Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.600
Filter
Add more filters

Publication year range
1.
EMBO Rep ; 24(1): e56036, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36322050

ABSTRACT

Host defense against infections encompasses both resistance, which targets microorganisms for neutralization or elimination, and resilience/disease tolerance, which allows the host to withstand/tolerate pathogens and repair damages. In Drosophila, the Toll signaling pathway is thought to mediate resistance against fungal infections by regulating the secretion of antimicrobial peptides, potentially including Bomanins. We find that Aspergillus fumigatus kills Drosophila Toll pathway mutants without invasion because its dissemination is blocked by melanization, suggesting a role for Toll in host defense distinct from resistance. We report that mutants affecting the Toll pathway or the 55C Bomanin locus are susceptible to the injection of two Aspergillus mycotoxins, restrictocin and verruculogen. The vulnerability of 55C deletion mutants to these mycotoxins is rescued by the overexpression of Bomanins specific to each challenge. Mechanistically, flies in which BomS6 is expressed in the nervous system exhibit an enhanced recovery from the tremors induced by injected verruculogen and display improved survival. Thus, innate immunity also protects the host against the action of microbial toxins through secreted peptides and thereby increases its resilience to infection.


Subject(s)
Drosophila Proteins , Mycotoxins , Animals , Drosophila/genetics , Drosophila/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Mycotoxins/metabolism , Aspergillus/genetics , Aspergillus/metabolism , Immunity, Innate
2.
Biochem J ; 481(12): 805-821, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38829003

ABSTRACT

Aflatoxins (AFs), potent foodborne carcinogens produced by Aspergillus fungi, pose significant health risks worldwide and present challenges to food safety and productivity in the food chain. Novel strategies for disrupting AF production, cultivating resilient crops, and detecting contaminated food are urgently needed. Understanding the regulatory mechanisms of AF production is pivotal for targeted interventions to mitigate toxin accumulation in food and feed. The gene cluster responsible for AF biosynthesis encodes biosynthetic enzymes and pathway-specific regulators, notably AflR and AflS. While AflR, a DNA-binding protein, activates gene transcription within the cluster, AflS enhances AF production through mechanisms that are not fully understood. In this study, we developed protocols to purify recombinant AflR and AflS proteins and utilized multiple assays to characterize their interactions with DNA. Our biophysical analysis indicated that AflR and AflS form a complex. AflS exhibited no DNA-binding capability on its own but unexpectedly reduced the DNA-binding affinity of AflR. Additionally, we found that AflR achieves its binding specificity through a mechanism in which either two copies of AflR or its complex with AflS bind to target sites on DNA in a highly cooperative manner. The estimated values of the interaction parameters of AflR, AflS and DNA target sites constitute a fundamental framework against which the function and mechanisms of other AF biosynthesis regulators can be compared.


Subject(s)
Aflatoxins , Fungal Proteins , Aflatoxins/biosynthesis , Aflatoxins/metabolism , Aflatoxins/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Kinetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Protein Binding , DNA/metabolism , DNA/genetics , DNA, Fungal/genetics , DNA, Fungal/metabolism , Aspergillus/metabolism , Aspergillus/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
3.
BMC Genomics ; 25(1): 603, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886660

ABSTRACT

BACKGROUND: A growing number of studies have demonstrated that the polar regions have the potential to be a significant repository of microbial resources and a potential source of active ingredients. Genome mining strategy plays a key role in the discovery of bioactive secondary metabolites (SMs) from microorganisms. This work highlighted deciphering the biosynthetic potential of an Arctic marine-derived strain Aspergillus sydowii MNP-2 by a combination of whole genome analysis and antiSMASH as well as feature-based molecular networking (MN) in the Global Natural Products Social Molecular Networking (GNPS). RESULTS: In this study, a high-quality whole genome sequence of an Arctic marine strain MNP-2, with a size of 34.9 Mb was successfully obtained. Its total number of genes predicted by BRAKER software was 13,218, and that of non-coding RNAs (rRNA, sRNA, snRNA, and tRNA) predicted by using INFERNAL software was 204. AntiSMASH results indicated that strain MNP-2 harbors 56 biosynthetic gene clusters (BGCs), including 18 NRPS/NRPS-like gene clusters, 10 PKS/PKS-like gene clusters, 8 terpene synthse gene clusters, 5 indole synthase gene clusters, 10 hybrid gene clusters, and 5 fungal-RiPP gene clusters. Metabolic analyses of strain MNP-2 grown on various media using GNPS networking revealed its great potential for the biosynthesis of bioactive SMs containing a variety of heterocyclic and bridge-ring structures. For example, compound G-8 exhibited a potent anti-HIV effect with an IC50 value of 7.2 nM and an EC50 value of 0.9 nM. Compound G-6 had excellent in vitro cytotoxicities against the K562, MCF-7, Hela, DU145, U1975, SGC-7901, A549, MOLT-4, and HL60 cell lines, with IC50 values ranging from 0.10 to 3.3 µM, and showed significant anti-viral (H1N1 and H3N2) activities with IC50 values of 15.9 and 30.0 µM, respectively. CONCLUSIONS: These findings definitely improve our knowledge about the molecular biology of genus A. sydowii and would effectively unveil the biosynthetic potential of strain MNP-2 using genomics and metabolomics techniques.


Subject(s)
Aspergillus , Multigene Family , Aspergillus/genetics , Aspergillus/metabolism , Arctic Regions , Humans , Biological Products/metabolism , Aquatic Organisms/genetics , Aquatic Organisms/metabolism , Cell Line, Tumor , Biosynthetic Pathways/genetics , Secondary Metabolism/genetics , Genome, Fungal
4.
BMC Biotechnol ; 24(1): 3, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38233817

ABSTRACT

The growing spread of infectious diseases has become a potential global health threat to human beings. According to WHO reports, in this study, we investigated the impact of co-cultivating the isolated endophytic fungus Aspergillus sp. CO2 and Bacillus sp. COBZ21 as a method to stimulate the production of natural bioactive substances. (GC/MS)-based metabolomics profiling of two sponge-associated microbes, Aspergillus sp. CO2 and Bacillus sp. COBZ21, revealed that the co-culture of these two isolates induced the accumulation of metabolites that were not traced in their axenic cultures. By detection of different activities of extracts of Bacillus sp. COBZ21 and Aspergillus sp. CO2 and coculture between Bacillus sp. COBZ21 and Aspergillus sp. CO2. It was noted that the coculture strategy was the reason for a notable increase in some different activities, such as the antimicrobial activity, which showed potent activity against Escherichia coli ATCC 25,922, Staphylococcus aureus NRRLB-767, and Candida albicans ATCC 10,231. The antibiofilm activity showed significant biofilm inhibitory activity toward Bacillus subtilis ATCC 6633, Pseudomonas aeruginosa ATCC 10,145, and Staph aureus NRRLB-767, with activity up to 53.66, 71.17, and 47.89%, while it showed low activity against E. coli ATCC 25,922, while the antioxidant activity based on the DPPH assay showed maximum activity (75.25%). GC-MS investigations revealed the presence of variable chemical constituents belonging to different chemical categories, which reflected their chemical diversity. The main components are (+-) cis-Deethylburnamine (2.66%), Bis(3,6,9,12-tetraoxapentaethylene) crowno-N,N,N',N'-tetra methylpphanediamine (2.48%), and 11-phenyl-2,4,6,8-tetra(2-thienyl)-11-aza-5,13-dithiaeteracyclo[7.3.0.1(2,8)0.0(3,7)] trideca-3,6-diene-10,12,13-trione (3.13%), respectively, for Bacillus sp. axenic culture, Aspergillus sp. CO2, Aspergillus sp. CO2, and Bacillus sp. COBZ21 coculture. By studying the ADME-related physicochemical properties of coculture extract, the compound showed log Po/w values above 5 (8.82). The solubility of the substance was moderate. In order to provide a comprehensive definition of medicinal chemistry and leadlikness, it is important to note that the latter did not meet the criteria outlined in the rule of three (RO3). The toxicity prediction of the coculture extract was performed using the ProTox II web server, which showed that the selected compound has no pronounced toxicity.


Subject(s)
Anti-Infective Agents , Bacillus , Humans , Bacillus/metabolism , Antioxidants/pharmacology , Carbon Dioxide/metabolism , Escherichia coli/metabolism , Microbial Sensitivity Tests , Anti-Infective Agents/chemistry , Aspergillus/metabolism , Staphylococcus aureus , Plant Extracts/pharmacology , Anti-Bacterial Agents/pharmacology
5.
Fungal Genet Biol ; 171: 103865, 2024 03.
Article in English | MEDLINE | ID: mdl-38246260

ABSTRACT

As a prevalent pathogenic fungus, Aspergillus westerdijkiae poses a threat to both food safety and human health. The fungal growth, conidia production and ochratoxin A (OTA) in A. weterdijkiae are regulated by many factors especially transcription factors. In this study, a transcription factor AwSclB in A. westerdijkiae was identified and its function in asexual sporulation and OTA biosynthesis was investigated. In addition, the effect of light control on AwSclB regulation was also tested. The deletion of AwSclB gene could reduce conidia production by down-regulation of conidia genes and increase OTA biosynthesis by up-regulation of cluster genes, regardless under light or dark conditions. It is worth to note that the inhibitory effect of light on OTA biosynthesis was reversed by the knockout of AwSclB gene. The yeast one-hybrid assay indicated that AwSclB could interact with the promoters of BrlA, ConJ and OtaR1 genes. This result suggests that AwSclB in A. westerdijkiae can directly regulate asexual conidia formation by activating the central developmental pathway BrlA-AbaA-WetA through up-regulating the expression of AwBrlA, and promote the light response of the strain by activating ConJ. However, AwSclB itself is unable to respond to light regulation. This finding will deepen our understanding of the molecular regulation of A. westerdijkiae development and secondary metabolism, and provide potential targets for the development of new fungicides.


Subject(s)
Aspergillus , Transcription Factors , Humans , Secondary Metabolism/genetics , Aspergillus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal/genetics
6.
Fungal Genet Biol ; 171: 103874, 2024 03.
Article in English | MEDLINE | ID: mdl-38307402

ABSTRACT

Aspergillus cristatus is a probiotic fungus known for its safety and abundant secondary metabolites, making it a promising candidate for various applications. However, limited progress has been made in researching A. cristatus due to challenges in genetic manipulation. The mitogen-activated protein kinase (MAPK) signaling pathway is involved in numerous physiological processes, but its specific role in A. cristatus remains unclear. In this study, we successfully developed an efficient polyethylene glycol (PEG)-mediated protoplast transformation method for A. cristatus, enabling us to investigate the function of Pmk1, Mpk1, and Hog1 in the MAPK signaling pathway. Our findings revealed that Pmk1, Mpk1, and Hog1 are crucial for sexual reproduction, melanin synthesis, and response to external stress in A. cristatus. Notably, the deletion of Pmk1, Mpk1, or Hog1 resulted in the loss of sexual reproduction capability in A. cristatus. Overall, this research on MAPK will contribute to the continued understanding of the reproductive strategy and melanin synthesis mechanism of A. cristatus.


Subject(s)
Mitogen-Activated Protein Kinases , Saccharomyces cerevisiae Proteins , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Melanins/genetics , MAP Kinase Signaling System/genetics , Aspergillus/genetics , Aspergillus/metabolism , Phosphorylation , Saccharomyces cerevisiae Proteins/metabolism
7.
Appl Environ Microbiol ; 90(6): e0066224, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38752833

ABSTRACT

Fungal-bacterial consortia enhance organic pollutant removal, but the underlying mechanisms are unclear. We used stable isotope probing (SIP) to explore the mechanism of bioaugmentation involved in polycyclic aromatic hydrocarbon (PAH) biodegradation in petroleum-contaminated soil by introducing the indigenous fungal strain Aspergillus sp. LJD-29 and the bacterial strain Pseudomonas XH-1. While each strain alone increased phenanthrene (PHE) degradation, the simultaneous addition of both strains showed no significant enhancement compared to treatment with XH-1 alone. Nonetheless, the assimilation effect of microorganisms on PHE was significantly enhanced. SIP revealed a role of XH-1 in PHE degradation, while the absence of LJD-29 in 13C-DNA indicated a supporting role. The correlations between fungal abundance, degradation efficiency, and soil extracellular enzyme activity indicated that LJD-29, while not directly involved in PHE assimilation, played a crucial role in the breakdown of PHE through extracellular enzymes, facilitating the assimilation of metabolites by bacteria. This observation was substantiated by the results of metabolite analysis. Furthermore, the combination of fungus and bacterium significantly influenced the diversity of PHE degraders. Taken together, this study highlighted the synergistic effects of fungi and bacteria in PAH degradation, revealed a new fungal-bacterial bioaugmentation mechanism and diversity of PAH-degrading microorganisms, and provided insights for in situ bioremediation of PAH-contaminated soil.IMPORTANCEThis study was performed to explore the mechanism of bioaugmentation by a fungal-bacterial consortium for phenanthrene (PHE) degradation in petroleum-contaminated soil. Using the indigenous fungal strain Aspergillus sp. LJD-29 and bacterial strain Pseudomonas XH-1, we performed stable isotope probing (SIP) to trace active PHE-degrading microorganisms. While inoculation of either organism alone significantly enhanced PHE degradation, the simultaneous addition of both strains revealed complex interactions. The efficiency plateaued, highlighting the nuanced microbial interactions. SIP identified XH-1 as the primary contributor to in situ PHE degradation, in contrast to the limited role of LJD-29. Correlations between fungal abundance, degradation efficiency, and extracellular enzyme activity underscored the pivotal role of LJD-29 in enzymatically facilitating PHE breakdown and enriching bacterial assimilation. Metabolite analysis validated this synergy, unveiling distinct biodegradation mechanisms. Furthermore, this fungal-bacterial alliance significantly impacted PHE-degrading microorganism diversity. These findings advance our understanding of fungal-bacterial bioaugmentation and microorganism diversity in polycyclic aromatic hydrocarbon (PAH) degradation as well as providing insights for theoretical guidance in the in situ bioremediation of PAH-contaminated soil.


Subject(s)
Aspergillus , Biodegradation, Environmental , Microbial Consortia , Phenanthrenes , Soil Microbiology , Soil Pollutants , Phenanthrenes/metabolism , Soil Pollutants/metabolism , Aspergillus/metabolism , Pseudomonas/metabolism , Pseudomonas/genetics , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Fungi/metabolism , Fungi/genetics , Fungi/classification
8.
BMC Microbiol ; 24(1): 200, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851702

ABSTRACT

There is an urgent need for new bioactive molecules with unique mechanisms of action and chemistry to address the issue of incorrect use of chemical fertilizers and pesticides, which hurts both the environment and the health of humans. In light of this, research was done for this work to isolate, identify, and evaluate the germination-promoting potential of various plant species' fungal endophytes. Zea mays L. (maize) seed germination was examined using spore suspension of 75 different endophytic strains that were identified. Three promising strains were identified through screening to possess the ability mentioned above. These strains Alternaria alternate, Aspergilus flavus, and Aspergillus terreus were isolated from the stem of Tecoma stans, Delonix regia, and Ricinus communis, respectively. The ability of the three endophytic fungal strains to produce siderophore and indole acetic acid (IAA) was also examined. Compared to both Aspergillus flavus as well as Aspergillus terreus, Alternaria alternata recorded the greatest rates of IAA, according to the data that was gathered. On CAS agar versus blue media, all three strains failed to produce siderophores. Moreover, the antioxidant and antifungal potentials of extracts from these fungi were tested against different plant pathogens. The obtained results indicated the antioxidant and antifungal activities of the three fungal strains. GC-Mass studies were carried out to determine the principal components in extracts of all three strains of fungi. The three strains' fungus extracts included both well-known and previously unidentified bioactive compounds. These results may aid in the development of novel plant growth promoters by suggesting three different fungal strains as sources of compounds that may improve seed germination. According to the study that has been given, as unexplored sources of bioactive compounds, fungal endophytes have great potential.


Subject(s)
Alternaria , Aspergillus , Bioprospecting , Endophytes , Germination , Seeds , Siderophores , Zea mays , Endophytes/metabolism , Endophytes/isolation & purification , Endophytes/physiology , Seeds/microbiology , Seeds/growth & development , Alternaria/growth & development , Alternaria/physiology , Zea mays/microbiology , Zea mays/growth & development , Aspergillus/metabolism , Aspergillus/growth & development , Siderophores/metabolism , Bioprospecting/methods , Indoleacetic Acids/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Fungi/classification , Fungi/isolation & purification , Fungi/metabolism , Fungi/physiology , Antioxidants/metabolism , Aspergillus flavus/growth & development , Aspergillus flavus/metabolism
9.
Arch Microbiol ; 206(4): 166, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38485821

ABSTRACT

Patulin (PAT) is a fungi-derived secondary metabolite produced by numerous fungal species, especially within Aspergillus, Byssochlamys, and Penicillium genera, amongst which P. expansum is the foremost producer. Similar to other fungi-derived metabolites, PAT has been shown to have diverse biological features. Initially, PAT was used as an effective antimicrobial agent against Gram-negative and Gram-positive bacteria. Then, PAT has been shown to possess immunosuppressive properties encompassing humoral and cellular immune response, immune cell function and activation, phagocytosis, nitric oxide and reactive oxygen species production, cytokine release, and nuclear factor-κB and mitogen-activated protein kinases activation. Macrophages are a heterogeneous population of immune cells widely distributed throughout organs and connective tissue. The chief function of macrophages is to engulf and destroy foreign bodies through phagocytosis; this ability was fundamental to his discovery. However, macrophages play other well-established roles in immunity. Thus, considering the central role of macrophages in the immune response, we review the immunosuppressive effects of PAT in macrophages and provide the possible mechanisms of action.


Subject(s)
Patulin , Penicillium , Patulin/metabolism , Patulin/pharmacology , Aspergillus/metabolism , Reactive Oxygen Species/metabolism , Macrophages/metabolism , Penicillium/metabolism
10.
Arch Microbiol ; 206(7): 291, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849576

ABSTRACT

Biomass-degrading enzymes produced by microorganisms have a great potential in the processing of agricultural wastes. In order to produce suitable biomass-degrading enzymes for releasing sugars and aroma compounds from tobacco scraps, the feasibility of directly using the scraps as a carbon source for enzyme production was investigated in this study. By comparative studies of ten fungal strains isolated from tobacco leaves, Aspergillus brunneoviolaceus Ab-10 was found to produce an efficient enzyme mixture for the saccharification of tobacco scraps. Proteomic analysis identified a set of plant biomass-degrading enzymes in the enzyme mixture, including amylases, hemicellulases, cellulases and pectinases. At a substrate concentration of 100 g/L and enzyme dosage of 4 mg/g, glucose of 17.6 g/L was produced from tobacco scraps using the crude enzyme produced by A. brunneoviolaceus Ab-10. In addition, the contents of 23 volatile molecules, including the aroma compounds 4-ketoisophorone and benzyl alcohol, were significantly increased after the enzymatic treatment. The results provide a strategy for valorization of tobacco waste by integrating the production of biomass-degrading enzymes into the tobacco scrap processing system.


Subject(s)
Aspergillus , Biomass , Nicotiana , Nicotiana/microbiology , Nicotiana/metabolism , Aspergillus/enzymology , Aspergillus/metabolism , Sugars/metabolism , Odorants/analysis , Fungal Proteins/metabolism , Glycoside Hydrolases/metabolism , Amylases/metabolism , Volatile Organic Compounds/metabolism , Plant Leaves/microbiology , Cellulases/metabolism , Polygalacturonase/metabolism
11.
Microb Cell Fact ; 23(1): 73, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431598

ABSTRACT

BACKGROUND: Lignocellulosic biomass provides a great starting point for the production of energy, chemicals, and fuels. The major component of lignocellulosic biomass is cellulose, the employment of highly effective enzymatic cocktails, which can be produced by a variety of microorganisms including species of the genus Aspergillus, is necessary for its utilization in a more productive manner. In this regard, molecular biology techniques should be utilized to promote the economics of enzyme production, whereas strategies like protoplast fusion could be employed to improve the efficacy of the hydrolytic process. RESULTS: The current study focuses on cellulase production in Aspergillus species using intrageneric protoplast fusion, statistical optimization of growth parameters, and determination of antioxidant activity of fermentation hydrolysate. Protoplast fusion was conducted between A. flavus X A. terreus (PFFT), A. nidulans X A. tamarii (PFNT) and A. oryzae X A. tubingensis (PFOT), and the resultant fusant PFNT revealed higher activity level compared with the other fusants. Thus, this study aimed to optimize lignocellulosic wastes-based medium for cellulase production by Aspergillus spp. fusant (PFNT) and studying the antioxidant effect of fermentation hydrolysate. The experimental strategy Plackett-Burman (PBD) was used to assess how culture conditions affected cellulase output, the best level of the three major variables namely, SCB, pH, and incubation temperature were then determined using Box-Behnken design (BBD). Consequently, by utilizing an optimized medium instead of a basal medium, cellulase activity increased from 3.11 U/ml to 7.689 U/ml CMCase. The following medium composition was thought to be ideal based on this optimization: sugarcane bagasse (SCB), 6.82 gm; wheat bran (WB), 4; Moisture, 80%; pH, 4; inoculum size, (3 × 106 spores/ml); and incubation Temp. 31.8 °C for 4 days and the fermentation hydrolysate has 28.13% scavenging activities. CONCLUSION: The results obtained in this study demonstrated the significant activity of the selected fusant and the higher sugar yield from cellulose hydrolysis over its parental strains, suggesting the possibility of enhancing cellulase activity by protoplast fusion using an experimental strategy and the fermentation hydrolysate showed antioxidant activity.


Subject(s)
Cellulase , Cellulases , Saccharum , Cellulose/metabolism , Protoplasts/metabolism , Antioxidants , Saccharum/metabolism , Aspergillus/metabolism , Fermentation , Cellulase/chemistry , Hydrolysis
12.
Microb Cell Fact ; 23(1): 134, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724934

ABSTRACT

BACKGROUND: Lovastatin has widespread applications thanks to its multiple pharmacological effects. Fermentation by filamentous fungi represents the major way of lovastatin production. However, the current lovastatin productivity by fungal fermentation is limited and needs to be improved. RESULTS: In this study, the lovastatin-producing strains of Aspergillus terreus from marine environment were screened, and their lovastatin productions were further improved by genetic engineering. Five strains of A. terreus were isolated from various marine environments. Their secondary metabolites were profiled by metabolomics analysis using Ultra Performance Liquid Chromatography-Mass spectrometry (UPLC-MS) with Global Natural Products Social Molecular Networking (GNPS), revealing that the production of secondary metabolites was variable among different strains. Remarkably, the strain of A. terreus MJ106 could principally biosynthesize the target drug lovastatin, which was confirmed by High Performance Liquid Chromatography (HPLC) and gene expression analysis. By one-factor experiment, lactose was found to be the best carbon source for A. terreus MJ106 to produce lovastatin. To improve the lovastatin titer in A. terreus MJ106, genetic engineering was applied to this strain. Firstly, a series of strong promoters was identified by transcriptomic and green fluorescent protein reporter analysis. Then, three selected strong promoters were used to overexpress the transcription factor gene lovE encoding the major transactivator for lov gene cluster expression. The results revealed that compared to A. terreus MJ106, all lovE over-expression mutants exhibited significantly more production of lovastatin and higher gene expression. One of them, LovE-b19, showed the highest lovastatin productivity at a titer of 1512 mg/L, which represents the highest production level reported in A. terreus. CONCLUSION: Our data suggested that combination of strain screen and genetic engineering represents a powerful tool for improving the productivity of fungal secondary metabolites, which could be adopted for large-scale production of lovastatin in marine-derived A. terreus.


Subject(s)
Aspergillus , Fermentation , Genetic Engineering , Lovastatin , Lovastatin/biosynthesis , Lovastatin/metabolism , Aspergillus/metabolism , Aspergillus/genetics , Aquatic Organisms/metabolism , Aquatic Organisms/genetics
13.
Bioorg Med Chem ; 103: 117685, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38503009

ABSTRACT

Genome sequencing on an intertidal zone-derived Aspergillus flavipes strain revealed its great potential to produce secondary metabolites. To activate the cryptic compounds of A. flavipes, the global regulator flLaeA was knocked out, leading to substantial up-regulation of the expression of two NRPS-like biosynthetic gene clusters in the ΔflLaeA mutant. With a scaled-up fermentation of the ΔflLaeA strain, five compounds, including two previously undescribed piperazine derivatives flavipamides A and B (1 and 2), along with three known compounds (3-5), were obtained by LC-MS guided isolation. The new compounds were elucidated by spectroscopic analysis and electronic circular dichroism (ECD) calculations, and the biosynthetic pathway was proposed on the bias of bioinformatic analysis and 13C isotope labeling evidence. This is the first report to access cryptic fungi secondary metabolites by inactivating global regulator LaeA and may provide a new approach to discovering new secondary metabolites by such genetic manipulation.


Subject(s)
Aspergillus , Fungi , Aspergillus/genetics , Aspergillus/metabolism , Piperazines/pharmacology , Piperazines/metabolism
14.
Environ Res ; 244: 117866, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38061590

ABSTRACT

Cellulase is a new research point besides glucoamylase, amylase, and protease in the enzyme industry. Cellulase can decompose lignocellulosic biomass into small-molecule sugars, which facilitates microbial utilization; thus, it has a vast market potential in the field of feed, food, energy, and chemistry. The Aspergillus was the first strain used in cellulase preparation because of its safety and non-toxicity, strong growth ability, and high enzyme yield. This review provides the latest research and advances on preparing cellulase from Aspergillus. The metabolic mechanisms of cellulase secretion by Aspergillus, the selection of fermentation substrates, the comparison of the fermentation modes, and the effect of fermentation conditions have been discussed in this review. Also, the subsequent separation and purification techniques of Aspergillus cellulase, including salting out, organic solvent precipitation, ultrafiltration, and chromatography, have been declared. Further, bottlenecks in Aspergillus cellulase preparation and corresponding feasible approaches, such as genetic engineering, mixed culture, and cellulase immobilization, have also been proposed in this review. This paper provides theoretical support for the efficient production and application of Aspergillus cellulase.


Subject(s)
Cellulase , Cellulase/genetics , Cellulase/metabolism , Aspergillus/genetics , Aspergillus/metabolism , Fermentation
15.
Appl Microbiol Biotechnol ; 108(1): 348, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809353

ABSTRACT

Mycotoxin production by aflatoxin B1 (AFB1) -producing Aspergillus flavus Zt41 and sterigmatocystin (ST) -hyperproducer Aspergillus creber 2663 mold strains on corn and rice starch, both of high purity and nearly identical amylose-amylopectin composition, as the only source of carbon, was studied. Scanning electron microscopy revealed average starch particle sizes of 4.54 ± 0.635 µm and 10.9 ± 2.78 µm, corresponding to surface area to volume ratios of 127 1/µm for rice starch and 0.49 1/µm for corn starch. Thus, a 2.5-fold difference in particle size correlated to a larger, 259-fold difference in surface area. To allow starch, a water-absorbing powder, to be used as a sole food source for Aspergillus strains, a special glass bead system was applied. AFB1 production of A. flavus Zt41 was determined to be 437.6 ± 128.4 ng/g and 90.0 ± 44.8 ng/g on rice and corn starch, respectively, while corresponding ST production levels by A. creber 2663 were 72.8 ± 10.0 µg/g and 26.8 ± 11.6 µg/g, indicating 3-fivefold higher mycotoxin levels on rice starch than on corn starch as sole carbon and energy sources. KEY POINTS: • A glass bead system ensuring the flow of air when studying powders was developed. • AFB1 and ST production of A. flavus and A. creber on rice and corn starches were studied. • 3-fivefold higher mycotoxin levels on rice starch than on corn starch were detected.


Subject(s)
Oryza , Starch , Zea mays , Oryza/chemistry , Zea mays/chemistry , Starch/metabolism , Aspergillus/metabolism , Aspergillus flavus/metabolism , Aflatoxin B1/biosynthesis , Aflatoxin B1/metabolism , Sterigmatocystin/biosynthesis , Sterigmatocystin/metabolism , Microscopy, Electron, Scanning , Particle Size , Mycotoxins/metabolism , Mycotoxins/biosynthesis , Glass
16.
Biosci Biotechnol Biochem ; 88(7): 824-829, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38664007

ABSTRACT

We found that the culture broth of fungi showed anti-fungal activity against multidrug-sensitive budding yeast. However, we could not identify the anti-fungal compound due to the small quantity. Therefore, we attempted to increase the productivity of the target compound by the introduction of a global secondary metabolism regulator, laeA to the strain, which led to the successful isolation of 10-folds greater amount of MS-347a (1) than Aspergillus sp. FKI-5362. Compound 1 was not effective against Candida albicans and the detailed anti-fungal activity of 1 remains unverified. After our anti-fungal activity screening, 1 was found to inhibit the growth of broad plant pathogenic fungal species belonging to the Ascomycota. It is noteworthy that 1 showed little insecticidal activity against silkworms, suggesting its selective biological activity against plant pathogenic fungi. Our study implies that the combination strategy of multidrug-sensitive yeast and the introduction of laeA is useful for new anti-fungal drug discovery.


Subject(s)
Drug Discovery , Saccharomyces cerevisiae , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Drug Discovery/methods , Candida albicans/drug effects , Secondary Metabolism , Fungicides, Industrial/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Microbial Sensitivity Tests , Ascomycota/drug effects , Ascomycota/genetics , Aspergillus/drug effects , Aspergillus/genetics , Aspergillus/metabolism , Drug Evaluation, Preclinical/methods , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism
17.
Mar Drugs ; 22(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38921553

ABSTRACT

Subjecting the Australian marine-derived fungus Aspergillus noonimiae CMB-M0339 to cultivation profiling using an innovative miniaturized 24-well plate format (MATRIX) enabled access to new examples of the rare class of 2,6-diketopiperazines, noonazines A-C (1-3), along with the known analogue coelomycin (4), as well as a new azaphilone, noonaphilone A (5). Structures were assigned to 1-5 on the basis of a detailed spectroscopic analysis, and in the case of 1-2, an X-ray crystallographic analysis. Plausible biosynthetic pathways are proposed for 1-4, involving oxidative Schiff base coupling/dimerization of a putative Phe precursor. Of note, 2 incorporates a rare meta-Tyr motif, typically only reported in a limited array of Streptomyces metabolites. Similarly, a plausible biosynthetic pathway is proposed for 5, highlighting a single point for stereo-divergence that allows for the biosynthesis of alternate antipodes, for example, the 7R noonaphilone A (5) versus the 7S deflectin 1a (6).


Subject(s)
Aspergillus , Aspergillus/metabolism , Aspergillus/chemistry , Australia , Diketopiperazines/chemistry , Diketopiperazines/isolation & purification , Aquatic Organisms , Biosynthetic Pathways , Crystallography, X-Ray , Molecular Structure , Benzopyrans , Pigments, Biological
18.
Mar Drugs ; 22(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38921581

ABSTRACT

A marine-derived fungal strain, Aspergillus sp. ITBBc1, was isolated from coral collected from the South China Sea in Hainan province. Intensive chemical investigation of the fermentation extract of this strain afforded four new secondary metabolites (1-4), named megastigmanones A-C and prenylterphenyllin H, along with four known compounds (5-8). Their structures were elucidated by extensive spectroscopic analysis including one-and two-dimensional (1D and 2D) NMR spectroscopy and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). The modified Mosher's method was undertaken to determine the absolute configurations of new compounds. The phytotoxic activity test showed that compounds 6-8 exhibited significant antagonistic activity against the germination of Triticum aestivum L. and Oryza sativa L. seeds with a dose-dependent relationship.


Subject(s)
Anthozoa , Aspergillus , Triticum , Aspergillus/metabolism , Aspergillus/chemistry , Anthozoa/microbiology , Animals , Triticum/microbiology , Oryza/microbiology , Secondary Metabolism , Magnetic Resonance Spectroscopy , Seeds , China , Germination/drug effects , Molecular Structure
19.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-34016748

ABSTRACT

Fungi produce a wealth of pharmacologically bioactive secondary metabolites (SMs) from biosynthetic gene clusters (BGCs). It is common practice for drug discovery efforts to treat species' secondary metabolomes as being well represented by a single or a small number of representative genomes. However, this approach misses the possibility that intraspecific population dynamics, such as adaptation to environmental conditions or local microbiomes, may harbor novel BGCs that contribute to the overall niche breadth of species. Using 94 isolates of Aspergillus flavus, a cosmopolitan model fungus, sampled from seven states in the United States, we dereplicate 7,821 BGCs into 92 unique BGCs. We find that more than 25% of pangenomic BGCs show population-specific patterns of presence/absence or protein divergence. Population-specific BGCs make up most of the accessory-genome BGCs, suggesting that different ecological forces that maintain accessory genomes may be partially mediated by population-specific differences in secondary metabolism. We use ultra-high-performance high-resolution mass spectrometry to confirm that these genetic differences in BGCs also result in chemotypic differences in SM production in different populations, which could mediate ecological interactions and be acted on by selection. Thus, our results suggest a paradigm shift that previously unrealized population-level reservoirs of SM diversity may be of significant evolutionary, ecological, and pharmacological importance. Last, we find that several population-specific BGCs from A. flavus are present in Aspergillus parasiticus and Aspergillus minisclerotigenes and discuss how the microevolutionary patterns we uncover inform macroevolutionary inferences and help to align fungal secondary metabolism with existing evolutionary theory.


Subject(s)
Aspergillus flavus/metabolism , Aspergillus/metabolism , Genome, Fungal , Metabolome , Secondary Metabolism/genetics , Aspergillus/classification , Aspergillus/genetics , Aspergillus flavus/classification , Aspergillus flavus/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genetic Speciation , Genomics , Metagenomics , Multigene Family , Phylogeny , United States
20.
Chem Biodivers ; 21(6): e202400395, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38623912

ABSTRACT

Endophytic fungi live asymptomatically inside vegetal tissues, and such uncommon habitat contributes to their exceptional chemical diversity. Isolating natural products from endophytic fungi could fail due to silent biosynthetic gene clusters under ordinary in vitro culture conditions, and co-culturing has been assayed to trigger their metabolism. We carried out single and dual cultures with 13 endophyte strains isolated from Euphorbia umbellata leaves. Multivariate statistics applied to untargeted metabolomics compared the chemical profiles of all endophyte cultures. PCA analysis guided the selection of the Aspergillus pseudonomiae J1 - Porogramme brasiliensis J9 dual culture for its most significant chemical differentiation: Five compounds were putatively annotated in the J1-J9 culture according to UHPLC-HRMS data, kojic acid, haliclonol and its diastereoisomer, caffeic acid, and 2-(3,4-dihydroxyphenyl)acetaldehyde. Analysis by PLS-DA using VIP score showed that kojic acid displayed the most significative importance in discriminating single and dual J1-J9 cultures.


Subject(s)
Endophytes , Euphorbia , Metabolomics , Euphorbia/chemistry , Euphorbia/microbiology , Endophytes/chemistry , Endophytes/metabolism , Endophytes/isolation & purification , Plant Leaves/microbiology , Plant Leaves/chemistry , Chromatography, High Pressure Liquid , Pyrones/chemistry , Pyrones/isolation & purification , Pyrones/metabolism , Aspergillus/metabolism , Aspergillus/chemistry , Aspergillus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL