 3.4.17.23) leading to tissue infection and viral replication. ACE2 is an important enzymatic component of the renin-angiotensin system (RAS) expressed in the lung and other organs. The peptidase regulates the levels of the peptide hormones Ang II and Ang-(1-7), which have distinct and opposing actions to one another, as well as other cardiovascular peptides. A potential consequence of severe acute respiratory syndrome-related coronavirus-2 infection is reduced ACE2 activity by internalization of the viral-ACE2 complex and subsequent activation of the RAS (higher ratio of Ang II:Ang-[1-7]) that may exacerbate the acute inflammatory events in COVID-19 patients and possibly contribute to the effects of long COVID-19. Moreover, COVID-19 patients present with an array of autoantibodies to various components of the RAS including the peptide Ang II, the enzyme ACE2, and the AT1 AT2 and Mas receptors. Greater disease severity is also evident in male COVID-19 patients, which may reflect underlying sex differences in the regulation of the 2 distinct functional arms of the RAS. The current review provides a critical evaluation of the evidence for an activated RAS in COVID-19 subjects and whether this system contributes to the greater severity of severe acute respiratory syndrome-related coronavirus-2 infection in males as compared with females.


Subject(s)
COVID-19 , Renin-Angiotensin System , Humans , Male , Female , Renin-Angiotensin System/physiology , Angiotensin-Converting Enzyme 2/metabolism , Peptidyl-Dipeptidase A/physiology , SARS-CoV-2 , Sex Characteristics , Post-Acute COVID-19 Syndrome , Angiotensin-Converting Enzyme Inhibitors/pharmacology
9.
Bioessays ; 45(12): e2300153, 2023 12.
Article in English | MEDLINE | ID: mdl-37987191

ABSTRACT

It is necessary to complement next-generation sequencing data on the soil resistome with theoretical knowledge provided by ecological studies regarding the spread of antibiotic resistant bacteria (ARB) in the abiotic and, especially, biotic fraction of the soil ecosystem. Particularly, when ARB enter agricultural soils as a consequence of the application of animal manure as fertilizer, from a microbial ecology perspective, it is important to know their fate along the soil food web, that is, throughout that complex network of feeding interactions among members of the soil biota that has crucial effects on species richness and ecosystem productivity and stability. It is critical to study how the ARB that enter the soil through the application of manure can reach other taxonomical groups (e.g., fungi, protists, nematodes, arthropods, earthworms), paying special attention to their presence in the gut microbiomes of mesofauna-macrofauna and to the possibilities for horizontal gene transfer of antibiotic resistant genes.


Subject(s)
Bacteria , Soil , Animals , Bacteria/genetics , Manure/microbiology , Food Chain , Ecosystem , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Anti-Bacterial Agents/pharmacology , Soil Microbiology , Genes, Bacterial
10.
Ann Intern Med ; 177(7): 953-963, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38950402

ABSTRACT

BACKGROUND: In patients with advanced chronic kidney disease (CKD), the effects of initiating treatment with an angiotensin-converting enzyme inhibitor (ACEi) or angiotensin-receptor blocker (ARB) on the risk for kidney failure with replacement therapy (KFRT) and death remain unclear. PURPOSE: To examine the association of ACEi or ARB treatment initiation, relative to a non-ACEi or ARB comparator, with rates of KFRT and death. DATA SOURCES: Ovid Medline and the Chronic Kidney Disease Epidemiology Collaboration Clinical Trials Consortium from 1946 through 31 December 2023. STUDY SELECTION: Completed randomized controlled trials testing either an ACEi or an ARB versus a comparator (placebo or antihypertensive drugs other than ACEi or ARB) that included patients with a baseline estimated glomerular filtration rate (eGFR) below 30 mL/min/1.73 m2. DATA EXTRACTION: The primary outcome was KFRT, and the secondary outcome was death before KFRT. Analyses were done using Cox proportional hazards models according to the intention-to-treat principle. Prespecified subgroup analyses were done according to baseline age (<65 vs. ≥65 years), eGFR (<20 vs. ≥20 mL/min/1.73 m2), albuminuria (urine albumin-creatinine ratio <300 vs. ≥300 mg/g), and history of diabetes. DATA SYNTHESIS: A total of 1739 participants from 18 trials were included, with a mean age of 54.9 years and mean eGFR of 22.2 mL/min/1.73 m2, of whom 624 (35.9%) developed KFRT and 133 (7.6%) died during a median follow-up of 34 months (IQR, 19 to 40 months). Overall, ACEi or ARB treatment initiation led to lower risk for KFRT (adjusted hazard ratio, 0.66 [95% CI, 0.55 to 0.79]) but not death (hazard ratio, 0.86 [CI, 0.58 to 1.28]). There was no statistically significant interaction between ACEi or ARB treatment and age, eGFR, albuminuria, or diabetes (P for interaction > 0.05 for all). LIMITATION: Individual participant-level data for hyperkalemia or acute kidney injury were not available. CONCLUSION: Initiation of ACEi or ARB therapy protects against KFRT, but not death, in people with advanced CKD. PRIMARY FUNDING SOURCE: National Institutes of Health. (PROSPERO: CRD42022307589).


Subject(s)
Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Renal Insufficiency, Chronic , Humans , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Glomerular Filtration Rate , Randomized Controlled Trials as Topic , Renal Insufficiency, Chronic/therapy , Renal Replacement Therapy , Retrospective Studies
11.
Eur Heart J ; 45(13): 1146-1155, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37935833

ABSTRACT

BACKGROUND AND AIMS: Haemodynamic instability is associated with peri-operative myocardial injury, particularly in patients receiving renin-angiotensin system (RAS) inhibitors (angiotensin-converting-enzyme inhibitors/angiotensin II receptor blockers). Whether stopping RAS inhibitors to minimise hypotension, or continuing RAS inhibitors to avoid hypertension, reduces peri-operative myocardial injury remains unclear. METHODS: From 31 July 2017 to 1 October 2021, patients aged ≥60 years undergoing elective non-cardiac surgery were randomly assigned to either discontinue or continue RAS inhibitors prescribed for existing medical conditions in six UK centres. Renin-angiotensin system inhibitors were withheld for different durations (2-3 days) before surgery, according to their pharmacokinetic profile. The primary outcome, masked to investigators, clinicians, and patients, was myocardial injury [plasma high-sensitivity troponin-T (hs-TnT) ≥ 15 ng/L within 48 h after surgery, or ≥5 ng/L increase when pre-operative hs-TnT ≥15 ng/L]. Pre-specified adverse haemodynamic events occurring within 48 h of surgery included acute hypertension (>180 mmHg) and hypotension requiring vasoactive therapy. RESULTS: Two hundred and sixty-two participants were randomized to continue (n = 132) or stop (n = 130) RAS inhibitors. Myocardial injury occurred in 58 (48.3%) patients randomized to discontinue, compared with 50 (41.3%) patients who continued, RAS inhibitors [odds ratio (for continuing): 0.77; 95% confidence interval (CI) 0.45-1.31]. Hypertensive adverse events were more frequent when RAS inhibitors were stopped [16 (12.4%)], compared with 7 (5.3%) who continued RAS inhibitors [odds ratio (for continuing): 0.4; 95% CI 0.16-1.00]. Hypotension rates were similar when RAS inhibitors were stopped [12 (9.3%)] or continued [11 (8.4%)]. CONCLUSIONS: Discontinuing RAS inhibitors before non-cardiac surgery did not reduce myocardial injury, and could increase the risk of clinically significant acute hypertension. These findings require confirmation in future studies.


Subject(s)
Hypertension , Hypotension , Humans , Renin-Angiotensin System , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Antihypertensive Agents/therapeutic use , Hypertension/drug therapy , Hypertension/chemically induced , Hypotension/chemically induced , Hypotension/prevention & control , Hypotension/drug therapy , Angiotensin Receptor Antagonists/adverse effects
12.
J Allergy Clin Immunol ; 153(4): 1073-1082, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38300190

ABSTRACT

BACKGROUND: Angioedema is a rare but potentially life-threatening adverse drug reaction in patients receiving angiotensin-converting enzyme inhibitors (ACEis). Research suggests that susceptibility to ACEi-induced angioedema (ACEi-AE) involves both genetic and nongenetic risk factors. Genome- and exome-wide studies of ACEi-AE have identified the first genetic risk loci. However, understanding of the underlying pathophysiology remains limited. OBJECTIVE: We sought to identify further genetic factors of ACEi-AE to eventually gain a deeper understanding of its pathophysiology. METHODS: By combining data from 8 cohorts, a genome-wide association study meta-analysis was performed in more than 1000 European patients with ACEi-AE. Secondary bioinformatic analyses were conducted to fine-map associated loci, identify relevant genes and pathways, and assess the genetic overlap between ACEi-AE and other traits. Finally, an exploratory cross-ancestry analysis was performed to assess shared genetic factors in European and African-American patients with ACEi-AE. RESULTS: Three genome-wide significant risk loci were identified. One of these, located on chromosome 20q11.22, has not been implicated previously in ACEi-AE. Integrative secondary analyses highlighted previously reported genes (BDKRB2 [bradykinin receptor B2] and F5 [coagulation factor 5]) as well as biologically plausible novel candidate genes (PROCR [protein C receptor] and EDEM2 [endoplasmic reticulum degradation enhancing alpha-mannosidase like protein 2]). Lead variants at the risk loci were found with similar effect sizes and directions in an African-American cohort. CONCLUSIONS: The present results contributed to a deeper understanding of the pathophysiology of ACEi-AE by (1) providing further evidence for the involvement of bradykinin signaling and coagulation pathways and (2) suggesting, for the first time, the involvement of the fibrinolysis pathway in this adverse drug reaction. An exploratory cross-ancestry comparison implicated the relevance of the associated risk loci across diverse ancestries.


Subject(s)
Angioedema , Drug-Related Side Effects and Adverse Reactions , Humans , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Genome-Wide Association Study , Angioedema/chemically induced , Angioedema/genetics , Bradykinin
13.
J Cell Mol Med ; 28(12): e18495, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899551

ABSTRACT

Parkinson disease (PD) is one of the most common neurodegenerative diseases of the brain. Of note, brain renin-angiotensin system (RAS) is intricate in the PD neuropathology through modulation of oxidative stress, mitochondrial dysfunction and neuroinflammation. Therefore, modulation of brain RAS by angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) may be effective in reducing the risk and PD neuropathology. It has been shown that all components including the peptides and enzymes of the RAS are present in the different brain areas. Brain RAS plays a critical role in the regulation of memory and cognitive function, and in the controlling of central blood pressure. However, exaggerated brain RAS is implicated in the pathogenesis of different neurodegenerative diseases including PD. Two well-known pathways of brain RAS are recognized including; the classical pathway which is mainly mediated by AngII/AT1R has detrimental effects. Conversely, the non-classical pathway which is mostly mediated by ACE2/Ang1-7/MASR and AngII/AT2R has beneficial effects against PD neuropathology. Exaggerated brain RAS affects the viability of dopaminergic neurons. However, the fundamental mechanism of brain RAS in PD neuropathology was not fully elucidated. Consequently, the purpose of this review is to disclose the mechanistic role of RAS in in the pathogenesis of PD. In addition, we try to revise how the ACEIs and ARBs can be developed for therapeutics in PD.


Subject(s)
Brain , Parkinson Disease , Renin-Angiotensin System , Humans , Parkinson Disease/metabolism , Parkinson Disease/pathology , Brain/pathology , Brain/metabolism , Animals , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology
14.
J Biol Chem ; 299(11): 105313, 2023 11.
Article in English | MEDLINE | ID: mdl-37797695

ABSTRACT

Effective and safe therapies for the treatment of diseases caused by intraerythrocytic parasites are impeded by the rapid emergence of drug resistance and the lack of novel drug targets. One such disease is human babesiosis, which is a rapidly emerging tick-borne illness caused by Babesia parasites. In this study, we identified fosinopril, a phosphonate-containing, FDA-approved angiotensin converting enzyme (ACE) inhibitor commonly used as a prodrug for hypertension and heart failure, as a potent inhibitor of Babesia duncani parasite development within human erythrocytes. Cell biological and mass spectrometry analyses revealed that the conversion of fosinopril to its active diacid molecule, fosinoprilat, is essential for its antiparasitic activity. We show that this conversion is mediated by a parasite-encoded esterase, BdFE1, which is highly conserved among apicomplexan parasites. Parasites carrying the L238H mutation in the active site of BdFE1 failed to convert the prodrug to its active moiety and became resistant to the drug. Our data set the stage for the development of this class of drugs for the therapy of vector-borne parasitic diseases.


Subject(s)
Babesia , Parasites , Prodrugs , Animals , Humans , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Fosinopril/pharmacology , Prodrugs/pharmacology , Esterases/metabolism
15.
Stroke ; 55(7): 1838-1846, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38818733

ABSTRACT

BACKGROUND: Previous studies yielded conflicting results about the influence of blood pressure (BP) and antihypertensive treatment on cerebral small vessel disease. Here, we conducted a Mendelian randomization study to investigate the effect of BP and antihypertensive drugs on cerebral small vessel disease. METHODS: We extracted single-nucleotide polymorphisms for systolic BP and diastolic BP from a genome-wide association study (N=757 601) and screened single-nucleotide polymorphisms associated with calcium channel blockers, thiazides, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and ß-blockers from public resources as instrumental variables. Then, we chose the genome-wide association study of white matter hyperintensity (WMH; N=18 381), cerebral microbleed (3556 cases, 22 306 controls), white matter perivascular space (9317 cases, 29 281 controls), basal ganglia perivascular space (BGPVS; 8950 cases, 29 953 controls), hippocampal perivascular space (HIPPVS; 9163 cases, 29 708 controls), and lacunar stroke (6030 cases, 248 929 controls) as outcome data sets. Subsequently, we conducted a 2-sample Mendelian randomization analysis. RESULTS: We found that elevated systolic BP significantly increases the risk of BGPVS (odds ratio [OR], 1.05 [95% CI, 1.04-1.07]; P=1.72×10-12), HIPPVS (OR, 1.04 [95% CI, 1.02-1.05]; P=2.71×10-7), and lacunar stroke (OR, 1.41 [95% CI, 1.30-1.54]; P=4.97×10-15). There was suggestive evidence indicating that elevated systolic BP is associated with higher WMH volume (ß=0.061 [95% CI, 0.018-0.105]; P=5.58×10-3) and leads to an increased risk of cerebral microbleed (OR, 1.16 [95% CI, 1.04-1.29]; P=7.17×10-3). Elevated diastolic BP was significantly associated with higher WMH volume (ß=0.087 [95% CI, 0.049-0.124]; P=5.23×10-6) and significantly increased the risk of BGPVS (OR, 1.05 [95% CI, 1.04-1.06]; P=1.20×10-16), HIPPVS (OR, 1.03 [95% CI, 1.02-1.04]; P=2.96×10-6), and lacunar stroke (OR, 1.31 [95% CI, 1.21-1.41]; P=2.67×10-12). The use of calcium channel blocker to lower BP was significantly associated with lower WMH volume (ß=-0.287 [95% CI, -0.408 to -0.165]; P=4.05×10-6) and significantly reduced the risk of BGPVS (OR, 0.85 [95% CI, 0.81-0.89]; P=8.41×10-19) and HIPPVS (OR, 0.88 [95% CI, 0.85-0.92]; P=6.72×10-9). CONCLUSIONS: Our findings contribute to a better understanding of the pathogenesis of cerebral small vessel disease. Additionally, the utilization of calcium channel blockers to decrease BP can effectively reduce the likelihood of WMH, BGPVS, and HIPPVS. These findings offer valuable insights for the management and prevention of cerebral small vessel disease.


Subject(s)
Antihypertensive Agents , Blood Pressure , Cerebral Small Vessel Diseases , Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Humans , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/drug therapy , Cerebral Small Vessel Diseases/diagnostic imaging , Antihypertensive Agents/therapeutic use , Blood Pressure/drug effects , Blood Pressure/genetics , Hypertension/drug therapy , Hypertension/genetics , Female , Male , Stroke, Lacunar/genetics , Stroke, Lacunar/drug therapy , Calcium Channel Blockers/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , White Matter/diagnostic imaging , White Matter/pathology , Middle Aged
16.
Lab Invest ; 104(2): 100305, 2024 02.
Article in English | MEDLINE | ID: mdl-38109999

ABSTRACT

Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease in the United States and worldwide. Proteinuria is a major marker of the severity of injury. Dipeptidyl peptidase-4 inhibitor (DPP-4I) increases incretin-related insulin production and is, therefore, used to treat diabetes. We investigated whether DPP4I could have direct effect on kidney independent of its hypoglycemic activity. We, therefore, tested the effects of DPP4I with or without angiotensin-converting enzyme inhibitor (ACEI) on the progression of diabetic nephropathy and albuminuria in a murine model of DKD. eNOS-/-db/db mice were randomized to the following groups at age 10 weeks and treated until sacrifice: baseline (sacrificed at week 10), untreated control, ACEI, DPP4I, and combination of DPP4I and ACEI (Combo, sacrificed at week 18). Systemic parameters and urine albumin-creatinine ratio were assessed at baseline, weeks 14, and 18. Kidney morphology, glomerular filtration rate (GFR), WT-1, a marker for differentiated podocytes, podoplanin, a marker of foot process integrity, glomerular collagen IV, and alpha-smooth muscle actin were assessed at the end of the study. All mice had hyperglycemia and proteinuria at study entry at week 10. Untreated control mice had increased albuminuria, progression of glomerular injury, and reduced GFR at week 18 compared with baseline. DPP4I alone reduced blood glucose and kidney DPP-4 activity but failed to protect against kidney injury compared with untreated control. ACEI alone and combination groups showed significantly reduced albuminuria and glomerular injury, and maintained GFR and WT-1+ cells. Only the combination group had significantly less glomerular collagen IV deposition and more podoplanin preservation than the untreated control. DPP-4I alone does not decrease the progression of kidney injury in the eNOS-/-db/db mouse model, suggesting that targeting only hyperglycemia is not an optimal treatment strategy for DKD. Combined DPP-4I with ACEI added more benefit to reducing the glomerular matrix.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Dipeptidyl-Peptidase IV Inhibitors , Hyperglycemia , Mice , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/etiology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Albuminuria/drug therapy , Albuminuria/complications , Kidney , Hypoglycemic Agents/pharmacology , Mice, Inbred Strains , Collagen , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/pharmacology , Dipeptidyl Peptidase 4
17.
Kidney Int ; 105(1): 200-208, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37783444

ABSTRACT

In the STOP-ACEi trial, the outcome was similar whether or not renin-angiotensin system inhibitors (RASi) were discontinued. We now investigate whether the effect of withdrawing angiotensin converting enzyme inhibitors (ACEi) or angiotensin-receptor blockers (ARBs) differed. In this open label trial patients with estimated glomerular filtration rates (eGFR) under 30ml/min per 1.73 m2 and progressive chronic kidney disease (CKD) were randomized to stop or continue RASi. The primary outcome was eGFR at three years. The composite of kidney failure, over 50% fall in eGFR, or kidney replacement therapy (KRT) was also assessed. Of patients randomized, 99 stopped and 123 patients continued ACEi while 104 stopped and 77 continued ARB at baseline. At three years, the eGFR was similar whether or not patients were withdrawn from ACEi or from ARB. Kidney failure or initiation of KRT occurred in 65% of those stopping and 54% continuing ACEi (hazard ratio if stopped, 1.52; 95% Confidence Interval, 1.07 to 2.16) and in 60% on an ARB regardless of randomized group (hazard ratio if stopped, 1.23; 0.83 to 1.81). Kidney failure/Initiation of KRT with over 50% decline in eGFR occurred in 71% of those stopping and 59% continuing ACEi (relative risk if stopped, 1.19; 95% CI, 1.00 to 1.41) and in 65% stopping and 69% continuing ARB (relative risk if stopped, 0.96; 0.79 to 1.16). Thus, neither discontinuing ACEi nor ARB slowed the rate of decline in eGFR. Although discontinuation of ACEi appeared to have more unfavorable effects on kidney outcomes than stopping ARB, the trial was neither designed nor powered to show differences between agents.


Subject(s)
Angiotensin Receptor Antagonists , Renal Insufficiency, Chronic , Humans , Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/drug therapy , Kidney , Antihypertensive Agents , Angiotensins
18.
Lancet ; 402(10414): 1802-1804, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37844590

ABSTRACT

In their recent guidelines, the European Society of Hypertension upgraded ß blockers, putting them on equal footing with thiazide diuretics, renin-angiotensin system blockers (eg, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers), and calcium channel blockers. The reason offered for upgrading ß blockers was the observation that they are often used for many other clinical conditions commonly encountered with hypertension. This upgrade would allow for the treatment of two conditions with a single drug (a so-called twofer). In most current national and international hypertension guidelines, ß blockers are only considered to be an alternative when there are specific indications. Compared with the other first-line antihypertensive drug classes, ß blockers are significantly less effective in preventing stroke and cardiovascular mortality. To relegate ß blockers to an inferiority status as previous guidelines have done was based on the evidence in aggregate, and still stands. No new evidence supports the switch of ß blockers back to first-line therapy. We are concerned that this move might lead to widespread harm because of inferior stroke protection.


Subject(s)
Hypertension , Stroke , Humans , Antihypertensive Agents/therapeutic use , Hypertension/drug therapy , Adrenergic beta-Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Calcium Channel Blockers/therapeutic use , Stroke/drug therapy , Stroke/prevention & control , Diuretics/therapeutic use
19.
N Engl J Med ; 385(20): 1845-1855, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34758252

ABSTRACT

BACKGROUND: In patients with symptomatic heart failure, sacubitril-valsartan has been found to reduce the risk of hospitalization and death from cardiovascular causes more effectively than an angiotensin-converting-enzyme inhibitor. Trials comparing the effects of these drugs in patients with acute myocardial infarction have been lacking. METHODS: We randomly assigned patients with myocardial infarction complicated by a reduced left ventricular ejection fraction, pulmonary congestion, or both to receive either sacubitril-valsartan (97 mg of sacubitril and 103 mg of valsartan twice daily) or ramipril (5 mg twice daily) in addition to recommended therapy. The primary outcome was death from cardiovascular causes or incident heart failure (outpatient symptomatic heart failure or heart failure leading to hospitalization), whichever occurred first. RESULTS: A total of 5661 patients underwent randomization; 2830 were assigned to receive sacubitril-valsartan and 2831 to receive ramipril. Over a median of 22 months, a primary-outcome event occurred in 338 patients (11.9%) in the sacubitril-valsartan group and in 373 patients (13.2%) in the ramipril group (hazard ratio, 0.90; 95% confidence interval [CI], 0.78 to 1.04; P = 0.17). Death from cardiovascular causes or hospitalization for heart failure occurred in 308 patients (10.9%) in the sacubitril-valsartan group and in 335 patients (11.8%) in the ramipril group (hazard ratio, 0.91; 95% CI, 0.78 to 1.07); death from cardiovascular causes in 168 (5.9%) and 191 (6.7%), respectively (hazard ratio, 0.87; 95% CI, 0.71 to 1.08); and death from any cause in 213 (7.5%) and 242 (8.5%), respectively (hazard ratio, 0.88; 95% CI, 0.73 to 1.05). Treatment was discontinued because of an adverse event in 357 patients (12.6%) in the sacubitril-valsartan group and 379 patients (13.4%) in the ramipril group. CONCLUSIONS: Sacubitril-valsartan was not associated with a significantly lower incidence of death from cardiovascular causes or incident heart failure than ramipril among patients with acute myocardial infarction. (Funded by Novartis; PARADISE-MI ClinicalTrials.gov number, NCT02924727.).


Subject(s)
Aminobutyrates/therapeutic use , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Biphenyl Compounds/therapeutic use , Heart Failure/prevention & control , Myocardial Infarction/drug therapy , Ramipril/therapeutic use , Valsartan/therapeutic use , Aged , Aminobutyrates/adverse effects , Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Biphenyl Compounds/adverse effects , Cardiovascular Diseases/mortality , Double-Blind Method , Drug Combinations , Female , Hospitalization/statistics & numerical data , Humans , Hypotension/chemically induced , Male , Middle Aged , Myocardial Infarction/complications , Myocardial Infarction/mortality , Proportional Hazards Models , Ramipril/adverse effects , Stroke Volume , Valsartan/adverse effects , Ventricular Dysfunction, Left/etiology
20.
Clin Gastroenterol Hepatol ; 22(2): 315-323.e17, 2024 02.
Article in English | MEDLINE | ID: mdl-37495200

ABSTRACT

BACKGROUND & AIMS: While renin-angiotensin system inhibition lowers the hepatic venous gradient, the effect on more clinically meaningful endpoints is less studied. We aimed to quantify the relationship between renin-angiotensin system inhibition and liver-related events (LREs) among adults with compensated cirrhosis. METHODS: In this national cohort study using the Optum database, we quantified the association between angiotensin-converting enzyme (ACE) inhibitor or angiotensin-receptor blocker (ARB) use and LREs (hepatocellular carcinoma, liver transplantation, ascites, hepatic encephalopathy, or variceal bleeding) among patients with cirrhosis between 2009 and 2019. Selective beta-blocker (SBB) users served as the comparator group. We used demographic and clinical features to calculate inverse-probability treatment weighting-weighted cumulative incidences, absolute risk differences, and Cox proportional hazard ratios. RESULTS: Among 4214 adults with cirrhosis, 3155 were ACE inhibitor/ARB users and 1059 were SBB users. In inverse probability treatment weighting-weighted analyses, ACE inhibitor/ARB (vs SBB) users had lower 5-year cumulative incidence (30.6% [95% confidence interval (CI), 27.8% to 33.2%] vs 41.3% [95% CI, 34.0% to 47.7%]; absolute risk difference, -10.7% [95% CI, -18.1% to -3.6%]) and lower risk of LREs (adjusted hazard ratio [aHR], 0.69; 95% CI, 0.60 to 0.80). There was a dose-response relationship: compared with SBB use, ACE inhibitor/ARB prescriptions ≥1 defined daily dose (aHR, 0.65; 95% CI, 0.56 to 0.76) were associated with a greater risk reduction compared with <1 defined daily dose (aHR, 0.87; 95% CI, 0.71 to 1.07). Results were robust across sensitivity analyses such as comparing ACE inhibitor/ARB users with nonusers and as-treated analysis. CONCLUSIONS: In this national cohort study, ACE inhibitor/ARB use was associated with significantly lower risk of LREs in patients with compensated cirrhosis. These results provide support for a randomized clinical trial to confirm clinical benefit.


Subject(s)
Esophageal and Gastric Varices , Renin-Angiotensin System , Adult , Humans , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensins/pharmacology , Cohort Studies , Gastrointestinal Hemorrhage/chemically induced , Liver Cirrhosis/complications , Liver Cirrhosis/drug therapy , Renin-Angiotensin System/physiology
SELECTION OF CITATIONS
SEARCH DETAIL