Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.005
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 20(2): 163-172, 2019 02.
Article in English | MEDLINE | ID: mdl-30643263

ABSTRACT

Tissue fibrosis is a major cause of mortality that results from the deposition of matrix proteins by an activated mesenchyme. Macrophages accumulate in fibrosis, but the role of specific subgroups in supporting fibrogenesis has not been investigated in vivo. Here, we used single-cell RNA sequencing (scRNA-seq) to characterize the heterogeneity of macrophages in bleomycin-induced lung fibrosis in mice. A novel computational framework for the annotation of scRNA-seq by reference to bulk transcriptomes (SingleR) enabled the subclustering of macrophages and revealed a disease-associated subgroup with a transitional gene expression profile intermediate between monocyte-derived and alveolar macrophages. These CX3CR1+SiglecF+ transitional macrophages localized to the fibrotic niche and had a profibrotic effect in vivo. Human orthologs of genes expressed by the transitional macrophages were upregulated in samples from patients with idiopathic pulmonary fibrosis. Thus, we have identified a pathological subgroup of transitional macrophages that are required for the fibrotic response to injury.


Subject(s)
Idiopathic Pulmonary Fibrosis/immunology , Lung/pathology , Macrophage Activation , Macrophages, Alveolar/immunology , Animals , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/immunology , Antigens, Differentiation, Myelomonocytic/metabolism , Bleomycin/immunology , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/immunology , CX3C Chemokine Receptor 1/metabolism , Cells, Cultured , Disease Models, Animal , Female , Gene Expression Profiling/methods , Humans , Idiopathic Pulmonary Fibrosis/pathology , Lung/cytology , Lung/immunology , Macrophages, Alveolar/metabolism , Male , Mice , Sequence Analysis, RNA/methods , Sialic Acid Binding Immunoglobulin-like Lectins , Single-Cell Analysis/methods , Up-Regulation
2.
Mol Cell ; 80(2): 311-326.e4, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32970994

ABSTRACT

To determine whether double-strand break (DSB) mobility enhances the physical search for an ectopic template during homology-directed repair (HDR), we tested the effects of factors that control chromatin dynamics, including cohesin loading and kinetochore anchoring. The former but not the latter is altered in response to DSBs. Loss of the nonhistone high-mobility group protein Nhp6 reduces histone occupancy and increases chromatin movement, decompaction, and ectopic HDR. The loss of nucleosome remodeler INO80-C did the opposite. To see whether enhanced HDR depends on DSB mobility or the global chromatin response, we tested the ubiquitin ligase mutant uls1Δ, which selectively impairs local but not global movement in response to a DSB. Strand invasion occurs in uls1Δ cells with wild-type kinetics, arguing that global histone depletion rather than DSB movement is rate limiting for HDR. Impaired break movement in uls1Δ correlates with elevated MRX and cohesin loading, despite normal resection and checkpoint activation.


Subject(s)
DNA Breaks, Double-Stranded , Nucleosomes/metabolism , Saccharomyces cerevisiae/metabolism , Bleomycin/pharmacology , Cell Cycle , Cell Cycle Proteins/metabolism , Centromere/metabolism , Chromatin/metabolism , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/metabolism , DNA, Fungal/metabolism , Histones/metabolism , Models, Biological , Phosphorylation , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae Proteins/metabolism , Spindle Pole Bodies/metabolism , Cohesins
3.
Mol Cell ; 79(3): 425-442.e7, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32615088

ABSTRACT

Double-strand breaks (DSBs) are the most deleterious DNA lesions, which, if left unrepaired, may lead to genome instability or cell death. Here, we report that, in response to DSBs, the RNA methyltransferase METTL3 is activated by ATM-mediated phosphorylation at S43. Phosphorylated METTL3 is then localized to DNA damage sites, where it methylates the N6 position of adenosine (m6A) in DNA damage-associated RNAs, which recruits the m6A reader protein YTHDC1 for protection. In this way, the METTL3-m6A-YTHDC1 axis modulates accumulation of DNA-RNA hybrids at DSBs sites, which then recruit RAD51 and BRCA1 for homologous recombination (HR)-mediated repair. METTL3-deficient cells display defective HR, accumulation of unrepaired DSBs, and genome instability. Accordingly, depletion of METTL3 significantly enhances the sensitivity of cancer cells and murine xenografts to DNA damage-based therapy. These findings uncover the function of METTL3 and YTHDC1 in HR-mediated DSB repair, which may have implications for cancer therapy.


Subject(s)
Adenosine/analogs & derivatives , Head and Neck Neoplasms/genetics , Methyltransferases/genetics , Nerve Tissue Proteins/genetics , RNA Splicing Factors/genetics , Recombinational DNA Repair/drug effects , Squamous Cell Carcinoma of Head and Neck/genetics , Adenosine/metabolism , Animals , Antibiotics, Antineoplastic/pharmacology , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Bleomycin/pharmacology , Cell Line, Tumor , DNA/genetics , DNA/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , HEK293 Cells , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/mortality , Head and Neck Neoplasms/pathology , Humans , Methyltransferases/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Nerve Tissue Proteins/metabolism , Nucleic Acid Hybridization , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoblasts/pathology , Phosphorylation , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Splicing Factors/metabolism , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Ribonuclease H/genetics , Ribonuclease H/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/pathology , Survival Analysis , Xenograft Model Antitumor Assays
4.
J Immunol ; 212(7): 1221-1231, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38334455

ABSTRACT

Pulmonary fibrosis is a fatal condition characterized by fibroblast and myofibroblast proliferation and collagen deposition. TGF-ß plays a pivotal role in the development of pulmonary fibrosis. Therefore, modulation of TGF-ß signaling is a promising therapeutic strategy for treating pulmonary fibrosis. To date, however, interventions targeting TGF-ß have not shown consistent efficacy. CD109 is a GPI-anchored glycoprotein that binds to TGF-ß receptor I and negatively regulates TGF-ß signaling. However, no studies have examined the role and therapeutic potential of CD109 in pulmonary fibrosis. The purpose of this study was to determine the role and therapeutic value of CD109 in bleomycin-induced pulmonary fibrosis. CD109-transgenic mice overexpressing CD109 exhibited significantly attenuated pulmonary fibrosis, preserved lung function, and reduced lung fibroblasts and myofibroblasts compared with wild-type (WT) mice. CD109-/- mice exhibited pulmonary fibrosis comparable to WT mice. CD109 expression was induced in variety types of cells, including lung fibroblasts and macrophages, upon bleomycin exposure. Recombinant CD109 protein inhibited TGF-ß signaling and significantly decreased ACTA2 expression in human fetal lung fibroblast cells in vitro. Administration of recombinant CD109 protein markedly reduced pulmonary fibrosis in bleomycin-treated WT mice in vivo. Our results suggest that CD109 is not essential for the development of pulmonary fibrosis, but excess CD109 protein can inhibit pulmonary fibrosis development, possibly through suppression of TGF-ß signaling. CD109 is a novel therapeutic candidate for treating pulmonary fibrosis.


Subject(s)
Pulmonary Fibrosis , Humans , Mice , Animals , Pulmonary Fibrosis/metabolism , Bleomycin/adverse effects , Transforming Growth Factor beta/metabolism , Lung/pathology , Fibroblasts/metabolism , Mice, Transgenic , Transcription Factors/metabolism , Mice, Inbred C57BL , Neoplasm Proteins/metabolism , Antigens, CD/metabolism , GPI-Linked Proteins/metabolism
5.
Nature ; 580(7803): 409-412, 2020 04.
Article in English | MEDLINE | ID: mdl-32296172

ABSTRACT

Mycobacterium tuberculosis (Mtb) is an obligate human pathogen and the causative agent of tuberculosis1-3. Although Mtb can synthesize vitamin B12 (cobalamin) de novo, uptake of cobalamin has been linked to pathogenesis of tuberculosis2. Mtb does not encode any characterized cobalamin transporter4-6; however, the gene rv1819c was found to be essential for uptake of cobalamin1. This result is difficult to reconcile with the original annotation of Rv1819c as a protein implicated in the transport of antimicrobial peptides such as bleomycin7. In addition, uptake of cobalamin seems inconsistent with the amino acid sequence, which suggests that Rv1819c has a bacterial ATP-binding cassette (ABC)-exporter fold1. Here, we present structures of Rv1819c, which reveal that the protein indeed contains the ABC-exporter fold, as well as a large water-filled cavity of about 7,700 Å3, which enables the protein to transport the unrelated hydrophilic compounds bleomycin and cobalamin. On the basis of these structures, we propose that Rv1819c is a multi-solute transporter for hydrophilic molecules, analogous to the multidrug exporters of the ABC transporter family, which pump out structurally diverse hydrophobic compounds from cells8-11.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/metabolism , Bleomycin/metabolism , Mycobacterium tuberculosis/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biological Transport , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/genetics , Protein Structure, Quaternary , Protein Structure, Tertiary
6.
EMBO J ; 40(16): e107403, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34223653

ABSTRACT

Excessive deposition of extracellular matrix, mainly collagen protein, is the hallmark of organ fibrosis. The molecular mechanisms regulating fibrotic protein biosynthesis are unclear. Here, we find that chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2), a plasma membrane receptor for prostaglandin D2, is trafficked to the endoplasmic reticulum (ER) membrane in fibroblasts in a caveolin-1-dependent manner. ER-anchored CRTH2 binds the collagen mRNA recognition motif of La ribonucleoprotein domain family member 6 (LARP6) and promotes the degradation of collagen mRNA in these cells. In line, CRTH2 deficiency increases collagen biosynthesis in fibroblasts and exacerbates injury-induced organ fibrosis in mice, which can be rescued by LARP6 depletion. Administration of CRTH2 N-terminal peptide reduces collagen production by binding to LARP6. Similar to CRTH2, bumetanide binds the LARP6 mRNA recognition motif, suppresses collagen biosynthesis, and alleviates bleomycin-triggered pulmonary fibrosis in vivo. These findings reveal a novel anti-fibrotic function of CRTH2 in the ER membrane via the interaction with LARP6, which may represent a therapeutic target for fibrotic diseases.


Subject(s)
Autoantigens/metabolism , Collagen/antagonists & inhibitors , Liver Cirrhosis/prevention & control , Pulmonary Fibrosis/prevention & control , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , Ribonucleoproteins/metabolism , Animals , Bleomycin , Carbon Tetrachloride , Cells, Cultured , Collagen/biosynthesis , Collagen/genetics , Endoplasmic Reticulum/metabolism , Fibroblasts/metabolism , Intracellular Membranes/metabolism , Isoproterenol , Liver/metabolism , Liver/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Lung/metabolism , Lung/pathology , Male , Mice, Transgenic , Myocardium/metabolism , Myocardium/pathology , Protein Binding , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Receptors, Immunologic/genetics , Receptors, Prostaglandin/genetics , SS-B Antigen
7.
N Engl J Med ; 387(4): 310-320, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35830649

ABSTRACT

BACKGROUND: Five-year follow-up in a trial involving patients with previously untreated stage III or IV classic Hodgkin's lymphoma showed long-term progression-free survival benefits with first-line therapy with brentuximab vedotin, a CD30-directed antibody-drug conjugate, plus doxorubicin, vinblastine, and dacarbazine (A+AVD), as compared with doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD). A planned interim analysis indicated a potential benefit with regard to overall survival; data from a median of 6 years of follow-up are now available. METHODS: We randomly assigned patients in a 1:1 ratio to receive up to six cycles of A+AVD or ABVD. The primary end point, modified progression-free survival, has been reported previously. The key secondary end point was overall survival in the intention-to-treat population. Safety was also assessed. RESULTS: A total of 664 patients were assigned to receive A+AVD and 670 to receive ABVD. At a median follow-up of 73.0 months, 39 patients in the A+AVD group and 64 in the ABVD group had died (hazard ratio, 0.59; 95% confidence interval [CI], 0.40 to 0.88; P = 0.009). The 6-year overall survival estimates were 93.9% (95% CI, 91.6 to 95.5) in the A+AVD group and 89.4% (95% CI, 86.6 to 91.7) in the ABVD group. Progression-free survival was longer with A+AVD than with ABVD (hazard ratio for disease progression or death, 0.68; 95% CI, 0.53 to 0.86). Fewer patients in the A+AVD group than in the ABVD group received subsequent therapy, including transplantation, and fewer second cancers were reported with A+AVD (in 23 vs. 32 patients). Primary prophylaxis with granulocyte colony-stimulating factor was recommended after an increased incidence of febrile neutropenia was observed with A+AVD. More patients had peripheral neuropathy with A+AVD than with ABVD, but most patients in the two groups had resolution or amelioration of the event by the last follow-up. CONCLUSIONS: Patients who received A+AVD for the treatment of stage III or IV Hodgkin's lymphoma had a survival advantage over those who received ABVD. (Funded by Takeda Development Center Americas and Seagen; ECHELON-1 ClinicalTrials.gov number, NCT01712490; EudraCT number, 2011-005450-60.).


Subject(s)
Antineoplastic Agents, Immunological , Antineoplastic Combined Chemotherapy Protocols , Brentuximab Vedotin , Hodgkin Disease , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bleomycin/administration & dosage , Bleomycin/adverse effects , Brentuximab Vedotin/administration & dosage , Brentuximab Vedotin/adverse effects , Dacarbazine/administration & dosage , Dacarbazine/adverse effects , Disease-Free Survival , Doxorubicin/administration & dosage , Doxorubicin/adverse effects , Follow-Up Studies , Hodgkin Disease/drug therapy , Hodgkin Disease/mortality , Hodgkin Disease/pathology , Humans , Neoplasm Staging , Survival Analysis , Treatment Outcome , Vinblastine/administration & dosage , Vinblastine/adverse effects
8.
N Engl J Med ; 387(18): 1649-1660, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36322844

ABSTRACT

BACKGROUND: In adults with advanced-stage Hodgkin's lymphoma, the CD30-directed antibody-drug conjugate brentuximab vedotin combined with multiagent chemotherapy has been shown to have greater efficacy, but also more toxic effects, than chemotherapy alone. The efficacy of this targeted therapy approach in children and adolescents with Hodgkin's lymphoma is unclear. METHODS: We conducted an open-label, multicenter, randomized, phase 3 trial involving patients 2 to 21 years of age with previously untreated Hodgkin's lymphoma of stage IIB with bulk tumor or stage IIIB, IVA, or IVB. Patients were assigned to receive five 21-day cycles of brentuximab vedotin with doxorubicin, vincristine, etoposide, prednisone, and cyclophosphamide (brentuximab vedotin group) or the standard pediatric regimen of doxorubicin, bleomycin, vincristine, etoposide, prednisone, and cyclophosphamide (standard-care group). Slow-responding lesions, defined by a score of 4 or 5 (on a 5-point scale, with scores of 1 to 3 indicating rapid-responding lesions), were identified on centrally reviewed positron-emission tomography-computed tomography after two cycles. Involved-site radiation therapy was administered after the fifth cycle of therapy to slow-responding lesions and to large mediastinal adenopathy that was present at diagnosis. The primary end point was event-free survival, defined as the time until disease progression occurred, relapse occurred, a second malignant neoplasm developed, or the patient died. Safety and overall survival were assessed. RESULTS: Of 600 patients who were enrolled across 153 institutions, 587 were eligible. At a median follow-up of 42.1 months (range, 0.1 to 80.9), the 3-year event-free survival was 92.1% (95% confidence interval [CI], 88.4 to 94.7) in the brentuximab vedotin group, as compared with 82.5% (95% CI, 77.4 to 86.5) in the standard-care group (hazard ratio for event or death, 0.41; 95% CI, 0.25 to 0.67; P<0.001). The percentage of patients who received involved-site radiation therapy did not differ substantially between the brentuximab vedotin group and the standard-care group (53.4% and 56.8%, respectively). Toxic effects were similar in the two groups. Overall survival at 3 years was 99.3% (95% CI, 97.3 to 99.8) in the brentuximab vedotin group and 98.5% (95% CI, 96.0 to 99.4) in the standard-care group. CONCLUSIONS: The addition of brentuximab vedotin to standard chemotherapy resulted in superior efficacy, with a 59% lower risk of an event or death, and no increase in the incidence of toxic effects at 3 years. (Funded by the National Institutes of Health and others; AHOD1331 ClinicalTrials.gov number, NCT02166463.).


Subject(s)
Antineoplastic Agents, Immunological , Antineoplastic Combined Chemotherapy Protocols , Brentuximab Vedotin , Hodgkin Disease , Adolescent , Adult , Child , Humans , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Brentuximab Vedotin/adverse effects , Brentuximab Vedotin/therapeutic use , Cyclophosphamide/administration & dosage , Cyclophosphamide/adverse effects , Doxorubicin/administration & dosage , Doxorubicin/adverse effects , Etoposide/administration & dosage , Etoposide/adverse effects , Hodgkin Disease/drug therapy , Neoplasm Recurrence, Local/drug therapy , Prednisone/administration & dosage , Prednisone/adverse effects , Treatment Outcome , Vincristine/administration & dosage , Vincristine/adverse effects , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Agents, Immunological/therapeutic use , Bleomycin/administration & dosage , Bleomycin/adverse effects
9.
Eur J Immunol ; 54(6): e2350903, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38576111

ABSTRACT

We induced systemic sclerosis (SSc)-like disease in both wild-type and Dnase1l3-deficient mice using two distinct approaches involving bleomycin and hypochlorous acid injections. Our observations revealed that the deficiency in DNASE1L3 did not affect tissue fibrosis or inflammation caused by these treatments. Despite the association of single nucleotide polymorphisms in humans with SSc pathogenesis, our study demonstrates that DNASE1L3 is dispensable in two inducible murine models of SSc-like pathogenesis.


Subject(s)
Bleomycin , Disease Models, Animal , Endodeoxyribonucleases , Mice, Knockout , Scleroderma, Systemic , Animals , Scleroderma, Systemic/genetics , Scleroderma, Systemic/pathology , Scleroderma, Systemic/immunology , Mice , Endodeoxyribonucleases/deficiency , Endodeoxyribonucleases/genetics , Humans , Hypochlorous Acid , Fibrosis , Mice, Inbred C57BL
10.
Am J Pathol ; 194(5): 656-672, 2024 May.
Article in English | MEDLINE | ID: mdl-38325552

ABSTRACT

Idiopathic pulmonary fibrosis is a progressive interstitial lung disease for which there is no curative therapy available. Repetitive alveolar epithelial injury repair, myofibroblast accumulation, and excessive collagen deposition are key pathologic features of idiopathic pulmonary fibrosis, eventually leading to cellular hypoxia and respiratory failure. The precise mechanism driving this complex maladaptive process remains inadequately understood. WD repeat and suppressor of cytokine signaling box containing 1 (WSB1) is an E3 ubiquitin ligase, the expression of which is associated strongly with hypoxia, and forms a positive feedback loop with hypoxia-inducible factor 1α (HIF-1α) under anoxic condition. This study explored the expression, cellular distribution, and function of WSB1 in bleomycin (BLM)-induced mouse lung injury and fibrosis. WSB1 expression was highly induced by BLM injury and correlated with the progression of lung fibrosis. Significantly, conditional deletion of Wsb1 in adult mice ameliorated BLM-induced pulmonary fibrosis. Phenotypically, Wsb1-deficient mice showed reduced lipofibroblast to myofibroblast transition, but enhanced alveolar type 2 proliferation and differentiation into alveolar type 1 after BLM injury. Proteomic analysis of mouse lung tissues identified caveolin 2 as a potential downstream target of WSB1, contributing to BLM-induced epithelial injury repair and fibrosis. These findings unravel a vital role for WSB1 induction in lung injury repair, thus highlighting it as a potential therapeutic target for pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Injury , Animals , Mice , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Myofibroblasts/metabolism , Lung Injury/pathology , Proteomics , Lung/pathology , Fibrosis , Hypoxia/pathology , Idiopathic Pulmonary Fibrosis/pathology , Bleomycin/toxicity , Regeneration , Intracellular Signaling Peptides and Proteins
11.
Am J Pathol ; 194(3): 338-352, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38101567

ABSTRACT

The high mortality rates of acute lung injury and acute respiratory distress syndrome challenge the field to identify biomarkers and factors that can be exploited for therapeutic approaches. IL-22 is a cytokine that has antibacterial and reparative properties in the lung. However, it also can exacerbate inflammation and requires tight control by the extracellular inhibitory protein known as IL-22 binding protein (IL-22BP) (Il22ra2). This study showed the necessity of IL-22BP in controlling and preventing acute lung injury using IL-22BP knockout mice (Il22ra2-/-) in the bleomycin model of acute lung injury/acute respiratory distress syndrome. Il22ra2-/- mice had greater sensitivity (weight loss and death) and pulmonary inflammation in the acute phase (first 7 days) of the injury compared with wild-type C57Bl/6 controls. The inflammation was driven by excess IL-22 production, inducing the influx of pathogenic IL-17A+ γδ T cells to the lung. Interestingly, this inflammation was initiated in part by the noncanonical IL-22 signaling to macrophages, which express the IL-22 receptor (Il22ra1) in vivo after bleomycin challenge. This study further showed that IL-22 receptor alpha-1+ macrophages can be stimulated by IL-22 to produce a number of IL-17-inducing cytokines such as IL-1ß, IL-6, and transforming growth factor-ß1. Together, the results suggest that IL-22BP prevents IL-22 signaling to macrophages and reduces bleomycin-mediated lung injury.


Subject(s)
Acute Lung Injury , Lung Injury , Respiratory Distress Syndrome , Animals , Mice , Acute Lung Injury/pathology , Bleomycin/adverse effects , Cytokines/metabolism , Inflammation/pathology , Interleukin-22 , Lung/pathology , Lung Injury/pathology , Mice, Inbred C57BL , Mice, Knockout , Respiratory Distress Syndrome/metabolism
12.
Blood ; 142(6): 553-560, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37257195

ABSTRACT

The optimal first-line treatment for nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) diagnosed in early stages is largely undefined. We, therefore, analyzed 100 NLPHL patients treated in the randomized HD16 (early-stage favorable; n = 85) and HD17 (early-stage unfavorable; n = 15) studies. These studies investigated the omission of consolidation radiotherapy (RT) in patients with a negative interim positron emission tomography (iPET) (ie, Deauville score <3) after chemotherapy (HD16: 2× doxorubicin, bleomycin, vinblastine, and dacarbazine [ABVD]; HD17: 2× escalated bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone [BEACOPP] plus 2× ABVD). Patients with NLPHL treated in the HD16 and HD17 studies had 5-year progression-free survival (PFS) rates of 90.3% and 92.9%, respectively. Thus, the 5-year PFS did not differ significantly from that of patients with classical Hodgkin lymphoma treated within the same studies (HD16: P = .88; HD17: P = .50). Patients with early-stage favorable NLPHL who had a negative iPET after 2× ABVD and did not undergo consolidation RT tended to have a worse 5-year PFS than patients with a negative iPET who received consolidation RT (83% vs 100%; P = .05). There were 10 cases of NLPHL recurrence. However, no NLPHL patient died during follow-up. Hence, the 5-year overall survival rate was 100%. Taken together, contemporary Hodgkin lymphoma-directed treatment approaches result in excellent outcomes for patients with newly diagnosed early-stage NLPHL and, thus, represent valid treatment options. In early-stage favorable NLPHL, consolidation RT appears necessary after 2× ABVD to achieve the optimal disease control irrespective of the iPET result.


Subject(s)
Hodgkin Disease , Humans , Hodgkin Disease/diagnostic imaging , Hodgkin Disease/drug therapy , Bleomycin/adverse effects , Doxorubicin , Dacarbazine , Vinblastine , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Cyclophosphamide , Vincristine/adverse effects , Positron-Emission Tomography/methods , Prednisone
13.
FASEB J ; 38(2): e23426, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38226859

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease with an abnormal accumulation of fibrotic tissue in the lung parenchyma and elevated glycolysis level in associated cells without effective therapy options. Lactate accumulation in pulmonary fibrotic tissue is a significant factor aggravating IPF development, but the main mechanism regulating glycolysis needs further investigation. In this study, lung fibrosis model was induced by bleomycin (BLM) intratracheally in female C57BL/6 mice. The changes of lactate level and fibrotic markers were detected. For in vitro studies, cell lines of alveolar epithelial cell and lung fibroblast cell were stimulated with TGF-ß1 and BLM respectively, to detect changes in their fibrotic properties. The function of lactate accumulation on facilitating fibrosis was verified. We demonstrated that BLM-induced pulmonary fibrosis is accompanied by lactate accumulation owing to glycolysis upregulation. Significantly high PDK1 expression in lung fibrotic tissue promotes glycolysis. Moreover, PDK1 stimulated trans-differentiation of lung fibroblasts and epithelial-mesenchymal transition (EMT) of alveolar epithelial cells. Furthermore, phosphorylated Akt2 activated PDK1 to cause pulmonary fibrosis and inhibitors of Akt2 and PDK1 could suppress fibrotic process. This study is the first to consider PDK1 facilitated lactate accumulation through glycolysis as a vital factor in pulmonary fibrosis and could be initiated by Akt2. We concluded that the pro-fibrotic properties of PDK1 are associated with Akt2 phosphorylation and thus provide new potential therapeutic targets for pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lactic Acid , Female , Mice , Animals , Mice, Inbred C57BL , Signal Transduction , Idiopathic Pulmonary Fibrosis/chemically induced , Alveolar Epithelial Cells , Bleomycin/toxicity , Proto-Oncogene Proteins c-akt
14.
J Pathol ; 263(1): 22-31, 2024 05.
Article in English | MEDLINE | ID: mdl-38332723

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung that leads rapidly to respiratory failure. Novel approaches to treatment are urgently needed. The bioactive lipid sphingosine-1-phosphate (S1P) is increased in IPF lungs and promotes proinflammatory and profibrotic TGF-ß signaling. Hence, decreasing lung S1P represents a potential therapeutic strategy for IPF. S1P is degraded by the intracellular enzyme S1P lyase (SPL). Here we find that a knock-in mouse with a missense SPL mutation mimicking human disease resulted in reduced SPL activity, increased S1P, increased TGF-ß signaling, increased lung fibrosis, and higher mortality after injury compared to wild type (WT). We then tested adeno-associated virus 9 (AAV9)-mediated overexpression of human SGPL1 (AAV-SPL) in mice as a therapeutic modality. Intravenous treatment with AAV-SPL augmented lung SPL activity, attenuated S1P levels within the lungs, and decreased injury-induced fibrosis compared to controls treated with saline or only AAV. We confirmed that AAV-SPL treatment led to higher expression of SPL in the epithelial and fibroblast compartments during bleomycin-induced lung injury. Additionally, AAV-SPL decreased expression of the profibrotic cytokines TNFα and IL1ß as well as markers of fibroblast activation, such as fibronectin (Fn1), Tgfb1, Acta2, and collagen genes in the lung. Taken together, our results provide proof of concept for the use of AAV-SPL as a therapeutic strategy for the treatment of IPF. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Dependovirus , Idiopathic Pulmonary Fibrosis , Lysophospholipids , Sphingosine/analogs & derivatives , Humans , Mice , Animals , Dependovirus/genetics , Lung/metabolism , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/therapy , Idiopathic Pulmonary Fibrosis/metabolism , Bleomycin , Models, Animal , Genetic Therapy , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism
15.
J Immunol ; 211(11): 1714-1724, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37782053

ABSTRACT

Epidemiological evidence indicates that exposure to particulate matter is linked to the development of idiopathic pulmonary fibrosis (IPF) and increases the incidence of acute exacerbations of IPF. In addition to accelerating the rate of lung function decline, exposure to fine particulate matter (particulate matter smaller than 2.5 µm [PM2.5]) is a risk factor for increased mortality in subjects with IPF. In this article, we show that exposure to PM2.5 mediates monocyte recruitment and fibrotic progression in mice with established fibrosis. In mice with established fibrosis, bronchoalveolar lavage cells showed monocyte/macrophage heterogeneity after exposure to PM2.5. These cells had a significant inflammatory and anti-inflammatory signature. The mixed heterogeneity of cells contributed to the proinflammatory and anti-inflammatory response. Although monocyte-derived macrophages were recruited to the lung in bleomycin-injured mice treated with PM2.5, recruitment of monocytes expressing Ly6Chi to the lung promoted progression of fibrosis, reduced lung aeration on computed tomography, and impacted lung compliance. Ly6Chi monocytes isolated from PM2.5-exposed fibrotic mice showed enhanced expression of proinflammatory markers compared with fibrotic mice exposed to vehicle. Moreover, IPF bronchoalveolar lavage cells treated ex vivo with PM2.5 showed an exaggerated inflammatory response. Targeting Ly6Chi monocyte recruitment inhibited fibrotic progression in mice. Moreover, the adoptive transfer of Ly6Chi monocytes exacerbated established fibrosis. These observations suggest that enhanced recruitment of Ly6Chi monocytes with a proinflammatory phenotype mediates acute exacerbations of pulmonary fibrosis, and targeting these cells may provide a potential novel therapeutic target to protect against acute exacerbations of IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung , Humans , Mice , Animals , Lung/pathology , Idiopathic Pulmonary Fibrosis/pathology , Fibrosis , Bleomycin/therapeutic use , Particulate Matter/adverse effects , Anti-Inflammatory Agents/therapeutic use
16.
J Immunol ; 211(7): 1073-1081, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37566492

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a fibrotic age-related chronic lung disease characterized by the accumulation of senescent cells. Whether impaired immune response is responsible for the accumulation of senescent cells in the IPF lung remains unknown. In this study, we characterized the NK phenotype in IPF lungs via flow cytometry using 5-dodecanoylaminofluorescein di-ß-d-galactopyranoside, markers of tissue residence, and chemokine receptors. The effect of the lung microenvironment was evaluated using lung fibroblast (LF) conditioned media (CM), and the bleomycin-induced pulmonary fibrosis mouse model was used to assess the in vivo relationship between NK cells and the accumulation of senescent cells. We found that NK cells from the lower lobe of IPF patients exhibited immune-senescent and impaired CD57-NKG2A+ phenotype. We also observed that culture of NK cells from healthy donors in CM from IPF lower lobe lung fibroblasts induced a senescent-like phenotype and impaired cytotoxic capacity. There is an impaired NK recruitment by LF, and NKs presented decreased migration toward their CM. In addition, NK cell-depleted mice treated with bleomycin showed increased collagen deposition and accumulation of different populations of senescent cells compared with controls. The IPF lung microenvironment induces a dysfunctional NK phenotype limiting the clearance of lung senescent cells and the resolution of lung fibrosis. We propose that impaired NK activity could be one of the mechanisms responsible for perpetuating the accumulation of senescent cells in IPF lungs.


Subject(s)
Antineoplastic Agents , Idiopathic Pulmonary Fibrosis , Mice , Animals , Lung/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Bleomycin/adverse effects , Fibrosis , Antineoplastic Agents/pharmacology , Fibroblasts
17.
Exp Cell Res ; 439(1): 114098, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38796136

ABSTRACT

The involvement of γδT cells, Th17 cells, and CD4+CD25+ regulatory T cells (Tregs) is crucial in the progression of pulmonary fibrosis (PF), particularly in maintaining immune tolerance and homeostasis. However, the dynamics of these cells in relation to PF progression, especially under pharmacological interventions, remains poorly understood. This study aims to unravel the interplay between the dynamic changes of these cells and the effect of pharmacological agents in a mouse model of PF induced by intratracheal instillation of bleomycin. We analyzed changes in lung histology, lung index, hydroxyproline levels, and the proportions of γδT cells, Th17 cells, and Tregs on the 3rd, 14th, and 28th days following treatment with Neferine, Isoliensinine, Pirfenidone, and Prednisolone. Our results demonstrate that these drugs can partially or dynamically reverse weight loss, decrease lung index and hydroxyproline levels, and ameliorate lung histopathological damage. Additionally, they significantly modulated the abnormal changes in γδT, Th17, and Treg cell proportions. Notably, on day 3, the proportion of γδT cells increased in the Neferine and Prednisolone groups but decreased in the Isoliensinine and Pirfenidone groups, while the proportion of Th17 cells decreased across all treated groups. On day 14, the Neferine group showed an increase in all three cell types, whereas the Pirfenidone group exhibited a decrease. In the Isoliensinine group, γδT and Th17 cells increased, and in the Prednisolone group, only Tregs increased. By day 28, an increase in Th17 cell proportion was observed in all treatment groups, with a decrease in γδT cells noted in the Neferine group. These shifts in cell proportions are consistent with the pathogenesis changes induced by these anti-PF drugs, suggesting a correlation between cellular dynamics and pharmacological interventions in PF progression. Our findings imply potential strategies for assessing the efficacy and timing of anti-PF treatments based on these cellular changes.


Subject(s)
Bleomycin , Pulmonary Fibrosis , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Th17 Cells/drug effects , Th17 Cells/immunology , Mice , Pyridones/pharmacology , Male , Prednisolone/pharmacology , Disease Progression , Mice, Inbred C57BL , Disease Models, Animal , Lung/pathology , Lung/immunology , Lung/drug effects , Interleukin-2 Receptor alpha Subunit/metabolism , Isoquinolines/pharmacology , Benzylisoquinolines/pharmacology
18.
Mol Ther ; 32(3): 766-782, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38273656

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic lethal disease in the absence of demonstrated efficacy for preventing progression. Although macrophage-mediated alveolitis is determined to participate in myofibrotic transition during disease development, the paradigm of continuous macrophage polarization is still under-explored due to lack of proper animal models. Here, by integrating 2.5 U/kg intratracheal Bleomycin administration and 10 Gy thorax irradiation at day 7, we generated a murine model with continuous alveolitis-mediated fibrosis, which mimics most of the clinical features of our involved IPF patients. In combination with data from scRNA-seq of patients and a murine IPF model, a decisive role of CCL2/CCR2 axis in driving M1 macrophage polarization was revealed, and M1 macrophage was further confirmed to boost alveolitis in leading myofibroblast activation. Multiple sticky-end tetrahedral framework nucleic acids conjunct with quadruple ccr2-siRNA (FNA-siCCR2) was synthesized in targeting M1 macrophages. FNA-siCCR2 successfully blocked macrophage accumulation in pulmonary parenchyma of the IPF murine model, thus preventing myofibroblast activation and leading to the disease remitting. Overall, our studies lay the groundwork to develop a novel IPF murine model, reveal M1 macrophages as potential therapeutic targets, and establish new treatment strategy by using FNA-siCCR2, which are highly relevant to clinical scenarios and translational research in the field of IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Macrophages , Humans , Mice , Animals , Disease Models, Animal , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Fibrosis , DNA , Bleomycin
19.
Cell Mol Life Sci ; 81(1): 187, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635081

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) poses significant challenges due to limited treatment options despite its complex pathogenesis involving cellular and molecular mechanisms. This study investigated the role of transient receptor potential ankyrin 1 (TRPA1) channels in regulating M2 macrophage polarization in IPF progression, potentially offering novel therapeutic targets. Using a bleomycin-induced pulmonary fibrosis model in C57BL/6J mice, we assessed the therapeutic potential of the TRPA1 inhibitor HC-030031. TRPA1 upregulation was observed in fibrotic lungs, correlating with worsened lung function and reduced survival. TRPA1 inhibition mitigated fibrosis severity, evidenced by decreased collagen deposition and restored lung tissue stiffness. Furthermore, TRPA1 blockade reversed aberrant M2 macrophage polarization induced by bleomycin, associated with reduced Smad2 phosphorylation in the TGF-ß1-Smad2 pathway. In vitro studies with THP-1 cells treated with bleomycin and HC-030031 corroborated these findings, highlighting TRPA1's involvement in fibrotic modulation and macrophage polarization control. Overall, targeting TRPA1 channels presents promising therapeutic potential in managing pulmonary fibrosis by reducing pro-fibrotic marker expression, inhibiting M2 macrophage polarization, and diminishing collagen deposition. This study sheds light on a novel avenue for therapeutic intervention in IPF, addressing a critical need in the management of this challenging disease.


Subject(s)
Idiopathic Pulmonary Fibrosis , Macrophages , TRPA1 Cation Channel , Animals , Mice , Acetanilides , Bleomycin , Collagen , Cytoskeletal Proteins , Mice, Inbred C57BL , Purines , TRPA1 Cation Channel/metabolism
20.
Proc Natl Acad Sci U S A ; 119(15): e2121098119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35377803

ABSTRACT

The pathogenesis of lung fibrosis involves hyperactivation of innate and adaptive immune pathways that release inflammatory cytokines and growth factors such as tumor growth factor (TGF)ß1 and induce aberrant extracellular matrix protein production. During the genesis of pulmonary fibrosis, resident alveolar macrophages are replaced by a population of newly arrived monocyte-derived interstitial macrophages that subsequently transition into alveolar macrophages (Mo-AMs). These transitioning cells initiate fibrosis by releasing profibrotic cytokines and remodeling the matrix. Here, we describe a strategy for leveraging the up-regulation of the mannose receptor CD206 in interstitial macrophages and Mo-AM to treat lung fibrosis. We engineered mannosylated albumin nanoparticles, which were found to be internalized by fibrogenic CD206+ monocyte derived macrophages (Mo-Macs). Mannosylated albumin nanoparticles incorporating TGFß1 small-interfering RNA (siRNA) targeted the profibrotic subpopulation of CD206+ macrophages and prevented lung fibrosis. The findings point to the potential utility of mannosylated albumin nanoparticles in delivering TGFß-siRNA into CD206+ profibrotic macrophages as an antilung fibrosis strategy.


Subject(s)
Lymphotoxin-alpha , Macrophages, Alveolar , Nanoparticles , Pulmonary Fibrosis , RNA, Small Interfering , Animals , Bleomycin/pharmacology , Disease Models, Animal , Lymphotoxin-alpha/genetics , Macrophages, Alveolar/immunology , Mannose Receptor , Mice , Mice, Inbred C57BL , Nanoparticles/administration & dosage , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/therapy , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL