Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Am Chem Soc ; 146(31): 21568-21582, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39051165

ABSTRACT

The heterogeneity of hepatocellular carcinoma (HCC) can prevent effective treatment, emphasizing the need for more effective therapies. Herein, we employed arsenene nanosheets coated with manganese dioxide and polyethylene glycol (AMPNs) for the degradation of Pin1, which is universally overexpressed in HCC. By employing an "AND gate", AMPNs exhibited responsiveness toward excessive glutathione and hydrogen peroxide within the tumor microenvironment, thereby selectively releasing AsxOy to mitigate potential side effects of As2O3. Notably, AMPNs induced the suppressing Pin1 expression while simultaneously upregulation PD-L1, thereby eliciting a robust antitumor immune response and enhancing the efficacy of anti-PD-1/anti-PD-L1 therapy. The combination of AMPNs and anti-PD-1 synergistically enhanced tumor suppression and effectively induced long-lasting immune memory. This approach did not reveal As2O3-associated toxicity, indicating that arsenene-based nanotherapeutic could be employed to amplify the response rate of anti-PD-1/anti-PD-L1 therapy to improve the clinical outcomes of HCC patients and potentially other solid tumors (e.g., breast cancer) that are refractory to anti-PD-1/anti-PD-L1 therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Manganese Compounds , NIMA-Interacting Peptidylprolyl Isomerase , Oxides , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Oxides/chemistry , Oxides/pharmacology , Humans , NIMA-Interacting Peptidylprolyl Isomerase/antagonists & inhibitors , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Nanostructures/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Arsenicals/chemistry , Arsenicals/pharmacology , Arsenicals/therapeutic use , Mice , Animals , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Cell Line, Tumor , Polyethylene Glycols/chemistry
2.
Toxicol Appl Pharmacol ; 482: 116798, 2024 01.
Article in English | MEDLINE | ID: mdl-38160894

ABSTRACT

Osteosarcoma (OS) is a common malignant tumor disease in the department of orthopedics, which is prone to the age of adolescents and children under 20 years old. Arsenic trioxide (ATO), an ancient poison, has been reported to play a critical role in a variety of tumor treatments, including OS. However, due to certain poisonous side effects such as cardiotoxicity and hepatotoxicity, clinical application of ATO has been greatly limited. Here we report that low doses of ATO (1 µM) observably reduced the half-effective inhibitory concentration (IC50) of vitamin C on OS cells. Compared with the treatment alone, the synthetic application of vitamin C (VitC, 800 µM) and ATO (1 µM) significantly further inhibited the proliferation, migration, and invasion of OS cells and promoted cell apoptosis in vitro. Meanwhile, we observed that the combined application of VitC and ATO directly suppresses the aerobic glycolysis of OS cells with the decreased production of pyruvate, lactate, and ATP via inhibiting the expression of the critical glycolytic genes (PGK1, PGM1, and LDHA). Moreover, the combination of VitC (200 mg/kg) and ATO (1 mg/kg) with tail vein injection significantly delayed OS growth and migration of nude mice by inhibiting aerobic glycolysis of OS. Thus, our results demonstrate that VitC effectively increases the sensitivity of OS to low concentrations of ATO via inhibiting aerobic glycolysis to alleviate the toxic side effects of high doses of arsenic trioxide, suggesting that synthetic application of VitC and ATO is a promising approach for the clinical treatment of human OS.


Subject(s)
Arsenicals , Bone Neoplasms , Osteosarcoma , Animals , Mice , Child , Humans , Adolescent , Young Adult , Adult , Arsenic Trioxide/pharmacology , Ascorbic Acid/pharmacology , Mice, Nude , Oxides/toxicity , Arsenicals/pharmacology , Apoptosis , Osteosarcoma/drug therapy , Vitamins/pharmacology , Bone Neoplasms/drug therapy , Glycolysis , Cell Line, Tumor
3.
Bioorg Chem ; 150: 107535, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38865859

ABSTRACT

Phenylarsine oxide (PAO) is a known environmental pollutant and skin keratinocytes are most seriously affected. Baicalin (BCN) was reported to have antioxidant and anti-inflammatory effects, but its protective effect against PAO toxicity is unknown. This study aimed at exploring whether baicalin can reverse the toxicity of human epidermal keratinocytes that are subjected to PAO exposure and underlying mechanisms. In silico analysis from a publicly accessible HaCaT cell transcriptome dataset exposed to chronic Arsenic showed significant differential expression of several genes, including the genes related to DNA replication. Later, we performed in vitro experiments, in which HaCaT cells were exposed to PAO (500 nM) in the existence of BCN (10-50 µM). Treatment of PAO alone induces the JNK, p38 and caspase-3 activation, which were engaged in the apoptosis induction, while the activity of AKT was significantly inhibited, which was engaged in the suppression of apoptosis. PAO suppressed SIRT3 expression and induced intracellular reactive oxygen species (ROS), causing a marked reduce in cell viability and apoptosis. However, BCN treatment restored the PAO-induced suppression of SIRT3 and AKT expression, reduced intracellular ROS generation, and markedly suppressed both caspase-3 activation and apoptosis induction. However, the protective effect of BCN was significantly attenuated after pretreatment with nicotinamide, an inhibitor of SIRT3. These findings indicate that BCN protects against cell death induced by PAO via inhibiting excessive intracellular ROS generation via restoring SIRT3 activity and reactivating downstream AKT pathway. In this study, we firstly shown that BCN is an efficient drug to prevent PAO-induced skin cytotoxicity, and these findings need to be confirmed by in vivo and clinical investigations.


Subject(s)
Apoptosis , Arsenicals , Cell Survival , Flavonoids , Keratinocytes , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Flavonoids/pharmacology , Flavonoids/chemistry , Arsenicals/pharmacology , Apoptosis/drug effects , Cell Survival/drug effects , Reactive Oxygen Species/metabolism , Molecular Structure , Dose-Response Relationship, Drug , Protective Agents/pharmacology , Protective Agents/chemistry , Structure-Activity Relationship , Skin/drug effects , Skin/pathology
4.
Adv Exp Med Biol ; 1459: 321-339, 2024.
Article in English | MEDLINE | ID: mdl-39017850

ABSTRACT

The transformation of acute promyelocytic leukemia (APL) from the most fatal to the most curable subtype of acute myeloid leukemia (AML), with long-term survival exceeding 90%, has represented one of the most exciting successes in hematology and in oncology. APL is a paradigm for oncoprotein-targeted cure.APL is caused by a 15/17 chromosomal translocation which generates the PML-RARA fusion protein and can be cured by the chemotherapy-free approach based on the combination of two therapies targeting PML-RARA: retinoic acid (RA) and arsenic. PML-RARA is the key driver of APL and acts by deregulating transcriptional control, particularly RAR targets involved in self-renewal or myeloid differentiation, also disrupting PML nuclear bodies. PML-RARA mainly acts as a modulator of the expression of specific target genes: genes whose regulatory elements recruit PML-RARA are not uniformly repressed but also may be upregulated or remain unchanged. RA and arsenic trioxide directly target PML-RARA-mediated transcriptional deregulation and protein stability, removing the differentiation block at promyelocytic stage and inducing clinical remission of APL patients.


Subject(s)
Leukemia, Promyelocytic, Acute , Oncogene Proteins, Fusion , Tretinoin , Humans , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/pathology , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Tretinoin/therapeutic use , Tretinoin/pharmacology , Arsenic Trioxide/therapeutic use , Arsenic Trioxide/pharmacology , Gene Expression Regulation, Leukemic/drug effects , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Arsenicals/therapeutic use , Arsenicals/pharmacology , Oxides/therapeutic use , Oxides/pharmacology , Animals
5.
Immunopharmacol Immunotoxicol ; 46(3): 408-416, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816179

ABSTRACT

BACKGROUND: Myelodysplastic syndrome (MDS) is a prevalent hematological neoplastic disorder in clinics and its immunopathogenesis has garnered growing interest. Oral and intravenous arsenic agents have long been used to treat hematological malignancies. The main component of oral arsenic is realgar (arsenic disulfide), while arsenic trioxide is the main component of intravenous arsenic. METHODS: This study aimed to assess the effects of ATO and Realgar on the enhancement of peripheral blood, drug safety, and T cell immune status in the NUP98-HOXD13 (NHD13) mice model of MDS, specifically in the peripheral blood, spleen, and liver. RESULTS: The study findings indicate that realgar and arsenic trioxide (ATO) can improve peripheral hemogram in mice, whereas realgar promotes higher peripheral blood cell production than ATO. Furthermore, the clinical administration method and dose did not cause significant toxicity or side effects and thus can be considered safe. Coexistence and interconversion of hyperimmune function and immunosuppression in mice were also observed in this study. In addition, there were interactions between immune cells in the peripheral blood, spleen, and liver to regulate the immune balance of the body and activate immunity via T-cell activation. CONCLUSION: In summary, oral and intravenous arsenic agents are beneficial in improving peripheral hemogram and immunity in mice.


Subject(s)
Arsenic Trioxide , Arsenicals , Disease Models, Animal , Myelodysplastic Syndromes , Animals , Arsenic Trioxide/administration & dosage , Arsenic Trioxide/pharmacology , Arsenicals/pharmacology , Arsenicals/administration & dosage , Mice , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/immunology , Sulfides/pharmacology , Sulfides/administration & dosage , Disulfides/pharmacology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Spleen/drug effects , Spleen/immunology
6.
Molecules ; 29(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930915

ABSTRACT

Organic arsenic compounds such as p-aminophenylarsine oxide (p-APAO) are easier for structural optimization to improve drug-like properties such as pharmacokinetic properties, therapeutic efficacy, and target selectivity. In order to strengthen the selectivity of 4-(1,3,2-dithiarsinan-2-yl) aniline 7 to tumor cell, a thiourea moiety was used to strengthen the anticancer activity. To avoid forming a mixture of α/ß anomers, the strategy of 2-acetyl's neighboring group participation was used to lock the configuration of 2,3,4,6-tetra-O-acetyl-ß-d-glucopyranosyl isothiocyanate from 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide. 1-(4-(1,3,2-dithiarsinan-2-yl) aniline)-2-N-(2,3,4,6-tetra-O-acetyl-ß-d-glucopyranos-1-yl)-thiourea 2 can increase the selectivity of human colon cancer cells HCT-116 (0.82 ± 0.06 µM vs. 1.82 ± 0.07 µM) to human embryonic kidney 293T cells (1.38 ± 0.01 µM vs. 1.22 ± 0.06 µM) from 0.67 to 1.68, suggesting a feasible approach to improve the therapeutic index of arsenic-containing compounds as chemotherapeutic agents.


Subject(s)
Antineoplastic Agents , Drug Design , Thiourea , Humans , Thiourea/chemistry , Thiourea/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Glucose/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , HCT116 Cells , Molecular Structure , Arsenicals/chemistry , Arsenicals/pharmacology , Arsenicals/chemical synthesis , Structure-Activity Relationship
8.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 66-70, 2024 Feb.
Article in Zh | MEDLINE | ID: mdl-38387901

ABSTRACT

OBJECTIVE: To investigate the effect of metformin and arsenic trioxide on KG1a cells proliferation of acute myeloid leukemia and its possible mechanism. METHODS: CCK-8 method was used to detect the killing effect of metformin, arsenic trioxide and combined application on KG1a cells. Annexin V-FITC/PI Dual Stain Flow Cytometry was used to detect the effect of combined application on apoptosis of KG1a cells. Western blot was used to detect the expression of intracellular apoptosis-,autophagy-related protein. RESULTS: Metformin and arsenic trioxide alone or in combination could inhibit the proliferation of KG1a cells and induce apoptosis of KG1a cells, and the proliferation inhibition rate and apoptosis rate in the combined drug group were higher than those in the drug group alone(P <0.05). The combination of drugs induced upregulation of Caspase 8 protein and P62 protein expression and was higher than that in the drug group alone(P <0.05). CONCLUSION: Metformin can synergize with arsenic trioxide to kill KG1a cells, and its mechanism of action may be related to inducing apoptosis and enhancing autophagy.


Subject(s)
Arsenicals , Metformin , Humans , Arsenic Trioxide/pharmacology , Metformin/pharmacology , Oxides/pharmacology , Arsenicals/pharmacology , Cell Proliferation
9.
J Ethnopharmacol ; 326: 117778, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38310990

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In China, the Chinese patent drug Realgar-Indigo naturalis Formula (RIF) is utilized for the therapy of acute promyelocytic leukemia (APL). Comprising four traditional Chinese herb-Realgar, Indigo naturalis, Salvia miltiorrhiza, and Pseudostellaria heterophylla-it notably includes tetra-arsenic tetra-sulfide, indirubin, tanshinone IIa, and total saponins of Radix Pseudostellariae as its primary active components. Due to its arsenic content, RIF distinctly contributes to the therapy for APL. However, the challenge of arsenic resistance in APL patients complicates the clinical use of arsenic agents. Interestingly, RIF demonstrates a high remission rate in APL patients, suggesting that its efficacy is not significantly compromised by arsenic resistance. Yet, the current state of research on RIF's ability to reverse arsenic resistance remains unclear. AIM OF THE STUDY: To investigate the mechanism of different combinations of the compound of RIF in reversing arsenic resistance in APL. MATERIALS AND METHODS: The present study utilized the arsenic-resistant HL60-PMLA216V-RARα cell line to investigate the effects of various RIF compounds, namely tetra-arsenic tetra-sulfide (A), indirubin (I), tanshinone IIa (T), and total saponins of Radix Pseudostellariae (S). The assessment of cell viability, observation of cell morphology, and evaluation of cell apoptosis were performed. Furthermore, the mitochondrial membrane potential, changes in the levels of PMLA216V-RARα, apoptosis-related factors, and the PI3K/AKT/mTOR pathway were examined, along with autophagy in all experimental groups. Meanwhile, we observed the changes about autophagy after blocking the PI3K or mTOR pathway. RESULTS: Tanshinone IIa, indirubin and total saponins of Radix Pseudostellariae could enhance the effect of tetra-arsenic tetra-sulfide down-regulating PMLA216V-RARα, and the mechanism was suggested to be related to inhibiting mTOR pathway to activate autophagy. CONCLUSIONS: We illustrated that the synergistic effect of different compound combinations of RIF can regulate autophagy through the mTOR pathway, enhance cell apoptosis, and degrade arsenic-resistant PMLA216V-RARα.


Subject(s)
Abietanes , Arsenic , Arsenicals , Drugs, Chinese Herbal , Leukemia, Promyelocytic, Acute , Saponins , Humans , Arsenic/adverse effects , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/chemically induced , Phosphatidylinositol 3-Kinases , Arsenicals/pharmacology , Arsenicals/therapeutic use , Sulfides/pharmacology , Sulfides/therapeutic use , Saponins/therapeutic use
10.
J Med Chem ; 67(7): 5458-5472, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38556750

ABSTRACT

The success of arsenic in acute promyelocytic leukemia (APL) treatment is hardly transferred to non-APL cancers, mainly due to the low selectivity and weak binding affinity of traditional arsenicals to oncoproteins critical for cancer survival. We present herein the reinvention of aliphatic trivalent arsenicals (As) as reversible covalent warheads of As-based targeting inhibitors toward Bruton's tyrosine kinase (BTK). The effects of As warheads' valency, thiol protection, methylation, spacer length, and size on inhibitors' activity were studied. We found that, in contrast to the bulky and rigid aromatic As warhead, the flexible aliphatic As warheads were well compatible with the well-optimized guiding group to achieve nanomolar inhibition against BTK. The optimized As inhibitors effectively blocked the BTK-mediated oncogenic signaling pathway, leading to elevated antiproliferative activities toward lymphoma cells and xenograft tumor. Our study provides a promising strategy enabling rational design of new aliphatic arsenic-based reversible covalent inhibitors toward non-APL cancer treatment.


Subject(s)
Arsenic , Arsenicals , Leukemia, Promyelocytic, Acute , Humans , Leukemia, Promyelocytic, Acute/drug therapy , Arsenicals/pharmacology , Arsenicals/therapeutic use , Arsenic/pharmacology , Agammaglobulinaemia Tyrosine Kinase , Signal Transduction , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
11.
FEBS J ; 291(7): 1422-1438, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38129745

ABSTRACT

Acute promyelocytic leukemia (APL) is characterized by the fusion gene promyelocytic leukemia-retinoic acid receptor-alpha (PML-RARA) and is conventionally treated with arsenic trioxide (ATO). ATO binds directly to the RING finger, B-box, coiled-coil (RBCC) domain of PML and initiates degradation of the fusion oncoprotein PML-RARA. However, the mutational hotspot at C212-S220 disrupts ATO binding, leading to drug resistance in APL. Therefore, structural consequences of these point mutations in PML that remain uncertain require comprehensive analysis. In this study, we investigated the structure-based ensemble properties of the promyelocytic leukemia-RING-B-box-coiled-coil (PML-RBCC) domains and ATO-resistant mutations. Oligomeric studies reveal that PML-RBCC wild-type and mutants C212R, S214L, A216T, L217F, and S220G predominantly form tetramers, whereas mutants C213R, A216V, L218P, and D219H tend to form dimers. The stability of the dimeric mutants was lower, exhibiting a melting temperature (Tm) reduction of 30 °C compared with the tetrameric mutants and wild-type PML protein. Furthermore, the exposed surface of the C213R mutation rendered it more prone to protease digestion than that of the C212R mutation. The spectroscopic analysis highlighted ATO-induced structural alterations in S214L, A216V, and D219H mutants, in contrast to C213R, L217F, and L218P mutations. Moreover, the computational analysis revealed that the ATO-resistant mutations C213R, A216V, L217F, and L218P caused changes in the size, shape, and flexibility of the PML-RBCC wild-type protein. The mutations C213R, A216V, L217F, and L218P destabilize the wild-type protein structure due to the adaptation of distinct conformational changes. In addition, these mutations disrupt several hydrogen bonds, including interactions involving C212, C213, and C215, which are essential for ATO binding. The local and global structural features induced by these mutations provide mechanistic insight into ATO resistance and APL pathogenesis.


Subject(s)
Antineoplastic Agents , Arsenicals , Leukemia, Promyelocytic, Acute , Humans , Antineoplastic Agents/pharmacology , Arsenic Trioxide/therapeutic use , Arsenicals/pharmacology , Arsenicals/therapeutic use , Cysteine/genetics , Drug Resistance, Neoplasm/genetics , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/pathology , Mutation , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Oxides/pharmacology , Oxides/therapeutic use
12.
J Integr Med ; 22(3): 295-302, 2024 May.
Article in English | MEDLINE | ID: mdl-38599914

ABSTRACT

OBJECTIVE: The effects of arsenic trioxide (As2O3) on hepatocellular carcinoma have been documented widely. Autophagy plays dual roles in the survival and death of cancer cells. Therefore, we investigated the exact role of autophagy in As2O3-induced apoptosis in liver cancer cells. METHODS: The viability of hepatoma cells was determined using the MTT assay with or without fetal bovine serum. The rate of apoptosis in liver cancer cells treated with As2O3 was evaluated using flow cytometry, Hoechst 33258 staining, and TUNEL assays. The rate of autophagy among liver cancer cells treated with As2O3 was detected using immunofluorescence, Western blot assay and transmission electron microscopy. RESULTS: Upon treatment with As2O3, the viability of HepG2 and SMMC-7721 cells was decreased in a time- and dose-dependent manner. The apoptosis rates of both liver cancer cell lines increased with the concentration of As2O3, as shown by flow cytometry. Apoptosis in liver cancer cells treated with As2O3 was also shown by the activation of the caspase cascade and the regulation of Bcl-2/Bax expression. Furthermore, As2O3 treatment induced autophagy in liver cancer cells; this finding was supported by Western blot, immunofluorescence of LC3-II and beclin 1, and transmission electron microscopy. In liver cancer cells, As2O3 inhibited the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signal pathway that plays a vital role in both apoptosis and autophagy. The PI3K activator SC-79 partially reversed As2O3-induced autophagy and apoptosis. Furthermore, inhibiting autophagy with 3-methyladenine partially reversed the negative effects of As2O3 on cell viability. Serum starvation increased autophagy and amplified the effect of As2O3 on cell death. CONCLUSION: As2O3 induces apoptosis and autophagy in liver cancer cells. Autophagy induced by As2O3 may have a proapoptotic effect that helps to reduce the viability of liver cancer cells. This study provides novel insights into the effects of As2O3 against liver cancer. Please cite this article as: Deng ZT, Liang SF, Huang GK, Wang YQ, Tu XY, Zhang YN, Li S, Liu T, Cheng BB. Autophagy plays a pro-apoptotic role in arsenic trioxide-induced cell death of liver cancer. J Integr Med. 2024; 22(3): 295-302.


Subject(s)
Antineoplastic Agents , Apoptosis , Arsenic Trioxide , Arsenicals , Autophagy , Liver Neoplasms , Oxides , Arsenic Trioxide/pharmacology , Humans , Autophagy/drug effects , Arsenicals/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Apoptosis/drug effects , Oxides/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Hep G2 Cells , Cell Survival/drug effects
13.
J Ethnopharmacol ; 331: 118303, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38734390

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Realgar, a traditional mineral Chinese medicine, has been used in China for more than 2000 years. It has been recorded in many ancient and modern works that it has anti-cancer and anti-tumor effects. Of course, colon cancer is also within the scope of its treatment. Realgar needs to be processed into realgar decoction pieces by water grinding before being used for medicine. To ensure the consistency of efficacy and quality of realgar decoction pieces, modern methods need to be used for further quality control. AIM OF THE STUDY: The research of traditional mineral Chinese medicine is relatively difficult, and the related research is less. The purpose of this study is to control the quality of realgar decoction pieces by modern analytical technology and analyze its components. On this basis, its anti-colon cancer activity was discussed. MATERIALS AND METHODS: Several batches of realgar decoction pieces were analyzed by XRD, and the components of realgar decoction pieces were obtained. The quality control fingerprints of realgar decoction pieces were established by processing XRD spectra and similarity evaluation. Then, the effects of realgar decoction pieces on apoptosis of CT26 and HTC-116 cells were observed in vitro by Hoechst 33258 staining, flow cytometry, measurement of mitochondrial membrane potential and Western blot; In vivo, the mouse model of tumor-in-situ transplantation of colon cancer was established, and the related indexes were observed. RESULT: The explorations showed that the XRD Fourier fingerprints of realgar decoction pieces samples that had the same phase revealed 10 common peaks, respectively. The similarity evaluation of the established XRD Fourier fingerprint was greater than 0.900. We also demonstrated that realgar decoction pieces can promote apoptosis and inhibit tumor growth in colon cancer cells, its activating effect on p53 protein, and its safety when used within reasonable limits. CONCLUSION: The quality control of realgar decoction pieces by XRD is scientific and has the inhibitory effect on colon cancer, which has the development potential.


Subject(s)
Apoptosis , Colonic Neoplasms , Animals , Apoptosis/drug effects , Mice , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Humans , Sulfides/pharmacology , Sulfides/therapeutic use , Arsenicals/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Cell Line, Tumor , Mice, Inbred BALB C , Membrane Potential, Mitochondrial/drug effects , Male , Quality Control , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use
14.
PeerJ ; 12: e17363, 2024.
Article in English | MEDLINE | ID: mdl-38766487

ABSTRACT

Background: Promoter hypermethylation of the tumor suppressor gene is one of the well-studied causes of cancer development. The drugs that reverse the process by driving demethylation could be a candidate for anticancer therapy. This study was designed to investigate the effects of arsenic disulfide on PTPL1 methylation in diffuse large B cell lymphoma (DLBCL). Methods: We knocked down the expression of PTPL1 in two DLBCL cell lines (i.e., DB and SU-DHL-4 cells) using siRNA. Then the DLBCL proliferation was determined in the presence of PTPL1 knockdown. The methylation of PTPL1 in DLBCL cells was analyzed by methylation specific PCR (MSPCR). The effect of arsenic disulfide on the PTPL1 methylation was determined in DLBCL cell lines in the presence of different concentrations of arsenic disulfide (5 µM, 10 µM and 20 µM), respectively. To investigate the potential mechanism on the arsenic disulfide-mediated methylation, the mRNA expression of DNMT1, DNMT3B and MBD2 was determined. Results: PTPL1 functioned as a tumor suppressor gene in DLBCL cells, which was featured by the fact that PTPL1 knockdown promoted the proliferation of DLBCL cells. PTPL1 was found hypermethylated in DLBCL cells. Arsenic disulfide promoted the PTPL1 demethylation in a dose-dependent manner, which was related to the inhibition of DNMTs and the increase of MBD2. Conclusion: Experimental evidence shows that PTPL1 functions as a tumor suppressor gene in DLBCL progression. PTPL1 hyper-methylation could be reversed by arsenic disulfide in a dose-dependent manner.


Subject(s)
Arsenicals , DNA Methylation , Lymphoma, Large B-Cell, Diffuse , Humans , Arsenicals/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Disulfides/pharmacology , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/drug effects , DNA Methyltransferase 3B , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Promoter Regions, Genetic/drug effects
15.
Chem Biol Interact ; 399: 111149, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39032852

ABSTRACT

Rhabdomyosarcoma (RMS) represents one of the most lethal soft-tissue sarcomas in children. The toxic trace element arsenic has been reported to function as a radiosensitizer in sarcomas. To investigate the role of arsenic sulfide (As4S4) in enhancing radiation sensitization in RMS, this study was conducted to elucidate its underlying mechanism in radiotherapy. The combination of As4S4 and radiotherapy showed significant inhibition in RMS cells, as demonstrated by the cell counting kit-8 (CCK-8) assay and flow cytometry. Subsequently, we demonstrated for the first time that As4S4, as well as the knockdown of NFATc3 led to double-strand break (DSB) through increased expression of RAG1. In vivo experiment confirmed that co-treatment efficiently inhibited RMS growth. Furthermore, survival analysis of a clinical cohort consisting of 59 patients revealed a correlation between NFATc3 and RAG1 expression and overall survival (OS). Cox regression analysis also confirmed the independent prognostic significance of NFATc3 and RAG1.Taken together, As4S4 enhances radiosensitivity in RMS via activating NFATc3-RAG1 mediated DSB. NFATc3 and RAG1 are potential therapeutic targets. As4S4 will hopefully serve as a prospective radio-sensitizing agent for RMS.


Subject(s)
Arsenicals , DNA Breaks, Double-Stranded , NFATC Transcription Factors , Radiation Tolerance , Rhabdomyosarcoma , Sulfides , Humans , DNA Breaks, Double-Stranded/drug effects , DNA Breaks, Double-Stranded/radiation effects , Sulfides/pharmacology , Sulfides/therapeutic use , Rhabdomyosarcoma/metabolism , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/radiotherapy , Rhabdomyosarcoma/pathology , Rhabdomyosarcoma/genetics , Cell Line, Tumor , Male , Female , Arsenicals/pharmacology , Arsenicals/therapeutic use , Animals , Radiation Tolerance/drug effects , NFATC Transcription Factors/metabolism , Mice , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Mice, Nude , Child , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Mice, Inbred BALB C
16.
Oncol Rep ; 52(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38963046

ABSTRACT

Arsenic trioxide (ATO) is expected to be a chemical drug with antitumor activity against acute promyelocytic leukemia (APL), a type of acute myeloid leukemia. In Japan, its antitumor effects were confirmed in clinical trials for APL, and it has been approved in various countries around the world. However, there have been no reports on ATO's antitumor effects on radioresistant leukemia cells, which can be developed during radiotherapy and in combination with therapeutic radiation beams. The present study sought to clarify the antitumor effect of ATO on APL cells with radiation resistance and determine its efficacy when combined with ionizing radiation (IR). The radiation­resistant HL60 (Res­HL60) cell line was generated by subjecting the native cells to 4­Gy irradiation every week for 4 weeks. The half­maximal inhibitory concentration (IC50) for cell proliferation by ATO on native cell was 0.87 µM (R2=0.67), while the IC50 for cell proliferation by ATO on Res­HL60 was 2.24 µM (R2=0.91). IR exposure increased the sub­G1 and G2/M phase ratios in both cell lines. The addition of ATO resulted in a higher population of G2/M after 24 h rather than 48 h. When the rate of change in the sub­G1 phase was examined in greater detail, the sub­G1 phase in both control cells without ATO significantly increased by exposure to IR at 24 h, but only under the condition of 2 Gy irradiation, it had continued to increase at 48 h. Res­HL60 supplemented with ATO showed a higher rate of sub­G1 change at 24 h; however, 2 Gy irradiation resulted in a decrease compared with the control. There was a significant increase in the ratio of the G2/M phase in cells after incubation with ATO for 24 h, and exposure to 2 Gy irradiation caused an even greater increase. To determine whether the inhibition of cell proliferation and cell cycle disruptions is related to reactive oxygen species (ROS) activity, intracellular ROS levels were measured with a flow cytometric assay. Although the ROS levels of Res­HL60 were higher than those of native cells in the absence of irradiation, they did not change after 0.5 or 2 Gy irradiation. Furthermore, adding ATO to Res­HL60 reduced intracellular ROS levels. These findings provide important information that radioresistant leukemia cells respond differently to the antitumor effect of ATO and the combined effect of IR.


Subject(s)
Arsenic Trioxide , Arsenicals , Cell Proliferation , Leukemia, Promyelocytic, Acute , Oxides , Radiation, Ionizing , Humans , Arsenic Trioxide/pharmacology , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/pathology , Leukemia, Promyelocytic, Acute/radiotherapy , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , HL-60 Cells , Arsenicals/pharmacology , Oxides/pharmacology , Apoptosis/drug effects , Apoptosis/radiation effects , Radiation Tolerance/drug effects , Antineoplastic Agents/pharmacology , Reactive Oxygen Species/metabolism
17.
PeerJ ; 12: e17559, 2024.
Article in English | MEDLINE | ID: mdl-38854798

ABSTRACT

Background: To investigate the effects of arsenic trioxide (ATO) on human colorectal cancer cells (HCT116) growth and the role of transient receptor potential melastatin 4 (TRPM4) channel in this process. Methods: The viability of HCT116 cells was assessed using the CCK-8 assay. Western blot analysis was employed to examine the protein expression of TRPM4. The apoptosis of HCT116 cells was determined using TUNEL and Flow cytometry. Cell migration was assessed through the cell scratch recovery assay and Transwell cell migration assay. Additionally, Transwell cell invasion assay was performed to determine the invasion ability of HCT116 cells. Results: ATO suppressed the viability of HCT116 cells in a dose-dependent manner, accompanied by a decline in cell migration and invasion, and an increase in apoptosis. 9-phenanthroline (9-Ph), a specific inhibitor of TRPM4, abrogated the ATO-induced upregulation of TRPM4 expression. Additionally, blocking TRPM4 reversed the effects of ATO on HCT116 cells proliferation, including restoration of cell viability, migration and invasion, as well as the inhibition of apoptosis. Conclusion: ATO inhibits CRC cell growth by inducing TRPM4 expression, our findings indicate that ATO is a promising therapeutic strategy and TRPM4 may be a novel target for the treatment of CRC.


Subject(s)
Apoptosis , Arsenic Trioxide , Cell Movement , Cell Proliferation , Cell Survival , Colorectal Neoplasms , TRPM Cation Channels , Humans , TRPM Cation Channels/metabolism , TRPM Cation Channels/antagonists & inhibitors , TRPM Cation Channels/genetics , Arsenic Trioxide/pharmacology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , HCT116 Cells , Cell Movement/drug effects , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Oxides/pharmacology , Antineoplastic Agents/pharmacology , Neoplasm Invasiveness , Arsenicals/pharmacology
18.
PLoS One ; 19(5): e0302701, 2024.
Article in English | MEDLINE | ID: mdl-38728286

ABSTRACT

Although the toxicity of arsenic depends on its chemical forms, few studies have taken into account the ambiguous phenomenon that sodium arsenite (NaAsO2) acts as a potent carcinogen while arsenic trioxide (ATO, As2O3) serves as an effective therapeutic agent in lymphoma, suggesting that NaAsO2 and As2O3 may act via paradoxical ways to either promote or inhibit cancer pathogenesis. Here, we compared the cellular response of the two arsenical compounds, NaAsO2 and As2O3, on the Burkitt lymphoma cell model, the Epstein Barr Virus (EBV)-positive P3HR1 cells. Using flow cytometry and biochemistry analyses, we showed that a NaAsO2 treatment induces P3HR1 cell death, combined with drastic drops in ΔΨm, NAD(P)H and ATP levels. In contrast, As2O3-treated cells resist to cell death, with a moderate reduction of ΔΨm, NAD(P)H and ATP. While both compounds block cells in G2/M and affect their protein carbonylation and lipid peroxidation, As2O3 induces a milder increase in superoxide anions and H2O2 than NaAsO2, associated to a milder inhibition of antioxidant defenses. By electron microscopy, RT-qPCR and image cytometry analyses, we showed that As2O3-treated cells display an overall autophagic response, combined with mitophagy and an unfolded protein response, characteristics that were not observed following a NaAsO2 treatment. As previous works showed that As2O3 reactivates EBV in P3HR1 cells, we treated the EBV- Ramos-1 cells and showed that autophagy was not induced in these EBV- cells upon As2O3 treatment suggesting that the boost of autophagy observed in As2O3-treated P3HR1 cells could be due to the presence of EBV in these cells. Overall, our results suggest that As2O3 is an autophagic inducer which action is enhanced when EBV is present in the cells, in contrast to NaAsO2, which induces cell death. That's why As2O3 is combined with other chemicals, as all-trans retinoic acid, to better target cancer cells in therapeutic treatments.


Subject(s)
Arsenic Trioxide , Arsenicals , Arsenites , Autophagy , Mitochondria , Oxidative Stress , Oxides , Sodium Compounds , Arsenic Trioxide/pharmacology , Arsenites/pharmacology , Arsenites/toxicity , Humans , Oxidative Stress/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Sodium Compounds/pharmacology , Arsenicals/pharmacology , Autophagy/drug effects , Cell Line, Tumor , Oxides/pharmacology , Cell Death/drug effects , Membrane Potential, Mitochondrial/drug effects , Herpesvirus 4, Human/drug effects , Adenosine Triphosphate/metabolism , Hydrogen Peroxide/pharmacology , Lipid Peroxidation/drug effects , Burkitt Lymphoma/virology , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Burkitt Lymphoma/drug therapy
19.
Ethiop J Health Sci ; 33(4): 703-710, 2023 Jul.
Article in English | MEDLINE | ID: mdl-38784214

ABSTRACT

Background: Arsenic trioxide is an activist agent in the treatment of acute promyelocytic leukemia (APL), which acts alone, but has an adverse effect on patients. Moreover, deferoxamine has antiproliferative activity and induces leukopenia. In order to enhance antileukemic effectiveness and to reduce the dosage of arsenic trioxide, the combination effect of it with deferoxamine (DFO) was evaluated on the APL cell line (NB4). Methods: In this experimental study, to investigate the cytotoxic effects of ATO/DFO in acute promyelocytic leukemia, the NB4 cell line (provided by Pasteur Institute of Iran) was treated with different doses and then at 24, 48, and 72 hrs intervals, the percentage of survival, cell count, metabolic activity and apoptosis induction were investigated respectively. Also, hTERT gene expression was analyzed by the RT-PCR method. Results: We found that DFO alone and in combination with ATO has cytotoxic and antiproliferative effects, and reduces viability and cell metabolic activity in the NB4 cell line in a dose and time-dependent manner. In addition, this combination causes an increase in apoptosis, up-regulation of Caspase-3, and down-regulation of hTERT genes in cells. Conclusion: Combined ATO/ DFO treatment cooperatively decreased the mRNA levels of the hTERT and increased the mRNA levels of Caspase-3 in a time-dependent manner compared to DFO alone.


Subject(s)
Apoptosis , Arsenic Trioxide , Arsenicals , Cell Survival , Deferoxamine , Leukemia, Promyelocytic, Acute , Oxides , Telomerase , Arsenic Trioxide/pharmacology , Humans , Arsenicals/pharmacology , Leukemia, Promyelocytic, Acute/drug therapy , Deferoxamine/pharmacology , Cell Survival/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Telomerase/metabolism , Oxides/pharmacology , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects
20.
Biol. Res ; 51: 18, 2018. tab, graf
Article in English | LILACS | ID: biblio-950904

ABSTRACT

BACKGROUND: Arsenic trioxide (As2O3), a drug that has been used in China for approximately two thousand years, induces cell death in a variety of cancer cell types, including neuroblastoma (NB). The tyrosine kinase receptor (Trk) family comprises three members, namely TrkA, TrkB and TrkC. Various studies have confirmed that TrkA and TrkC expression is associated with a good prognosis in NB, while TrkB overexpression can lead to tumor cell growth and invasive metastasis. Previous studies have shown that As2O3 can inhibit the growth and proliferation of a human NB cell line and can also affect the N-Myc mRNA expression. It remains unclear whether As2O3 regulates Trks for the purposes of treating NB. METHODS: The aim of the present study was to investigate the effect of As2O3 on Trk expression in NB cell lines and its potential therapeutic efficacy. SK-N-SH cells were grown with increasing doses of As2O3 at different time points. We cultured SK-N-SH cells, which were treated with increasing doses of As2O3 at different time points. Trk expression in the NB samples was quantified by immunohistochemistry, and the cell cycle was analyzed by flow cytometry. TrkA, TrkB and TrkC mRNA expression was evaluated by real-time PCR analysis. RESULTS: Immunohistochemical and real-time PCR analyses indicated that TrkA and TrkC were over-expressed in NB, and specifically during stages 1, 2 and 4S of the disease progression. TrkB expression was increased in stage 3 and 4 NB. As2O3significantly arrested SK-N-SH cells in the G2/M phase. In addition, TrkA, TrkB and TrkC expression levels were significantly upregulated by higher concentrations of As2O3 treatment, notably in the 48-h treatment period. Our findings suggested that to achieve the maximum effect and appropriate regulation of Trk expression in NB stages 1, 2 and 4S, As2O3 treatment should be at relatively higher concentrations for longer delivery times;however, for NB stages 3 and 4, an appropriate concentration and infusion time for As2O3 must be carefully determined. CONCLUSION: The present findings suggested that As2O3 induced Trk expression in SK-N-SH cells to varying degrees and may be a promising adjuvant to current treatments for NB due to its apoptotic effects.


Subject(s)
Humans , Oxides/pharmacology , Arsenicals/pharmacology , Membrane Glycoproteins/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Receptor, trkB/drug effects , Cell Proliferation/drug effects , Cell Cycle Checkpoints/drug effects , Neuroblastoma/metabolism , Membrane Glycoproteins/metabolism , Receptor, trkB/metabolism , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Arsenic Trioxide , Neuroblastoma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL