Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Proc Natl Acad Sci U S A ; 121(32): e2316021121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39078679

ABSTRACT

For the human brain to operate, populations of neurons across anatomical structures must coordinate their activity within milliseconds. To date, our understanding of such interactions has remained limited. We recorded directly from the hippocampus (HPC), posteromedial cortex (PMC), ventromedial/orbital prefrontal cortex (OFC), and the anterior nuclei of the thalamus (ANT) during two experiments of autobiographical memory processing that are known from decades of neuroimaging work to coactivate these regions. In 31 patients implanted with intracranial electrodes, we found that the presentation of memory retrieval cues elicited a significant increase of low frequency (LF < 6 Hz) activity followed by cross-regional phase coherence of this LF activity before select populations of neurons within each of the four regions increased high-frequency (HF > 70 Hz) activity. The power of HF activity was modulated by memory content, and its onset followed a specific temporal order of ANT→HPC/PMC→OFC. Further, we probed cross-regional causal effective interactions with repeated electrical pulses and found that HPC stimulations cause the greatest increase in LF-phase coherence across all regions, whereas the stimulation of any region caused the greatest LF-phase coherence between that particular region and ANT. These observations support the role of the ANT in gating, and the HPC in synchronizing, the activity of cortical midline structures when humans retrieve self-relevant memories of their past. Our findings offer a fresh perspective, with high temporal fidelity, about the dynamic signaling and underlying causal connections among distant regions when the brain is actively involved in retrieving self-referential memories from the past.


Subject(s)
Memory, Episodic , Humans , Male , Female , Adult , Hippocampus/physiology , Prefrontal Cortex/physiology , Prefrontal Cortex/diagnostic imaging , Brain/physiology , Brain/diagnostic imaging , Mental Recall/physiology , Brain Mapping , Middle Aged , Neurons/physiology , Anterior Thalamic Nuclei/physiology
2.
J Neurosci ; 44(10)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38286624

ABSTRACT

Navigating a complex world requires integration of multiple spatial reference frames, including information about one's orientation in both allocentric and egocentric coordinates. Combining these two information sources can provide additional information about one's spatial location. Previous studies have demonstrated that both egocentric and allocentric spatial signals are reflected by the firing of neurons in the rat postrhinal cortex (POR), an area that may serve as a hub for integrating allocentric head direction (HD) cell information with egocentric information from center-bearing and center-distance cells. However, we have also demonstrated that POR HD cells are uniquely influenced by the visual properties and locations of visual landmarks, bringing into question whether the POR HD signal is truly allocentric as opposed to simply being a response to visual stimuli. To investigate this issue, we recorded HD cells from the POR of female rats while bilaterally inactivating the anterior thalamus (ATN), a region critical for expression of the "classic" HD signal in cortical areas. We found that ATN inactivation led to a significant decrease in both firing rate and tuning strength for POR HD cells, as well as a disruption in the encoding of allocentric location by conjunctive HD/egocentric cells. In contrast, POR egocentric cells without HD tuning were largely unaffected in a consistent manner by ATN inactivation. These results indicate that the POR HD signal originates at least partially from projections from the ATN and supports the view that the POR acts as a hub for the integration of egocentric and allocentric spatial representations.


Subject(s)
Anterior Thalamic Nuclei , Rats , Female , Animals , Orientation/physiology , Space Perception/physiology
3.
Hippocampus ; 34(4): 168-196, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38178693

ABSTRACT

Head direction (HD) cells, which fire persistently when an animal's head is pointed in a particular direction, are widely thought to underlie an animal's sense of spatial orientation and have been identified in several limbic brain regions. Robust HD cell firing is observed throughout the thalamo-parahippocampal system, although recent studies report that parahippocampal HD cells exhibit distinct firing properties, including conjunctive aspects with other spatial parameters, which suggest they play a specialized role in spatial processing. Few studies, however, have quantified these apparent differences. Here, we performed a comparative assessment of HD cell firing characteristics across the anterior dorsal thalamus (ADN), postsubiculum (PoS), parasubiculum (PaS), medial entorhinal (MEC), and postrhinal (POR) cortices. We report that HD cells with a high degree of directional specificity were observed in all five brain regions, but ADN HD cells display greater sharpness and stability in their preferred directions, and greater anticipation of future headings compared to parahippocampal regions. Additional analysis indicated that POR HD cells were more coarsely modulated by other spatial parameters compared to PoS, PaS, and MEC. Finally, our analyses indicated that the sharpness of HD tuning decreased as a function of laminar position and conjunctive coding within the PoS, PaS, and MEC, with cells in the superficial layers along with conjunctive firing properties showing less robust directional tuning. The results are discussed in relation to theories of functional organization of HD cell tuning in thalamo-parahippocampal circuitry.


Subject(s)
Anterior Thalamic Nuclei , Parahippocampal Gyrus , Animals , Parahippocampal Gyrus/physiology , Cerebral Cortex , Space Perception , Head/physiology
4.
Acta Neuropathol ; 147(1): 98, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38861157

ABSTRACT

Widespread cortical accumulation of misfolded pathological tau proteins (ptau) in the form of paired helical filaments is a major hallmark of Alzheimer's disease. Subcellular localization of ptau at various stages of disease progression is likely to be informative of the cellular mechanisms involving its spread. Here, we found that the density of ptau within several distinct rostral thalamic nuclei in post-mortem human tissue (n = 25 cases) increased with the disease stage, with the anterodorsal nucleus (ADn) consistently being the most affected. In the ADn, ptau-positive elements were present already in the pre-cortical (Braak 0) stage. Tau pathology preferentially affected the calretinin-expressing subpopulation of glutamatergic neurons in the ADn. At the subcellular level, we detected ptau immunoreactivity in ADn cell bodies, dendrites, and in a specialized type of presynaptic terminal that expresses vesicular glutamate transporter 2 (vGLUT2) and likely originates from the mammillary body. The ptau-containing terminals displayed signs of degeneration, including endosomal/lysosomal organelles. In contrast, corticothalamic axon terminals lacked ptau. The data demonstrate the involvement of a specific cell population in ADn at the onset of the disease. The presence of ptau in subcortical glutamatergic presynaptic terminals supports hypotheses about the transsynaptic spread of tau selectively affecting specialized axonal pathways.


Subject(s)
Alzheimer Disease , tau Proteins , Humans , tau Proteins/metabolism , Female , Male , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Middle Aged , Neurons/metabolism , Neurons/pathology , Vesicular Glutamate Transport Protein 2/metabolism , Glutamic Acid/metabolism , Anterior Thalamic Nuclei/metabolism , Anterior Thalamic Nuclei/pathology , Calbindin 2/metabolism , Neurofibrillary Tangles/pathology , Neurofibrillary Tangles/metabolism , Presynaptic Terminals/metabolism , Presynaptic Terminals/pathology
5.
Epilepsia ; 65(6): 1531-1547, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38506635

ABSTRACT

Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is a widespread invasive procedure for treating drug-resistant epilepsy. Nonetheless, there is a persistent debate regarding the short-term and long-term efficacy and safety of ANT-DBS. Thus we conducted a systematic review and meta-analysis. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), we searched PubMed, Cochrane, Embase, and Web of Science for studies treating refractory epilepsy with ANT-DBS. Short-term analysis was considered for studies with a mean follow-up of 3 years or less. The following outcomes were assessed for data extraction: procedure responders and nonresponders, increased seizure frequency, complications, and procedure-related mortality. Of 650 studies, 25 fit our inclusion criteria, involving 427 patients. Previous surgical treatments have been reported in 214 patients (50.1%) and a median average baseline seizure frequency of 64.9 monthly seizures. In the short-term analysis, we observed a proportion of 67% (95% confidence interval [CI] 54%-79%) of responders and 33% (95% CI 21%-46%) of nonresponders. In addition, 4% (95% CI 0%-9%) of the patients presented increased seizure frequency. In the long-term analysis, we observed 72% (95% CI 66%-78%) responders and 27% (95% CI 21%-34%) nonresponders. Moreover, there was a 2% (95% CI 0%-5%) increase in seizure frequency. No procedure-related mortality was reported at any follow-up. ANT-DBS effectively treats refractory epilepsy, with lasting short-term and long-term benefits. It remains safe and efficient despite complications, showing no procedure-linked fatalities, high patient responsiveness, and minimal increased seizures. Consistent results over time and low morbidity/mortality rates emphasize its worth. Further research is necessary to diminish the discrepancy among results.


Subject(s)
Anterior Thalamic Nuclei , Deep Brain Stimulation , Drug Resistant Epilepsy , Humans , Deep Brain Stimulation/methods , Drug Resistant Epilepsy/therapy , Treatment Outcome
6.
Epilepsia ; 65(8): 2438-2458, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38837755

ABSTRACT

OBJECTIVE: Short-term outcomes of deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS) were reported for people with drug-resistant focal epilepsy (PwE). Because long-term data are still scarce, the Medtronic Registry for Epilepsy (MORE) evaluated clinical routine application of ANT-DBS. METHODS: In this multicenter registry, PwE with ANT-DBS were followed up for safety, efficacy, and battery longevity. Follow-up ended after 5 years or upon study closure. Clinical characteristics and stimulation settings were compared between PwE with no benefit, improvers, and responders, that is, PwE with average monthly seizure frequency reduction rates of ≥50%. RESULTS: Of 170 eligible PwE, 104, 62, and 49 completed the 3-, 4-, and 5-year follow-up, respectively. Most discontinuations (68%) were due to planned study closure as follow-up beyond 2 years was optional. The 5-year follow-up cohort had a median seizure frequency reduction from 16 per month at baseline to 7.9 per month at 5-year follow-up (p < .001), with most-pronounced effects on focal-to-bilateral tonic-clonic seizures (n = 15, 77% reduction, p = .008). At last follow-up (median 3.5 years), 41% (69/170) of PwE were responders. Unifocal epilepsy (p = .035) and a negative history of epilepsy surgery (p = .002) were associated with larger average monthly seizure frequency reductions. Stimulation settings did not differ between response groups. In 179 implanted PwE, DBS-related adverse events (AEs, n = 225) and serious AEs (n = 75) included deterioration in epilepsy or seizure frequency/severity/type (33; 14 serious), memory/cognitive impairment (29; 3 serious), and depression (13; 4 serious). Five deaths occurred (none were ANT-DBS related). Most AEs (76.3%) manifested within the first 2 years after implantation. Activa PC depletion (n = 37) occurred on average after 45 months. SIGNIFICANCE: MORE provides further evidence for the long-term application of ANT-DBS in clinical routine practice. Although clinical benefits increased over time, side effects occurred mainly during the first 2 years. Identified outcome modifiers can help inform PwE selection and management.


Subject(s)
Anterior Thalamic Nuclei , Deep Brain Stimulation , Drug Resistant Epilepsy , Registries , Humans , Deep Brain Stimulation/methods , Deep Brain Stimulation/adverse effects , Female , Male , Adult , Middle Aged , Drug Resistant Epilepsy/therapy , Treatment Outcome , Europe/epidemiology , Young Adult , Follow-Up Studies , Adolescent , Aged
7.
Neurol Neurochir Pol ; 58(3): 256-273, 2024.
Article in English | MEDLINE | ID: mdl-38864766

ABSTRACT

INTRODUCTION: Drug-resistant epilepsy (DRE) remains poorly-controlled in c.33% of patients, and up to 50% of patients suffering from DRE are deemed not to be suitable candidates for resective surgery. For these patients, deep brain stimulation (DBS) may constitute the last resort in the treatment of DRE. STATE OF THE ART: We undertook a systematic review of the current literature on DBS efficacy and the safety of two thalamic nuclei-anterior nucleus of the thalamus (ANT) and the centromedian nucleus of the thalamus in the management of patients with DRE. A search using two electronic databases, the Medical Literature, Analysis, and Retrieval System on-line (MEDLINE) and the Cochrane Central Register of Controlled Trials (CEN-TRAL) was conducted. CLINICAL IMPLICATIONS: We found 30 articles related to ANT DBS and 13 articles related to CMN DBS which were further analysed. Based on the clinical research articles, we found a mean seizure frequency reduction for both thalamic nuclei. For ANT DBS, the mean seizure frequency reduction ranged from 48% to 75%, and for CMN DBS from 46.7% to 91%. The responder rate (defined as at least 50% reduction in seizure frequency) was reported to be 53.2-75% for patients after ANT DBS and 50-90% for patients after CMN DBS. FUTURE DIRECTIONS: ANT and CMN DBS appear to be safe and efficacious treatments, particularly in patients with refractory partial seizures and primary generalised seizures. ANT DBS reduces most effectively seizures originating in the temporal and frontal lobes. CMN DBS reduces mostly primary generalised tonic-clonic and atypical absences and atonic seizures. Seizures related to Lennox-Gastaut syndrome respond very favourably to CMN DBS.


Subject(s)
Anterior Thalamic Nuclei , Deep Brain Stimulation , Drug Resistant Epilepsy , Intralaminar Thalamic Nuclei , Humans , Deep Brain Stimulation/methods , Drug Resistant Epilepsy/therapy , Treatment Outcome
8.
Cell Rep ; 43(3): 113842, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38427564

ABSTRACT

Understanding the cell-type composition and spatial organization of brain regions is crucial for interpreting brain computation and function. In the thalamus, the anterior thalamic nuclei (ATN) are involved in a wide variety of functions, yet the cell-type composition of the ATN remains unmapped at a single-cell and spatial resolution. Combining single-cell RNA sequencing, spatial transcriptomics, and multiplexed fluorescent in situ hybridization, we identify three discrete excitatory cell-type clusters that correspond to the known nuclei of the ATN and uncover marker genes, molecular pathways, and putative functions of these cell types. We further illustrate graded spatial variation along the dorsomedial-ventrolateral axis for all individual nuclei of the ATN and additionally demonstrate that the anteroventral nucleus exhibits spatially covarying protein products and long-range inputs. Collectively, our study reveals discrete and continuous cell-type organizational principles of the ATN, which will help to guide and interpret experiments on ATN computation and function.


Subject(s)
Anterior Thalamic Nuclei , Animals , Mice , Anterior Thalamic Nuclei/metabolism , In Situ Hybridization, Fluorescence
9.
Elife ; 132024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470232

ABSTRACT

The sense of direction is critical for survival in changing environments and relies on flexibly integrating self-motion signals with external sensory cues. While the anatomical substrates involved in head direction (HD) coding are well known, the mechanisms by which visual information updates HD representations remain poorly understood. Retrosplenial cortex (RSC) plays a key role in forming coherent representations of space in mammals and it encodes a variety of navigational variables, including HD. Here, we use simultaneous two-area tetrode recording to show that RSC HD representation is nearly synchronous with that of the anterodorsal nucleus of thalamus (ADn), the obligatory thalamic relay of HD to cortex, during rotation of a prominent visual cue. Moreover, coordination of HD representations in the two regions is maintained during darkness. We further show that anatomical and functional connectivity are consistent with a strong feedforward drive of HD information from ADn to RSC, with anatomically restricted corticothalamic feedback. Together, our results indicate a concerted global HD reference update across cortex and thalamus.


Subject(s)
Anterior Thalamic Nuclei , Animals , Mice , Gyrus Cinguli , Cerebral Cortex , Cues , Rotation , Mammals
10.
Neuropharmacology ; 246: 109847, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38218578

ABSTRACT

Neuropeptide Y (NPY) has anxiolytic-like effects and facilitates the extinction of cued and contextual fear in rodents. We have previously shown that intracerebroventricular administration of NPY reduces the expression of social fear via simultaneous activation of Y1 and Y2 receptors in a mouse model of social fear conditioning (SFC). In the present study, we investigated whether the anteroventral bed nucleus of the stria terminalis (BNSTav) mediates these effects of NPY, given the important role of BNSTav in regulating anxiety- and fear-related behaviors. We show that while NPY (0.1 nmol/0.2 µl/side) did not reduce the expression of SFC-induced social fear in male CD1 mice, it reduced the expression of both cued and contextual fear by acting on Y2 but not on Y1 receptors within the BNSTav. Prior administration of the Y2 receptor antagonist BIIE0246 (0.2 nmol/0.2 µl/side) but not of the Y1 receptor antagonist BIBO3304 trifluoroacetate (0.2 nmol/0.2 µl/side) blocked the effects of NPY on the expression of cued and contextual fear. Similarly, NPY exerted non-social anxiolytic-like effects in the elevated plus maze test but not social anxiolytic-like effects in the social approach avoidance test by acting on Y2 receptors and not on Y1 receptors within the BNSTav. These results suggest that administration of NPY within the BNSTav exerts robust Y2 receptor-mediated fear-reducing and anxiolytic-like effects specifically in non-social contexts and add a novel piece of evidence regarding the neural underpinnings underlying the effects of NPY on conditioned fear and anxiety-like behavior.


Subject(s)
Anterior Thalamic Nuclei , Anti-Anxiety Agents , Septal Nuclei , Male , Mice , Animals , Neuropeptide Y/pharmacology , Neuropeptide Y/metabolism , Receptors, Neuropeptide Y/metabolism , Anti-Anxiety Agents/pharmacology , Septal Nuclei/metabolism , Anxiety/drug therapy , Fear , Anterior Thalamic Nuclei/metabolism
11.
J Alzheimers Dis ; 97(1): 507-519, 2024.
Article in English | MEDLINE | ID: mdl-38189755

ABSTRACT

BACKGROUND: Increasing evidence is demonstrating that degeneration of specific thalamic nuclei, in addition to the hippocampus, may occur in Alzheimer's disease (AD) from the prodromal stage (mild cognitive impairment - MCI) and contribute to memory impairment. OBJECTIVE: Here, we evaluated the presence of macro and micro structural alterations at the level of the anterior thalamic nuclei (ATN) and medio-dorsal thalamic nuclei (MDTN) in AD and amnestic MCI (aMCI) and the possible relationship between such changes and the severity of memory impairment. METHODS: For this purpose, a sample of 50 patients with aMCI, 50 with AD, and 50 age- and education-matched healthy controls (HC) were submitted to a 3-T MRI protocol with whole-brain T1-weighted and diffusion tensor imaging and a comprehensive neuropsychological assessment. RESULTS: At macro-structural level, both the ATN and MDTN were found significantly smaller in patients with aMCI and AD when compared to HC subjects. At micro-structural level, instead, diffusion alterations that significantly differentiated aMCI and AD patients from HC subjects were found only in the ATN, but not in the MDTN. Moreover, diffusion values of the ATN were significantly associated with poor episodic memory in the overall patients' group. CONCLUSIONS: These findings represent the first in vivo evidence of a relevant involvement of ATN in the AD-related neurodegeneration and memory profile and strengthen the importance to look beyond the hippocampus when considering neurological conditions characterized by memory decline.


Subject(s)
Alzheimer Disease , Anterior Thalamic Nuclei , Humans , Anterior Thalamic Nuclei/diagnostic imaging , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Diffusion Tensor Imaging , Memory Disorders/diagnostic imaging , Memory Disorders/etiology , Thalamic Nuclei
12.
CNS Neurosci Ther ; 30(6): e14782, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828651

ABSTRACT

BACKGROUND: The thalamus system plays critical roles in the regulation of reversible unconsciousness induced by general anesthetics, especially the arousal stage of general anesthesia (GA). But the function of thalamus in GA-induced loss of consciousness (LOC) is little known. The thalamic reticular nucleus (TRN) is the only GABAergic neurons-composed nucleus in the thalamus, which is composed of parvalbumin (PV) and somatostatin (SST)-expressing GABAergic neurons. The anterior sector of TRN (aTRN) is indicated to participate in the induction of anesthesia, but the roles remain unclear. This study aimed to reveal the role of the aTRN in propofol and isoflurane anesthesia. METHODS: We first set up c-Fos straining to monitor the activity variation of aTRNPV and aTRNSST neurons during propofol and isoflurane anesthesia. Subsequently, optogenetic tools were utilized to activate aTRNPV and aTRNSST neurons to elucidate the roles of aTRNPV and aTRNSST neurons in propofol and isoflurane anesthesia. Electroencephalogram (EEG) recordings and behavioral tests were recorded and analyzed. Lastly, chemogenetic activation of the aTRNPV neurons was applied to confirm the function of the aTRN neurons in propofol and isoflurane anesthesia. RESULTS: c-Fos straining showed that both aTRNPV and aTRNSST neurons are activated during the LOC period of propofol and isoflurane anesthesia. Optogenetic activation of aTRNPV and aTRNSST neurons promoted isoflurane induction and delayed the recovery of consciousness (ROC) after propofol and isoflurane anesthesia, meanwhile chemogenetic activation of the aTRNPV neurons displayed the similar effects. Moreover, optogenetic and chemogenetic activation of the aTRN neurons resulted in the accumulated burst suppression ratio (BSR) during propofol and isoflurane GA, although they represented different effects on the power distribution of EEG frequency. CONCLUSION: Our findings reveal that the aTRN GABAergic neurons play a critical role in promoting the induction of propofol- and isoflurane-mediated GA.


Subject(s)
Anesthesia, General , Consciousness , GABAergic Neurons , Isoflurane , Propofol , Propofol/pharmacology , Isoflurane/pharmacology , Animals , GABAergic Neurons/drug effects , GABAergic Neurons/physiology , Mice , Consciousness/drug effects , Consciousness/physiology , Male , Electroencephalography , Anesthetics, Inhalation/pharmacology , Anterior Thalamic Nuclei/drug effects , Anterior Thalamic Nuclei/physiology , Mice, Inbred C57BL , Mice, Transgenic , Anesthetics, Intravenous/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Optogenetics
13.
Neurosurgery ; 95(3): 634-640, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38517164

ABSTRACT

BACKGROUND AND OBJECTIVES: Intracranial electrophysiology of thalamic nuclei has demonstrated involvement of thalamic areas in the propagation of seizures in focal drug-resistant epilepsy. Recent studies have argued that thalamus stereoencephalography (sEEG) may aid in understanding the epileptogenic zone and treatment options. However, the study of thalamic sEEG-associated hemorrhage incidence has not been investigated in a cohort study design. In this article, we present the largest retrospective cohort study of sEEG patients and compare hemorrhage rates between those with and without thalamic sEEG monitoring. METHODS: Retrospective chart review of clinical and epilepsy history, electrode implantation, rationale, and outcomes was performed for 76 patients (age 20-69 years) with drug-resistant epilepsy who underwent sEEG monitoring at our institution (2019-2022). A subset of 38% of patients (n = 30) underwent thalamic monitoring of the anterior thalamic nucleus (n = 14), pulvinar nucleus (n = 25), or both (n = 10). Planned perisylvian orthogonal sEEG trajectories were extended to 2- to 3-cm intraparenchymally access thalamic area(s).The decision to incorporate thalamic monitoring was made by the multidisciplinary epilepsy team. Statistical comparison of hemorrhage rate, type, and severity between patients with and without thalamic sEEG monitoring was made. RESULTS: Our approach for thalamic monitoring was not associated with local intraparenchymal hemorrhage of thalamic areas or found along extended cortical trajectories, and symptomatic hemorrhage rates were greater for patients with thalamic coverage (10% vs 0%, P = .056), although this was not found to be significant. Importantly, patients with perisylvian electrode trajectories, with or without thalamic coverage, did not experience a higher incidence of hemorrhage ( P = .34). CONCLUSION: sEEG of the thalamus is a safe and valuable tool that can be used to interrogate the efficacy of thalamic neuromodulation for drug-resistant epilepsy. While patients with thalamic sEEG did have higher incidence of hemorrhage at any monitoring site, this finding was apparently not related to the method of perisylvian implantation and did not involve any trajectories targeting the thalamus.


Subject(s)
Drug Resistant Epilepsy , Thalamus , Humans , Adult , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Middle Aged , Male , Female , Retrospective Studies , Young Adult , Aged , Thalamus/diagnostic imaging , Electroencephalography/methods , Cerebral Cortex/diagnostic imaging , Electrodes, Implanted/adverse effects , Cohort Studies , Stereotaxic Techniques , Anterior Thalamic Nuclei/diagnostic imaging
15.
Acta neurol. colomb ; 39(3)sept. 2023.
Article in Spanish | LILACS | ID: biblio-1533500

ABSTRACT

Introducción: En pacientes con epilepsia del lóbulo temporal refractarios que no son candidatos a cirugía, se debe considerar la estimulación eléctrica cerebral como una opción. Contenido: La estimulación eléctrica cerebral es la administración directa de pulsos eléctricos al tejido nervioso que permite modular un sustrato patológico, interrumpir la manifestación clínica de las crisis y reducir la gravedad de estas. Así, dada la importancia de estos tratamientos para los pacientes con epilepsia del lóbulo temporal refractaria, se hace una revisión de cuatro tipos de estimulación eléctrica. La primera, la del nervio vago, es una buena opción en crisis focales y crisis generalizadas o multifocales. La segunda, la del hipocampo, es más útil en pacientes no candidatos a lobectomía por riesgo de pérdida de memoria, con resonancia magnética normal o sin esclerosis mesial temporal. La tercera, la del núcleo anterior, es pertinente principalmente en pacientes con crisis focales, pero debe realizarse con precaución en pacientes con alto riesgo de cambios cognitivos, como los ancianos, o en los que presentan alteración del estado de ánimo basal, y, por último, la del núcleo centromediano se recomienda para el tratamiento crisis focales en el síndrome de Rasmussen y crisis tónico-clónicas en el síndrome de Lennox-Gastaut. Conclusiones: El interés por la estimulación eléctrica cerebral ha venido aumentando, al igual que las estructuras diana en las cuales se puede aplicar, debido a que es un tratamiento seguro y eficaz en pacientes con epilepsia del lóbulo temporal para controlar las crisis, pues disminuye la morbimortalidad y aumenta la calidad de vida.


Introduction: In patients with refractory temporal lobe epilepsy who are not candidates for surgery, electrical brain stimulation should be considered as another option. Contents: Electrical brain stimulation is the direct administration of electrical pulses to nerve tissue that modulates a pathological substrate, interrupts the clinical manifestation of seizures, and reduces their severity. Thus, given the importance of these treatments for patients with refractory temporal lobe epilepsy, four types of electrical stimulation are reviewed. The first, vagus nerve stimulation, is a good option in focal seizures and generalized or multifocal seizures. The second, hippocampal stimulation, is more useful in patients who are not candidates for lobectomy due to the risk of memory loss, with normal MRI or without mesial temporal sclerosis. The third, the anterior nucleus, is mainly in patients with focal seizures, but with caution in patients at high risk of cognitive changes such as the elderly, or in those with baseline mood disturbance and, finally, the centromedian nucleus is recommended for the treatment of focal seizures in Rasmussen's syndrome and tonic-clonic seizures in Lennox-Gastaut syndrome. Conclusions: the interest in brain electrical stimulation has been increasing as well as the target structures in which it can be applied because it is a safe and effective treatment in patients with temporal lobe epilepsy to control seizures, decreasing morbidity and mortality and increasing quality of life


Subject(s)
Anterior Thalamic Nuclei , Intralaminar Thalamic Nuclei , Epilepsy, Temporal Lobe , Vagus Nerve Stimulation , Electric Stimulation , Hippocampus
16.
Arq. neuropsiquiatr ; 60(3A): 572-575, Sept. 2002. ilus, graf
Article in English | LILACS | ID: lil-316636

ABSTRACT

The pilocarpine model of epilepsy in rats is characterised by the occurrence of spontaneous seizures (SRSs) during the chronic period that recur 2-3 times per week during the whole animal life. In a previous study on brain metabolism during the chronic period of the pilocarpine model it was possible to observe that, among several brain structures, the lateral posterior thalamic nuclei (LP) showed a strikingly increased metabolism. Some evidences suggest that the LP can participate in an inhibitory control system involved in the propagation of the seizures. The aim of the present study was to verify the role of LP in the expression and frequency of spontaneous seizures observed in the pilocarpine model. Ten adult male rats presenting SRSs were monitored for behavioural events by video system one month before and one month after LP ibotenic acid lesion. Another group of chronic epileptic rats (n=10) had the anteroventral thalamic nuclei (AV) lesioned by ibotenic acid. After the surgical procedure, the animals were sacrified and the brains were processed for histological analysis by the Nissl method. The LP group seizure frequency was 3.1±1.9 before ibotenic acid injection and showed an increase (16.3±7.2 per week) after LP lesion. No changes in SRSs frequency were observed in the AV group after ibotenic lesion in these nuclei. These results seem to suggest that LP play a role in the seizure circuitry inhibiting the expression of spontaneous seizures in the pilocarpine model


Subject(s)
Animals , Male , Rats , Anterior Thalamic Nuclei , Muscarinic Agonists , Pilocarpine , Status Epilepticus , Anterior Thalamic Nuclei , Behavior, Animal , Disease Models, Animal , Rats, Wistar , Recurrence , Status Epilepticus
SELECTION OF CITATIONS
SEARCH DETAIL