Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144.341
Filter
Add more filters

Publication year range
1.
Cell ; 185(5): 916-938.e58, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35216673

ABSTRACT

Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete description of specific immune biomarkers. We present here a comprehensive multi-omic blood atlas for patients with varying COVID-19 severity in an integrated comparison with influenza and sepsis patients versus healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity involved cells, their inflammatory mediators and networks, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism, and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Systems-based integrative analyses including tensor and matrix decomposition of all modalities revealed feature groupings linked with severity and specificity compared to influenza and sepsis. Our approach and blood atlas will support future drug development, clinical trial design, and personalized medicine approaches for COVID-19.


Subject(s)
Biomarkers/blood , COVID-19/pathology , Proteome/analysis , Adult , Blood Proteins/metabolism , COVID-19/blood , COVID-19/virology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Female , Humans , Influenza, Human/blood , Influenza, Human/pathology , Lymphocytes/immunology , Lymphocytes/metabolism , Machine Learning , Male , Middle Aged , Mitogen-Activated Protein Kinase 14/genetics , Mitogen-Activated Protein Kinase 14/metabolism , Monocytes/immunology , Monocytes/metabolism , Principal Component Analysis , SARS-CoV-2/isolation & purification , Sepsis/blood , Sepsis/pathology , Severity of Illness Index , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism
2.
Cell ; 184(10): 2715-2732.e23, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33852912

ABSTRACT

Traumatic brain injury (TBI) is the largest non-genetic, non-aging related risk factor for Alzheimer's disease (AD). We report here that TBI induces tau acetylation (ac-tau) at sites acetylated also in human AD brain. This is mediated by S-nitrosylated-GAPDH, which simultaneously inactivates Sirtuin1 deacetylase and activates p300/CBP acetyltransferase, increasing neuronal ac-tau. Subsequent tau mislocalization causes neurodegeneration and neurobehavioral impairment, and ac-tau accumulates in the blood. Blocking GAPDH S-nitrosylation, inhibiting p300/CBP, or stimulating Sirtuin1 all protect mice from neurodegeneration, neurobehavioral impairment, and blood and brain accumulation of ac-tau after TBI. Ac-tau is thus a therapeutic target and potential blood biomarker of TBI that may represent pathologic convergence between TBI and AD. Increased ac-tau in human AD brain is further augmented in AD patients with history of TBI, and patients receiving the p300/CBP inhibitors salsalate or diflunisal exhibit decreased incidence of AD and clinically diagnosed TBI.


Subject(s)
Alzheimer Disease/etiology , Alzheimer Disease/prevention & control , Brain Injuries, Traumatic/complications , Neuroprotection , tau Proteins/metabolism , Acetylation , Alzheimer Disease/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Biomarkers/blood , Biomarkers/metabolism , Brain Injuries, Traumatic/metabolism , Cell Line , Diflunisal/therapeutic use , Female , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) , Humans , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Salicylates/therapeutic use , Sirtuin 1/metabolism , p300-CBP Transcription Factors/antagonists & inhibitors , p300-CBP Transcription Factors/metabolism , tau Proteins/blood
3.
Cell ; 184(2): 476-488.e11, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33412089

ABSTRACT

Coronavirus disease 2019 (COVID-19) exhibits variable symptom severity ranging from asymptomatic to life-threatening, yet the relationship between severity and the humoral immune response is poorly understood. We examined antibody responses in 113 COVID-19 patients and found that severe cases resulting in intubation or death exhibited increased inflammatory markers, lymphopenia, pro-inflammatory cytokines, and high anti-receptor binding domain (RBD) antibody levels. Although anti-RBD immunoglobulin G (IgG) levels generally correlated with neutralization titer, quantitation of neutralization potency revealed that high potency was a predictor of survival. In addition to neutralization of wild-type SARS-CoV-2, patient sera were also able to neutralize the recently emerged SARS-CoV-2 mutant D614G, suggesting cross-protection from reinfection by either strain. However, SARS-CoV-2 sera generally lacked cross-neutralization to a highly homologous pre-emergent bat coronavirus, WIV1-CoV, which has not yet crossed the species barrier. These results highlight the importance of neutralizing humoral immunity on disease progression and the need to develop broadly protective interventions to prevent future coronavirus pandemics.


Subject(s)
Antibodies, Neutralizing/immunology , Biomarkers/analysis , COVID-19/immunology , COVID-19/physiopathology , Adult , Antibodies, Neutralizing/analysis , Antibodies, Viral/analysis , Antibodies, Viral/blood , Biomarkers/blood , COVID-19/blood , COVID-19/epidemiology , Comorbidity , Coronavirus/classification , Coronavirus/physiology , Cross Reactions , Cytokines/blood , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin A/analysis , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Massachusetts/epidemiology , Middle Aged , Protein Domains , SARS-CoV-2/chemistry , SARS-CoV-2/physiology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/chemistry , Survival Analysis , Treatment Outcome
4.
Cell ; 181(7): 1680-1692.e15, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32589958

ABSTRACT

Metabolism during pregnancy is a dynamic and precisely programmed process, the failure of which can bring devastating consequences to the mother and fetus. To define a high-resolution temporal profile of metabolites during healthy pregnancy, we analyzed the untargeted metabolome of 784 weekly blood samples from 30 pregnant women. Broad changes and a highly choreographed profile were revealed: 4,995 metabolic features (of 9,651 total), 460 annotated compounds (of 687 total), and 34 human metabolic pathways (of 48 total) were significantly changed during pregnancy. Using linear models, we built a metabolic clock with five metabolites that time gestational age in high accordance with ultrasound (R = 0.92). Furthermore, two to three metabolites can identify when labor occurs (time to delivery within two, four, and eight weeks, AUROC ≥ 0.85). Our study represents a weekly characterization of the human pregnancy metabolome, providing a high-resolution landscape for understanding pregnancy with potential clinical utilities.


Subject(s)
Gestational Age , Metabolomics/methods , Pregnancy/metabolism , Adult , Biomarkers/blood , Female , Fetus/metabolism , Humans , Metabolic Networks and Pathways/physiology , Metabolome/physiology , Pregnant Women
5.
Cell ; 182(1): 59-72.e15, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32492406

ABSTRACT

Early detection and effective treatment of severe COVID-19 patients remain major challenges. Here, we performed proteomic and metabolomic profiling of sera from 46 COVID-19 and 53 control individuals. We then trained a machine learning model using proteomic and metabolomic measurements from a training cohort of 18 non-severe and 13 severe patients. The model was validated using 10 independent patients, 7 of which were correctly classified. Targeted proteomics and metabolomics assays were employed to further validate this molecular classifier in a second test cohort of 19 COVID-19 patients, leading to 16 correct assignments. We identified molecular changes in the sera of COVID-19 patients compared to other groups implicating dysregulation of macrophage, platelet degranulation, complement system pathways, and massive metabolic suppression. This study revealed characteristic protein and metabolite changes in the sera of severe COVID-19 patients, which might be used in selection of potential blood biomarkers for severity evaluation.


Subject(s)
Coronavirus Infections/blood , Metabolomics , Pneumonia, Viral/blood , Proteomics , Adult , Amino Acids/metabolism , Biomarkers/blood , COVID-19 , Cluster Analysis , Coronavirus Infections/physiopathology , Female , Humans , Lipid Metabolism , Machine Learning , Macrophages/pathology , Male , Middle Aged , Pandemics , Pneumonia, Viral/physiopathology , Severity of Illness Index
6.
Cell ; 182(5): 1311-1327.e14, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32888495

ABSTRACT

Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of ∼25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could reduce mortality. Here, we present a resource of SaB prognostic biomarkers. Integrating proteomic and metabolomic techniques enabled the identification of >10,000 features from >200 serum samples collected upon clinical presentation. We interrogated the complexity of serum using multiple computational strategies, which provided a comprehensive view of the early host response to infection. Our biomarkers exceed the predictive capabilities of those previously reported, particularly when used in combination. Last, we validated the biological contribution of mortality-associated pathways using a murine model of SaB. Our findings represent a starting point for the development of a prognostic test for identifying high-risk patients at a time early enough to trigger intensive monitoring and interventions.


Subject(s)
Bacteremia/blood , Bacteremia/mortality , Staphylococcal Infections/blood , Staphylococcal Infections/mortality , Staphylococcus aureus/pathogenicity , Animals , Bacteremia/metabolism , Biomarkers/blood , Biomarkers/metabolism , Disease Models, Animal , Female , Humans , Male , Metabolomics/methods , Mice , Middle Aged , Prognosis , Proteomics/methods , Risk Factors , Staphylococcal Infections/metabolism
7.
Nat Immunol ; 23(2): 210-216, 2022 02.
Article in English | MEDLINE | ID: mdl-35027728

ABSTRACT

A proportion of patients surviving acute coronavirus disease 2019 (COVID-19) infection develop post-acute COVID syndrome (long COVID (LC)) lasting longer than 12 weeks. Here, we studied individuals with LC compared to age- and gender-matched recovered individuals without LC, unexposed donors and individuals infected with other coronaviruses. Patients with LC had highly activated innate immune cells, lacked naive T and B cells and showed elevated expression of type I IFN (IFN-ß) and type III IFN (IFN-λ1) that remained persistently high at 8 months after infection. Using a log-linear classification model, we defined an optimal set of analytes that had the strongest association with LC among the 28 analytes measured. Combinations of the inflammatory mediators IFN-ß, PTX3, IFN-γ, IFN-λ2/3 and IL-6 associated with LC with 78.5-81.6% accuracy. This work defines immunological parameters associated with LC and suggests future opportunities for prevention and treatment.


Subject(s)
B-Lymphocytes/immunology , COVID-19/complications , Immunity, Innate , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Aged , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Case-Control Studies , Cytokines/blood , Female , Host-Pathogen Interactions , Humans , Inflammation Mediators/blood , Male , Middle Aged , Prognosis , SARS-CoV-2/pathogenicity , Severity of Illness Index , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Time Factors , Post-Acute COVID-19 Syndrome
8.
Nat Immunol ; 22(12): 1515-1523, 2021 12.
Article in English | MEDLINE | ID: mdl-34811542

ABSTRACT

Development of an effective tuberculosis (TB) vaccine has suffered from an incomplete understanding of the correlates of protection against Mycobacterium tuberculosis (Mtb). Intravenous (i.v.) vaccination with Bacille Calmette-Guérin (BCG) provides nearly complete protection against TB in rhesus macaques, but the antibody response it elicits remains incompletely defined. Here we show that i.v. BCG drives superior antibody responses in the plasma and the lungs of rhesus macaques compared to traditional intradermal BCG administration. While i.v. BCG broadly expands antibody titers and functions, IgM titers in the plasma and lungs of immunized macaques are among the strongest markers of reduced bacterial burden. IgM was also enriched in macaques that received protective vaccination with an attenuated strain of Mtb. Finally, an Mtb-specific IgM monoclonal antibody reduced Mtb survival in vitro. Collectively, these data highlight the potential importance of IgM responses as a marker and mediator of protection against TB.


Subject(s)
Antibodies, Bacterial/blood , BCG Vaccine/administration & dosage , Immunogenicity, Vaccine , Immunoglobulin M/blood , Mycobacterium tuberculosis/immunology , Tuberculosis/prevention & control , Vaccination , Administration, Intravenous , Animals , Biomarkers/blood , Disease Models, Animal , Host-Pathogen Interactions , Macaca mulatta , Mycobacterium tuberculosis/pathogenicity , Time Factors , Tuberculosis/immunology , Tuberculosis/microbiology
9.
Nat Immunol ; 22(3): 287-300, 2021 03.
Article in English | MEDLINE | ID: mdl-33574617

ABSTRACT

Sub-Saharan Africa currently experiences an unprecedented wave of urbanization, which has important consequences for health and disease patterns. This study aimed to investigate and integrate the immune and metabolic consequences of rural or urban lifestyles and the role of nutritional changes associated with urban living. In a cohort of 323 healthy Tanzanians, urban as compared to rural living was associated with a pro-inflammatory immune phenotype, both at the transcript and protein levels. We identified different food-derived and endogenous circulating metabolites accounting for these differences. Serum from urban dwellers induced reprogramming of innate immune cells with higher tumor necrosis factor production upon microbial re-stimulation in an in vitro model of trained immunity. These data demonstrate important shifts toward an inflammatory phenotype associated with an urban lifestyle and provide new insights into the underlying dietary and metabolic factors, which may affect disease epidemiology in sub-Sahara African countries.


Subject(s)
Cytokines/blood , Diet, Healthy , Energy Metabolism , Immunity, Innate , Inflammation Mediators/blood , Rural Health , Urban Health , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Cytokines/genetics , Energy Metabolism/genetics , Female , Humans , Immunity, Innate/genetics , Male , Metabolome , Middle Aged , Nutritional Status , Nutritive Value , Risk Reduction Behavior , Seasons , Tanzania , Transcriptome , Tumor Necrosis Factor-alpha/blood , Urbanization , Young Adult
10.
Nat Immunol ; 22(2): 128-139, 2021 02.
Article in English | MEDLINE | ID: mdl-33398182

ABSTRACT

Complement hyperactivation, angiopathic thrombosis and protein-losing enteropathy (CHAPLE disease) is a lethal disease caused by genetic loss of the complement regulatory protein CD55, leading to overactivation of complement and innate immunity together with immunodeficiency due to immunoglobulin wasting in the intestine. We report in vivo human data accumulated using the complement C5 inhibitor eculizumab for the medical treatment of patients with CHAPLE disease. We observed cessation of gastrointestinal pathology together with restoration of normal immunity and metabolism. We found that patients rapidly renormalized immunoglobulin concentrations and other serum proteins as revealed by aptamer profiling, re-established a healthy gut microbiome, discontinued immunoglobulin replacement and other treatments and exhibited catch-up growth. Thus, we show that blockade of C5 by eculizumab effectively re-establishes regulation of the innate immune complement system to substantially reduce the pathophysiological manifestations of CD55 deficiency in humans.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Complement Activation/drug effects , Complement C5/antagonists & inhibitors , Complement Inactivating Agents/therapeutic use , Energy Metabolism/drug effects , Hypoproteinemia/drug therapy , Immunity, Innate/drug effects , Protein-Losing Enteropathies/drug therapy , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacokinetics , Biomarkers/blood , CD55 Antigens/deficiency , CD55 Antigens/genetics , Complement C5/metabolism , Complement Inactivating Agents/adverse effects , Complement Inactivating Agents/pharmacokinetics , Genetic Predisposition to Disease , Humans , Hypoproteinemia/genetics , Hypoproteinemia/immunology , Hypoproteinemia/metabolism , Mutation , Phenotype , Protein-Losing Enteropathies/genetics , Protein-Losing Enteropathies/immunology , Protein-Losing Enteropathies/metabolism , Treatment Outcome
11.
Annu Rev Immunol ; 28: 535-71, 2010.
Article in English | MEDLINE | ID: mdl-20192809

ABSTRACT

The past decade has seen an explosion in the use of DNA-based microarrays. These techniques permit assessment of RNA abundance on a genome-wide scale. Medical applications emerged in the field of cancer, with studies of both solid tumors and hematological malignancies leading to the development of tests that are now used to personalize therapeutic options. Microarrays have also been used to analyze the blood transcriptome in a wide range of diseases. In human autoimmune diseases, these studies are showing potential for identifying therapeutic targets as well as biomarkers for diagnosis, assessment of disease activity, and response to treatment. More quantitative and sensitive high-throughput RNA profiling methods are starting to be available and will be necessary for transcriptome analyses to become routine tests in the clinical setting. We expect this to crystallize within the coming decade, as these methods become part of the personalized medicine armamentarium.


Subject(s)
Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Animals , Autoimmune Diseases/blood , Autoimmune Diseases/drug therapy , Biomarkers/blood , Genomics , High-Throughput Screening Assays , Humans , Oligonucleotide Array Sequence Analysis
12.
Nat Immunol ; 19(11): 1159-1168, 2018 11.
Article in English | MEDLINE | ID: mdl-30333612

ABSTRACT

Blood transcriptomics analysis of tuberculosis has revealed an interferon-inducible gene signature that diminishes in expression after successful treatment; this promises improved diagnostics and treatment monitoring, which are essential for the eradication of tuberculosis. Sensitive radiography revealing lung abnormalities and blood transcriptomics have demonstrated heterogeneity in patients with active tuberculosis and exposed asymptomatic people with latent tuberculosis, suggestive of a continuum of infection and immune states. Here we describe the immune response to infection with Mycobacterium tuberculosis revealed through the use of transcriptomics, as well as differences among clinical phenotypes of infection that might provide information on temporal changes in host immunity associated with evolving infection. We also review the diverse blood transcriptional signatures, composed of small sets of genes, that have been proposed for the diagnosis of tuberculosis and the identification of at-risk asymptomatic people and suggest novel approaches for the development of such biomarkers for clinical use.


Subject(s)
Biomarkers/blood , Gene Expression Profiling/methods , Tuberculosis/immunology , Humans , Transcriptome/immunology , Tuberculosis/blood , Tuberculosis/diagnosis
13.
Nat Immunol ; 19(6): 625-635, 2018 06.
Article in English | MEDLINE | ID: mdl-29777224

ABSTRACT

Transcriptional profiles and host-response biomarkers are used increasingly to investigate the severity, subtype and pathogenesis of disease. We now describe whole-blood mRNA signatures and concentrations of local and systemic immunological mediators in 131 adults hospitalized with influenza, from whom extensive clinical and investigational data were obtained by MOSAIC investigators. Signatures reflective of interferon-related antiviral pathways were common up to day 4 of symptoms in patients who did not require mechanical ventilator support; in those who needed mechanical ventilation, an inflammatory, activated-neutrophil and cell-stress or death ('bacterial') pattern was seen, even early in disease. Identifiable bacterial co-infection was not necessary for this 'bacterial' signature but was able to enhance its development while attenuating the early 'viral' signature. Our findings emphasize the importance of timing and severity in the interpretation of host responses to acute viral infection and identify specific patterns of immune-system activation that might enable the development of novel diagnostic and therapeutic tools for severe influenza.


Subject(s)
Biomarkers/blood , Influenza, Human/blood , Influenza, Human/immunology , Transcriptome , Adolescent , Adult , Aged , Disease Progression , Female , Humans , Influenza, Human/genetics , Interferons/blood , Interferons/immunology , Male , Middle Aged , Neutrophils/immunology , RNA, Messenger/blood , Young Adult
14.
Immunity ; 54(7): 1578-1593.e5, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34051147

ABSTRACT

Immune profiling of COVID-19 patients has identified numerous alterations in both innate and adaptive immunity. However, whether those changes are specific to SARS-CoV-2 or driven by a general inflammatory response shared across severely ill pneumonia patients remains unknown. Here, we compared the immune profile of severe COVID-19 with non-SARS-CoV-2 pneumonia ICU patients using longitudinal, high-dimensional single-cell spectral cytometry and algorithm-guided analysis. COVID-19 and non-SARS-CoV-2 pneumonia both showed increased emergency myelopoiesis and displayed features of adaptive immune paralysis. However, pathological immune signatures suggestive of T cell exhaustion were exclusive to COVID-19. The integration of single-cell profiling with a predicted binding capacity of SARS-CoV-2 peptides to the patients' HLA profile further linked the COVID-19 immunopathology to impaired virus recognition. Toward clinical translation, circulating NKT cell frequency was identified as a predictive biomarker for patient outcome. Our comparative immune map serves to delineate treatment strategies to interfere with the immunopathologic cascade exclusive to severe COVID-19.


Subject(s)
COVID-19/immunology , SARS-CoV-2/pathogenicity , Adult , Angiotensin-Converting Enzyme 2/metabolism , Antigen Presentation , Biomarkers/blood , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , COVID-19/pathology , Female , HLA Antigens/genetics , HLA Antigens/immunology , Humans , Immunity, Innate , Immunophenotyping , Male , Middle Aged , Natural Killer T-Cells/immunology , Pneumonia/immunology , Pneumonia/pathology , SARS-CoV-2/immunology , Severity of Illness Index , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
15.
Nature ; 628(8006): 130-138, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448586

ABSTRACT

Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism1-7. This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases8-11. Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases.


Subject(s)
Biomarkers , Genome-Wide Association Study , Metabolomics , Female , Humans , Pregnancy , Acetone/blood , Acetone/metabolism , Biomarkers/blood , Biomarkers/metabolism , Cholestasis, Intrahepatic/blood , Cholestasis, Intrahepatic/genetics , Cholestasis, Intrahepatic/metabolism , Cohort Studies , Genome-Wide Association Study/methods , Hypertension/blood , Hypertension/genetics , Hypertension/metabolism , Lipoproteins/genetics , Lipoproteins/metabolism , Magnetic Resonance Spectroscopy , Mendelian Randomization Analysis , Metabolic Networks and Pathways/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Pregnancy Complications/blood , Pregnancy Complications/genetics , Pregnancy Complications/metabolism
16.
Immunity ; 53(5): 1108-1122.e5, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33128875

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is a global public health crisis. However, little is known about the pathogenesis and biomarkers of COVID-19. Here, we profiled host responses to COVID-19 by performing plasma proteomics of a cohort of COVID-19 patients, including non-survivors and survivors recovered from mild or severe symptoms, and uncovered numerous COVID-19-associated alterations of plasma proteins. We developed a machine-learning-based pipeline to identify 11 proteins as biomarkers and a set of biomarker combinations, which were validated by an independent cohort and accurately distinguished and predicted COVID-19 outcomes. Some of the biomarkers were further validated by enzyme-linked immunosorbent assay (ELISA) using a larger cohort. These markedly altered proteins, including the biomarkers, mediate pathophysiological pathways, such as immune or inflammatory responses, platelet degranulation and coagulation, and metabolism, that likely contribute to the pathogenesis. Our findings provide valuable knowledge about COVID-19 biomarkers and shed light on the pathogenesis and potential therapeutic targets of COVID-19.


Subject(s)
Coronavirus Infections/blood , Coronavirus Infections/pathology , Plasma/metabolism , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , Adult , Aged , Aged, 80 and over , Betacoronavirus , Biomarkers/blood , Blood Proteins/metabolism , COVID-19 , Coronavirus Infections/classification , Coronavirus Infections/metabolism , Female , Humans , Machine Learning , Male , Middle Aged , Pandemics/classification , Pneumonia, Viral/classification , Pneumonia, Viral/metabolism , Proteomics , Reproducibility of Results , SARS-CoV-2
17.
Nature ; 622(7982): 339-347, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37794183

ABSTRACT

Integrating human genomics and proteomics can help elucidate disease mechanisms, identify clinical biomarkers and discover drug targets1-4. Because previous proteogenomic studies have focused on common variation via genome-wide association studies, the contribution of rare variants to the plasma proteome remains largely unknown. Here we identify associations between rare protein-coding variants and 2,923 plasma protein abundances measured in 49,736 UK Biobank individuals. Our variant-level exome-wide association study identified 5,433 rare genotype-protein associations, of which 81% were undetected in a previous genome-wide association study of the same cohort5. We then looked at aggregate signals using gene-level collapsing analysis, which revealed 1,962 gene-protein associations. Of the 691 gene-level signals from protein-truncating variants, 99.4% were associated with decreased protein levels. STAB1 and STAB2, encoding scavenger receptors involved in plasma protein clearance, emerged as pleiotropic loci, with 77 and 41 protein associations, respectively. We demonstrate the utility of our publicly accessible resource through several applications. These include detailing an allelic series in NLRC4, identifying potential biomarkers for a fatty liver disease-associated variant in HSD17B13 and bolstering phenome-wide association studies by integrating protein quantitative trait loci with protein-truncating variants in collapsing analyses. Finally, we uncover distinct proteomic consequences of clonal haematopoiesis (CH), including an association between TET2-CH and increased FLT3 levels. Our results highlight a considerable role for rare variation in plasma protein abundance and the value of proteogenomics in therapeutic discovery.


Subject(s)
Biological Specimen Banks , Blood Proteins , Genetic Association Studies , Genomics , Proteomics , Humans , Alleles , Biomarkers/blood , Blood Proteins/analysis , Blood Proteins/genetics , Databases, Factual , Exome/genetics , Hematopoiesis , Mutation , Plasma/chemistry , United Kingdom
18.
Nature ; 624(7990): 164-172, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38057571

ABSTRACT

Animal studies show aging varies between individuals as well as between organs within an individual1-4, but whether this is true in humans and its effect on age-related diseases is unknown. We utilized levels of human blood plasma proteins originating from specific organs to measure organ-specific aging differences in living individuals. Using machine learning models, we analysed aging in 11 major organs and estimated organ age reproducibly in five independent cohorts encompassing 5,676 adults across the human lifespan. We discovered nearly 20% of the population show strongly accelerated age in one organ and 1.7% are multi-organ agers. Accelerated organ aging confers 20-50% higher mortality risk, and organ-specific diseases relate to faster aging of those organs. We find individuals with accelerated heart aging have a 250% increased heart failure risk and accelerated brain and vascular aging predict Alzheimer's disease (AD) progression independently from and as strongly as plasma pTau-181 (ref. 5), the current best blood-based biomarker for AD. Our models link vascular calcification, extracellular matrix alterations and synaptic protein shedding to early cognitive decline. We introduce a simple and interpretable method to study organ aging using plasma proteomics data, predicting diseases and aging effects.


Subject(s)
Aging , Biomarkers , Disease , Health , Organ Specificity , Proteome , Proteomics , Adult , Humans , Aging/blood , Alzheimer Disease/blood , Biomarkers/blood , Brain/metabolism , Cognitive Dysfunction/blood , Proteome/analysis , Machine Learning , Cohort Studies , Disease Progression , Heart Failure/blood , Extracellular Matrix/metabolism , Synapses/metabolism , Vascular Calcification/blood , Heart
19.
Nature ; 623(7985): 139-148, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37748514

ABSTRACT

Post-acute infection syndromes may develop after acute viral disease1. Infection with SARS-CoV-2 can result in the development of a post-acute infection syndrome known as long COVID. Individuals with long COVID frequently report unremitting fatigue, post-exertional malaise, and a variety of cognitive and autonomic dysfunctions2-4. However, the biological processes that are associated with the development and persistence of these symptoms are unclear. Here 275 individuals with or without long COVID were enrolled in a cross-sectional study that included multidimensional immune phenotyping and unbiased machine learning methods to identify biological features associated with long COVID. Marked differences were noted in circulating myeloid and lymphocyte populations relative to the matched controls, as well as evidence of exaggerated humoral responses directed against SARS-CoV-2 among participants with long COVID. Furthermore, higher antibody responses directed against non-SARS-CoV-2 viral pathogens were observed among individuals with long COVID, particularly Epstein-Barr virus. Levels of soluble immune mediators and hormones varied among groups, with cortisol levels being lower among participants with long COVID. Integration of immune phenotyping data into unbiased machine learning models identified the key features that are most strongly associated with long COVID status. Collectively, these findings may help to guide future studies into the pathobiology of long COVID and help with developing relevant biomarkers.


Subject(s)
Antibodies, Viral , Herpesvirus 4, Human , Hydrocortisone , Lymphocytes , Myeloid Cells , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Humans , Antibodies, Viral/blood , Antibodies, Viral/immunology , Biomarkers/blood , Cross-Sectional Studies , Herpesvirus 4, Human/immunology , Hydrocortisone/blood , Immunophenotyping , Lymphocytes/immunology , Machine Learning , Myeloid Cells/immunology , Post-Acute COVID-19 Syndrome/diagnosis , Post-Acute COVID-19 Syndrome/immunology , Post-Acute COVID-19 Syndrome/physiopathology , Post-Acute COVID-19 Syndrome/virology , SARS-CoV-2/immunology
20.
Immunity ; 51(3): 573-589.e8, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31474513

ABSTRACT

Human mononuclear phagocytes comprise phenotypically and functionally overlapping subsets of dendritic cells (DCs) and monocytes, but the extent of their heterogeneity and distinct markers for subset identification remains elusive. By integrating high-dimensional single-cell protein and RNA expression data, we identified distinct markers to delineate monocytes from conventional DC2 (cDC2s). Using CD88 and CD89 for monocytes and HLA-DQ and FcεRIα for cDC2s allowed for their specific identification in blood and tissues. We also showed that cDC2s could be subdivided into phenotypically and functionally distinct subsets based on CD5, CD163, and CD14 expression, including a distinct subset of circulating inflammatory CD5-CD163+CD14+ cells related to previously defined DC3s. These inflammatory DC3s were expanded in systemic lupus erythematosus patients and correlated with disease activity. These findings further unravel the heterogeneity of DC subpopulations in health and disease and may pave the way for the identification of specific DC subset-targeting therapies.


Subject(s)
Biomarkers/blood , Dendritic Cells/immunology , Inflammation/blood , Inflammation/immunology , Leukocytes, Mononuclear/immunology , Phagocytes/immunology , Antigens, CD/blood , Antigens, CD/immunology , Cells, Cultured , Flow Cytometry/methods , Humans , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/immunology , Monocytes/immunology , Phenotype , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL