Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.360
Filter
Add more filters

Publication year range
1.
Nature ; 634(8036): 1096-1102, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39478212

ABSTRACT

Additive manufacturing is an expanding multidisciplinary field encompassing applications including medical devices1, aerospace components2, microfabrication strategies3,4 and artificial organs5. Among additive manufacturing approaches, light-based printing technologies, including two-photon polymerization6, projection micro stereolithography7,8 and volumetric printing9-14, have garnered significant attention due to their speed, resolution or potential applications for biofabrication. Here we introduce dynamic interface printing, a new 3D printing approach that leverages an acoustically modulated, constrained air-liquid boundary to rapidly generate centimetre-scale 3D structures within tens of seconds. Unlike volumetric approaches, this process eliminates the need for intricate feedback systems, specialized chemistry or complex optics while maintaining rapid printing speeds. We demonstrate the versatility of this technique across a broad array of materials and intricate geometries, including those that would be impossible to print with conventional layer-by-layer methods. In doing so, we demonstrate the rapid fabrication of complex structures in situ, overprinting, structural parallelization and biofabrication utility. Moreover, we show that the formation of surface waves at the air-liquid boundary enables enhanced mass transport, improves material flexibility and permits 3D particle patterning. We, therefore, anticipate that this approach will be invaluable for applications where high-resolution, scalable throughput and biocompatible printing is required.


Subject(s)
Printing, Three-Dimensional , Air , Acoustics , Bioprinting/methods , Tissue Engineering/methods , Time Factors
2.
Proc Natl Acad Sci U S A ; 121(9): e2313464121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38346211

ABSTRACT

Creating tissue and organ equivalents with intricate architectures and multiscale functional feature sizes is the first step toward the reconstruction of transplantable human tissues and organs. Existing embedded ink writing approaches are limited by achievable feature sizes ranging from hundreds of microns to tens of millimeters, which hinders their ability to accurately duplicate structures found in various human tissues and organs. In this study, a multiscale embedded printing (MSEP) strategy is developed, in which a stimuli-responsive yield-stress fluid is applied to facilitate the printing process. A dynamic layer height control method is developed to print the cornea with a smooth surface on the order of microns, which can effectively overcome the layered morphology in conventional extrusion-based three-dimensional bioprinting methods. Since the support bath is sensitive to temperature change, it can be easily removed after printing by tuning the ambient temperature, which facilitates the fabrication of human eyeballs with optic nerves and aortic heart valves with overhanging leaflets on the order of a few millimeters. The thermosensitivity of the support bath also enables the reconstruction of the full-scale human heart on the order of tens of centimeters by on-demand adding support bath materials during printing. The proposed MSEP demonstrates broader printable functional feature sizes ranging from microns to centimeters, providing a viable and reliable technical solution for tissue and organ printing in the future.


Subject(s)
Bioprinting , Tissue Engineering , Humans , Tissue Engineering/methods , Cornea , Bioprinting/methods , Printing, Three-Dimensional , Tissue Scaffolds/chemistry , Hydrogels/chemistry
3.
Proc Natl Acad Sci U S A ; 120(7): e2206762120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36745792

ABSTRACT

While there has been considerable success in the three-dimensional bioprinting of relatively large standalone filamentous tissues, the fabrication of solid fibers with ultrafine diameters or those cannular featuring ultrathin walls remains a particular challenge. Here, an enabling strategy for (bio)printing of solid and hollow fibers whose size ranges could be facilely adjusted across a broad spectrum, is reported, using an aqueous two-phase embedded (bio)printing approach combined with specially designed cross-linking and extrusion methods. The generation of standalone, alginate-free aqueous architectures using this aqueous two-phase strategy allowed freeform patterning of aqueous bioinks, such as those composed of gelatin methacryloyl, within the immiscible aqueous support bath of poly(ethylene oxide). Our (bio)printing strategy revealed the fabrication of standalone solid or cannular structures with diameters as small as approximately 3 or 40 µm, respectively, and wall thicknesses of hollow conduits down to as thin as <5 µm. With cellular functions also demonstrated, we anticipate the methodology to serve as a platform that may satisfy the needs for the different types of potential biomedical and other applications in the future, especially those pertaining to cannular tissues of ultrasmall diameters and ultrathin walls used toward regenerative medicine and tissue model engineering.


Subject(s)
Alginates , Bioprinting , Alginates/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Hydrogels/chemistry , Gelatin/chemistry , Bioprinting/methods , Printing, Three-Dimensional
4.
Biochem Biophys Res Commun ; 730: 150339, 2024 10 20.
Article in English | MEDLINE | ID: mdl-39032359

ABSTRACT

The tumor microenvironment (TME) assumes a pivotal role in the treatment of oncological diseases, given its intricate interplay of diverse cellular components and extracellular matrices. This dynamic ecosystem poses a serious challenge to traditional research methods in many ways, such as high research costs, inefficient translation, poor reproducibility, and low modeling success rates. These challenges require the search for more suitable research methods to accurately model the TME, and the emergence of 3D bioprinting technology is transformative and an important complement to these traditional methods to precisely control the distribution of cells, biomolecules, and matrix scaffolds within the TME. Leveraging digital design, the technology enables personalized studies with high precision, providing essential experimental flexibility. Serving as a critical bridge between in vitro and in vivo studies, 3D bioprinting facilitates the realistic 3D culturing of cancer cells. This comprehensive article delves into cutting-edge developments in 3D bioprinting, encompassing diverse methodologies, biomaterial choices, and various 3D tumor models. Exploration of current challenges, including limited biomaterial options, printing accuracy constraints, low reproducibility, and ethical considerations, contributes to a nuanced understanding. Despite these challenges, the technology holds immense potential for simulating tumor tissues, propelling personalized medicine, and constructing high-resolution organ models, marking a transformative trajectory in oncological research.


Subject(s)
Bioprinting , Printing, Three-Dimensional , Tumor Microenvironment , Humans , Bioprinting/methods , Neoplasms/pathology , Animals , Tissue Engineering/methods , Biocompatible Materials/chemistry , Tissue Scaffolds/chemistry
5.
Small ; 20(8): e2302506, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37814373

ABSTRACT

Osteoarthritis (OA) is a chronic disease that causes pain and disability in adults, affecting ≈300 million people worldwide. It is caused by damage to cartilage, including cellular inflammation and destruction of the extracellular matrix (ECM), leading to limited self-repairing ability due to the lack of blood vessels and nerves in the cartilage tissue. Organoid technology has emerged as a promising approach for cartilage repair, but constructing joint organoids with their complex structures and special mechanisms is still challenging. To overcome these boundaries, 3D bioprinting technology allows for the precise design of physiologically relevant joint organoids, including shape, structure, mechanical properties, cellular arrangement, and biological cues to mimic natural joint tissue. In this review, the authors will introduce the biological structure of joint tissues, summarize key procedures in 3D bioprinting for cartilage repair, and propose strategies for constructing joint organoids using 3D bioprinting. The authors also discuss the challenges of using joint organoids' approaches and perspectives on their future applications, opening opportunities to model joint tissues and response to joint disease treatment.


Subject(s)
Bioprinting , Tissue Engineering , Humans , Tissue Engineering/methods , Bioprinting/methods , Printing, Three-Dimensional , Organoids , Extracellular Matrix/chemistry , Tissue Scaffolds/chemistry
6.
Small ; 20(31): e2308694, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38763898

ABSTRACT

Few studies have proved that bioprinting itself helps recapitulate native tissue functions mainly because the bioprinted macro shape can rarely, if ever, influence cell function. This can be more problematic in bioprinting cartilage, generally considered more challenging to engineer. Here a new method is shown to micro-pattern chondrocytes within bioprinted sub-millimeter micro tissues, denoted as patterned micro-articular-cartilages tissues (PA-MCTs). Under the sole influence of bioprinted cellular patterns. A pattern scoring system is developed after over 600 bioprinted cellular patterns are analyzed. The top-scored pattern mimics that of the isogenous group in native articular cartilage. Under the sole influence of this pattern during PA-MCTs bio-assembling into macro-cartilage and repairing cartilage defects, chondrogenic cell phenotype is preserved, and cartilagenesis is initiated and maintained. Neocartilage tissues from individual and assembled PA-MCTs are comparable to native articular cartilage and superior to cartilage bioprinted with homogeneously distributed cells in morphology, biochemical components, cartilage-specific protein and gene expression, mechanical properties, integration with host tissues, zonation forming and stem cell chondrogenesis. PA-MCTs can also be used as osteoarthritic and healthy cartilage models for therapeutic drug screening and cartilage development studies. This cellular patterning technique can pave a new way for bioprinting to recapitulate native tissue functions via tissue genesis.


Subject(s)
Bioprinting , Cartilage, Articular , Bioprinting/methods , Cartilage, Articular/cytology , Animals , Tissue Engineering/methods , Chondrogenesis , Regeneration , Chondrocytes/cytology , Chondrocytes/metabolism , Humans , Tissue Scaffolds/chemistry
7.
Exp Eye Res ; 244: 109928, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750781

ABSTRACT

The corneal epithelium, located as the outermost layer of the cornea, is inherently susceptible to injuries that may lead to corneal opacities and compromise visual acuity. Rapid restoration of corneal epithelial injury is crucial for maintaining the transparency and integrity of the cornea. Cell spray treatment emerges as an innovative and effective approach in the field of regenerative medicine. In our study, a cell spray printing platform was established, and the optimal printing parameters were determined to be a printing air pressure of 5 PSI (34.47 kPa) and a liquid flow rate of 30 ml/h. Under these conditions, the viability and phenotype of spray-printed corneal epithelial cells were preserved. Moreover, Lycium barbarum glycopeptide (LBGP), a glycoprotein purified from wolfberry, enhanced proliferation while simultaneously inhibiting apoptosis of the spray-printed corneal epithelial cells. We found that the combination of cell spray printing and LBGP facilitated the rapid construction of multilayered cell sheets on flat and curved collagen membranes in vitro. Furthermore, the combined cell spray printing and LBGP accelerated the recovery of the rat corneal epithelium in the mechanical injury model. Our findings offer a therapeutic avenue for addressing corneal epithelial injuries and regeneration.


Subject(s)
Epithelium, Corneal , Epithelium, Corneal/drug effects , Epithelium, Corneal/injuries , Animals , Rats , Corneal Injuries/drug therapy , Corneal Injuries/pathology , Disease Models, Animal , Wound Healing/drug effects , Wound Healing/physiology , Apoptosis/drug effects , Rats, Sprague-Dawley , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Lycium/chemistry , Bioprinting/methods , Printing, Three-Dimensional , Tissue Engineering/methods , Glycoproteins/pharmacology , Male , Drugs, Chinese Herbal/pharmacology
8.
Biotechnol Bioeng ; 121(9): 2752-2766, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38877732

ABSTRACT

Natural hydrogels are widely employed in tissue engineering and have excellent biodegradability and biocompatibility. Unfortunately, the utilization of such hydrogels in the field of three-dimensional (3D) printing nasal cartilage is constrained by their subpar mechanical characteristics. In this study, we provide a multicrosslinked network hybrid ink made of photocurable gelatin, hyaluronic acid, and acrylamide (AM). The ink may be processed into intricate 3D hydrogel structures with good biocompatibility and high stiffness properties using 3D printing technology based on digital light processing (DLP), including intricate shapes resembling noses. By varying the AM content, the mechanical behavior and biocompatibility of the hydrogels can be adjusted. In comparison to the gelatin methacryloyl (GelMA)/hyaluronic acid methacryloyl (HAMA) hydrogel, adding AM considerably enhances the hydrogel's mechanical properties while also enhancing printing quality. Meanwhile, the biocompatibility of the multicrosslinked network hydrogels and the development of cartilage were assessed using neonatal Sprague-Dawley (SD) rat chondrocytes (CChons). Cells sown on the hydrogels considerably multiplied after 7 days of culture and kept up the expression of particular proteins. Together, our findings point to GelMA/HAMA/polyacrylamide (PAM) hydrogel as a potential material for nasal cartilage restoration. The photocuring multicrosslinked network ink composed of appropriate proportions of GelMA/HAMA/PAM is very suitable for DLP 3D printing and will play an important role in the construction of nasal cartilage, ear cartilage, articular cartilage, and other tissues and organs in the future. Notably, previous studies have not explored the application of 3D-printed GelMA/HAMA/PAM hydrogels for nasal cartilage regeneration.


Subject(s)
Hydrogels , Nasal Cartilages , Printing, Three-Dimensional , Rats, Sprague-Dawley , Tissue Scaffolds , Animals , Rats , Hydrogels/chemistry , Tissue Scaffolds/chemistry , Chondrocytes/cytology , Tissue Engineering , Hyaluronic Acid/chemistry , Gelatin/chemistry , Bioprinting/methods
9.
Reprod Biomed Online ; 49(4): 104273, 2024 10.
Article in English | MEDLINE | ID: mdl-39033691

ABSTRACT

Reproductive failure due to age, genetics and disease necessitates innovative solutions. While reproductive tissue transplantation has advanced, ongoing research seeks superior approaches. Biomaterials, bioengineering and additive manufacturing, such as three-dimensional (3D) bioprinting, are harnessed to restore reproductive function. 3D bioprinting uses materials, cells and growth factors to mimic natural tissues, proving popular for tissue engineering, notably in complex scaffold creation with cell distribution. The versatility which is brought to reproductive medicine by 3D bioprinting allows more accurate and on-site applicability to various problems that are encountered in the field. However, in the literature, there is a lack of studies encompassing the valuable applications of 3D bioprinting in reproductive medicine. This systematic review aims to improve understanding, and focuses on applications in several branches of reproductive medicine. Advancements span the restoration of ovarian function, endometrial regeneration, vaginal reconstruction, and male germ cell bioengineering. 3D bioprinting holds untapped potential in reproductive medicine.


Subject(s)
Bioprinting , Printing, Three-Dimensional , Reproductive Medicine , Tissue Engineering , Humans , Reproductive Medicine/methods , Reproductive Medicine/trends , Bioprinting/methods , Tissue Engineering/methods , Female , Male , Tissue Scaffolds
10.
Biomacromolecules ; 25(2): 829-837, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38173238

ABSTRACT

The mechanical and architectural properties of the three-dimensional (3D) tissue microenvironment can have large impacts on cellular behavior and phenotype, providing cells with specialized functions dependent on their location. This is especially apparent in macrophage biology where the function of tissue resident macrophages is highly specialized to their location. 3D bioprinting provides a convenient method of fabricating biomaterials that mimic specific tissue architectures. If these printable materials also possess tunable mechanical properties, they would be highly attractive for the study of macrophage behavior in different tissues. Currently, it is difficult to achieve mechanical tunability without sacrificing printability, scaffold porosity, and a loss in cell viability. Here, we have designed composite printable biomaterials composed of traditional hydrogels [nanofibrillar cellulose (cellulose) or methacrylated gelatin (gelMA)] mixed with porous polymeric high internal phase emulsion (polyHIPE) microparticles. By varying the ratio of polyHIPEs to hydrogel, we fabricate composite hydrogels that mimic the mechanical properties of the neural tissue (0.1-0.5 kPa), liver (1 kPa), lungs (5 kPa), and skin (10 kPa) while maintaining good levels of biocompatibility to a macrophage cell line.


Subject(s)
Bioprinting , Tissue Scaffolds , Porosity , Tissue Engineering/methods , Hydrogels , Bioprinting/methods , Printing, Three-Dimensional , Biocompatible Materials , Polymers , Gelatin , Cellulose , Cell Culture Techniques, Three Dimensional
11.
Biomacromolecules ; 25(4): 2156-2221, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38507816

ABSTRACT

Tissue engineering for injured tissue replacement and regeneration has been a subject of investigation over the last 30 years, and there has been considerable interest in using additive manufacturing to achieve these goals. Despite such efforts, many key questions remain unanswered, particularly in the area of biomaterial selection for these applications as well as quantitative understanding of the process science. The strategic utilization of biological macromolecules provides a versatile approach to meet diverse requirements in 3D printing, such as printability, buildability, and biocompatibility. These molecules play a pivotal role in both physical and chemical cross-linking processes throughout the biofabrication, contributing significantly to the overall success of the 3D printing process. Among the several bioprintable materials, gelatin methacryloyl (GelMA) has been widely utilized for diverse tissue engineering applications, with some degree of success. In this context, this review will discuss the key bioengineering approaches to identify the gelation and cross-linking strategies that are appropriate to control the rheology, printability, and buildability of biomaterial inks. This review will focus on the GelMA as the structural (scaffold) biomaterial for different tissues and as a potential carrier vehicle for the transport of living cells as well as their maintenance and viability in the physiological system. Recognizing the importance of printability toward shape fidelity and biophysical properties, a major focus in this review has been to discuss the qualitative and quantitative impact of the key factors, including microrheological, viscoelastic, gelation, shear thinning properties of biomaterial inks, and printing parameters, in particular, reference to 3D extrusion printing of GelMA-based biomaterial inks. Specifically, we emphasize the different possibilities to regulate mechanical, swelling, biodegradation, and cellular functionalities of GelMA-based bio(material) inks, by hybridization techniques, including different synthetic and natural biopolymers, inorganic nanofillers, and microcarriers. At the close, the potential possibility of the integration of experimental data sets and artificial intelligence/machine learning approaches is emphasized to predict the printability, shape fidelity, or biophysical properties of GelMA bio(material) inks for clinically relevant tissues.


Subject(s)
Biocompatible Materials , Bioprinting , Methacrylates , Biocompatible Materials/chemistry , Ink , Artificial Intelligence , Gelatin/chemistry , Tissue Engineering/methods , Printing, Three-Dimensional , Tissue Scaffolds/chemistry , Bioprinting/methods , Hydrogels/chemistry
12.
Biomacromolecules ; 25(8): 5288-5299, 2024 08 12.
Article in English | MEDLINE | ID: mdl-39083715

ABSTRACT

In vitro tumor models were successfully constructed by 3D bioprinting; however, bioinks with proper viscosity, good biocompatibility, and tunable biophysical and biochemical properties are highly desirable for tumor models that closely recapitulated the main features of native tumors. Here, we developed a nanocomposite hydrogel bioink that was used to construct ovarian and colon cancer models by 3D bioprinting. The nanocomposite bioink was composed of aldehyde-modified cellulose nanocrystals (aCNCs), aldehyde-modified hyaluronic acid (aHA), and gelatin. The hydrogels possessed tunable gelation time, mechanical properties, and printability by controlling the ratio between aCNCs and gelatin. In addition, ovarian and colorectal cancer cells embedded in hydrogels showed high survival rates and rapid growth. By the combination of 3D bioprinting, ovarian and colorectal tumor models were constructed in vitro and used for drug screening. The results showed that gemcitabine had therapeutic effects on ovarian tumor cells. However, the ovarian tumor model showed drug resistance for oxaliplatin treatment.


Subject(s)
Bioprinting , Hyaluronic Acid , Hydrogels , Nanocomposites , Ovarian Neoplasms , Printing, Three-Dimensional , Humans , Nanocomposites/chemistry , Hydrogels/chemistry , Bioprinting/methods , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Hyaluronic Acid/chemistry , Cellulose/chemistry , Cell Line, Tumor , Gelatin/chemistry , Gemcitabine , Deoxycytidine/analogs & derivatives , Deoxycytidine/chemistry , Deoxycytidine/pharmacology , Oxaliplatin/pharmacology , Oxaliplatin/chemistry , Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/pharmacology , Animals
13.
Biomacromolecules ; 25(6): 3312-3324, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38728671

ABSTRACT

3D-printed hydrogel scaffolds biomimicking the extracellular matrix (ECM) are key in cartilage tissue engineering as they can enhance the chondrogenic differentiation of mesenchymal stem cells (MSCs) through the presence of active nanoparticles such as graphene oxide (GO). Here, biomimetic hydrogels were developed by cross-linking alginate, gelatin, and chondroitin sulfate biopolymers in the presence of GO as a bioactive filler, with excellent processability for developing bioactive 3D printed scaffolds and for the bioprinting process. A novel bioink based on our hydrogel with embedded human MSCs presented a cell survival rate near 100% after the 3D bioprinting process. The effects of processing and filler concentration on cell differentiation were further quantitatively evaluated. The nanocomposited hydrogels render high MSC proliferation and viability, exhibiting intrinsic chondroinductive capacity without any exogenous factor when used to print scaffolds or bioprint constructs. The bioactivity depended on the GO concentration, with the best performance at 0.1 mg mL-1. These results were explained by the rational combination of the three biopolymers, with GO nanoparticles having carboxylate and sulfate groups in their structures, therefore, biomimicking the highly negatively charged ECM of cartilage. The bioactivity of this biomaterial and its good processability for 3D printing scaffolds and 3D bioprinting techniques open up a new approach to developing novel biomimetic materials for cartilage repair.


Subject(s)
Alginates , Bioprinting , Cell Differentiation , Chondrogenesis , Chondroitin Sulfates , Gelatin , Hydrogels , Mesenchymal Stem Cells , Nanocomposites , Printing, Three-Dimensional , Tissue Scaffolds , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/pharmacology , Alginates/chemistry , Alginates/pharmacology , Gelatin/chemistry , Bioprinting/methods , Cell Differentiation/drug effects , Chondrogenesis/drug effects , Nanocomposites/chemistry , Tissue Scaffolds/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Tissue Engineering/methods , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Graphite/chemistry , Graphite/pharmacology , Cell Proliferation/drug effects , Cells, Cultured
14.
Wound Repair Regen ; 32(3): 217-228, 2024.
Article in English | MEDLINE | ID: mdl-38602068

ABSTRACT

Both cutaneous radiation injury and radiation combined injury (RCI) could have serious skin traumas, which are collectively referred to as radiation-associated skin injuries in this paper. These two types of skin injuries require special managements of wounds, and the therapeutic effects still need to be further improved. Cutaneous radiation injuries are common in both radiotherapy patients and victims of radioactive source accidents, which could lead to skin necrosis and ulcers in serious conditions. At present, there are still many challenges in management of cutaneous radiation injuries including early diagnosis, lesion assessment, and treatment prognosis. Radiation combined injuries are special and important issues in severe nuclear accidents, which often accompanied by serious skin traumas. Mass victims of RCI would be the focus of public health concern. Three-dimensional (3D) bioprinting, as a versatile and favourable technique, offers effective approaches to fabricate biomimetic architectures with bioactivity, which provides potentials for resolve the challenges in treating radiation-associated skin injuries. Combining with the cutting-edge advances in 3D skin bioprinting, the authors analyse the damage characteristics of skin wounds in both cutaneous radiation injury and RCI and look forward to the potential value of 3D skin bioprinting for the treatments of radiation-associated skin injuries.


Subject(s)
Bioprinting , Printing, Three-Dimensional , Radiation Injuries , Skin , Humans , Bioprinting/methods , Radiation Injuries/therapy , Skin/radiation effects , Skin/injuries , Skin/pathology , Wound Healing , Tissue Engineering/methods
15.
Scand J Gastroenterol ; 59(5): 623-629, 2024 May.
Article in English | MEDLINE | ID: mdl-38319110

ABSTRACT

The liver performs a wide range of biological functions that are essential to body homeostasis. Damage to liver tissue can result in reduced organ function, and if chronic in nature can lead to organ scarring and progressive disease. Currently, donor liver transplantation is the only longterm treatment for end-stage liver disease. However, orthotopic organ transplantation suffers from several drawbacks that include organ scarcity and lifelong immunosuppression. Therefore, new therapeutic strategies are required. One promising strategy is the engineering of implantable and vascularized liver tissue. This resource could also be used to build the next generation of liver tissue models to better understand human health, disease and aging in vitro. This article reviews recent progress in the field of liver tissue bioengineering, including microfluidic-based systems, bio-printed vascularized tissue, liver spheroids and organoid models, and the induction of angiogenesis in vivo.


Subject(s)
Liver , Tissue Engineering , Humans , Tissue Engineering/methods , Liver/blood supply , Organoids , Liver Transplantation , Bioprinting/methods , Biomedical Research , Neovascularization, Physiologic , Bioengineering , Animals
16.
J Nanobiotechnology ; 22(1): 57, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341585

ABSTRACT

Extracellular vesicles have shown promising tissue recovery-promoting effects, making them increasingly sought-after for their therapeutic potential in wound treatment. However, traditional extracellular vesicle applications suffer from limitations such as rapid degradation and short maintenance during wound administration. To address these challenges, a growing body of research highlights the role of hydrogels as effective carriers for sustained extracellular vesicle release, thereby facilitating wound healing. The combination of extracellular vesicles with hydrogels and the development of 3D bioprinting create composite hydrogel systems boasting excellent mechanical properties and biological activity, presenting a novel approach to wound healing and skin dressing. This comprehensive review explores the remarkable mechanical properties of hydrogels, specifically suited for loading extracellular vesicles. We delve into the diverse sources of extracellular vesicles and hydrogels, analyzing their integration within composite hydrogel formulations for wound treatment. Different composite methods as well as 3D bioprinting, adapted to varying conditions and construction strategies, are examined for their roles in promoting wound healing. The results highlight the potential of extracellular vesicle-laden hydrogels as advanced therapeutic tools in the field of wound treatment, offering both mechanical support and bioactive functions. By providing an in-depth examination of the various roles that these composite hydrogels can play in wound healing, this review sheds light on the promising directions for further research and development. Finally, we address the challenges associated with the application of composite hydrogels, along with emerging trends of 3D bioprinting in this domain. The discussion covers issues such as scalability, regulatory considerations, and the translation of this technology into practical clinical settings. In conclusion, this review underlines the significant contributions of hydrogel-mediated extracellular vesicle therapy to the field of 3D bioprinting and wound healing and tissue regeneration. It serves as a valuable resource for researchers and practitioners alike, fostering a deeper understanding of the potential benefits, applications, and challenges involved in utilizing composite hydrogels for wound treatment.


Subject(s)
Bioprinting , Hydrogels , Bioprinting/methods , Wound Healing
17.
J Nanobiotechnology ; 22(1): 500, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169401

ABSTRACT

Bone defects pose significant challenges in healthcare, with over 2 million bone repair surgeries performed globally each year. As a burgeoning force in the field of bone tissue engineering, 3D printing offers novel solutions to traditional bone transplantation procedures. However, current 3D-printed bone scaffolds still face three critical challenges in material selection, printing methods, cellular self-organization and co-culture, significantly impeding their clinical application. In this comprehensive review, we delve into the performance criteria that ideal bone scaffolds should possess, with a particular focus on the three core challenges faced by 3D printing technology during clinical translation. We summarize the latest advancements in non-traditional materials and advanced printing techniques, emphasizing the importance of integrating organ-like technologies with bioprinting. This combined approach enables more precise simulation of natural tissue structure and function. Our aim in writing this review is to propose effective strategies to address these challenges and promote the clinical translation of 3D-printed scaffolds for bone defect treatment.


Subject(s)
Bioprinting , Bone and Bones , Organoids , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Humans , Tissue Engineering/methods , Organoids/cytology , Bioprinting/methods , Animals , Bone Regeneration , Bone Transplantation/methods
18.
Artif Organs ; 48(11): 1221-1222, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39269152

ABSTRACT

Novel bioprinting technique offers strategy for building dense organ systems with complex multilayered vascular networks. Building on a technique called "sacrificial writing in functional tissue," researchers have developed immature organ systems capable of maintaining rudimentary function and maintaining viability owing to an intricate vascular network.


Subject(s)
Bioprinting , Printing, Three-Dimensional , Tissue Engineering , Humans , Tissue Engineering/methods , Bioprinting/methods , Blood Vessel Prosthesis , Blood Vessels/physiology , Tissue Scaffolds/chemistry
19.
Artif Organs ; 48(6): 575-576, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38646888

ABSTRACT

South Korean-based team is first to successfully transplant 3D bioprinted artificial trachea. The success arises during scrutiny of artificial tracheal implants stemming from the denounced work of Dr. Paolo Macchiarini.


Subject(s)
Trachea , Humans , Trachea/transplantation , Trachea/surgery , Printing, Three-Dimensional , Artificial Organs , Republic of Korea , Tissue Engineering/methods , Bioprinting/methods
20.
J Biomech Eng ; 146(9)2024 09 01.
Article in English | MEDLINE | ID: mdl-38557592

ABSTRACT

Development of respiratory tissue constructs is challenging due to the complex structure of native respiratory tissue and the unique biomechanical conditions induced by breathing. While studies have shown that the inclusion of biomechanical stimulus mimicking physiological conditions greatly benefits the development of engineered tissues, to our knowledge no studies investigating the influence of biomechanical stimulus on the development of respiratory tissue models produced through three-dimensional (3D) bioprinting have been reported. This paper presents a study on the utilization of a novel breath-mimicking ventilated incubator to impart biomechanical stimulus during the culture of 3D respiratory bioprinted constructs. Constructs were bioprinted using an alginate/collagen hydrogel containing human primary pulmonary fibroblasts with further seeding of human primary bronchial epithelial cells. Biomechanical stimulus was then applied via a novel ventilated incubator capable of mimicking the pressure and airflow conditions of multiple breathing conditions: standard incubation, shallow breathing, normal breathing, and heavy breathing, over a two-week time period. At time points between 1 and 14 days, constructs were characterized in terms of mechanical properties, cell proliferation, and morphology. The results illustrated that incubation conditions mimicking normal and heavy breathing led to greater and more continuous cell proliferation and further indicated a more physiologically relevant respiratory tissue model.


Subject(s)
Bioprinting , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Hydrogels/chemistry , Respiration , Printing, Three-Dimensional , Bioprinting/methods
SELECTION OF CITATIONS
SEARCH DETAIL