Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38897817

ABSTRACT

Recent work suggests that the adult human brain is very adaptable when it comes to sensory processing. In this context, it has also been suggested that structural "blueprints" may fundamentally constrain neuroplastic change, e.g. in response to sensory deprivation. Here, we trained 12 blind participants and 14 sighted participants in echolocation over a 10-week period, and used MRI in a pre-post design to measure functional and structural brain changes. We found that blind participants and sighted participants together showed a training-induced increase in activation in left and right V1 in response to echoes, a finding difficult to reconcile with the view that sensory cortex is strictly organized by modality. Further, blind participants and sighted participants showed a training induced increase in activation in right A1 in response to sounds per se (i.e. not echo-specific), and this was accompanied by an increase in gray matter density in right A1 in blind participants and in adjacent acoustic areas in sighted participants. The similarity in functional results between sighted participants and blind participants is consistent with the idea that reorganization may be governed by similar principles in the two groups, yet our structural analyses also showed differences between the groups suggesting that a more nuanced view may be required.


Subject(s)
Auditory Cortex , Blindness , Magnetic Resonance Imaging , Visual Cortex , Humans , Blindness/physiopathology , Blindness/diagnostic imaging , Male , Adult , Female , Auditory Cortex/diagnostic imaging , Auditory Cortex/physiology , Auditory Cortex/physiopathology , Visual Cortex/diagnostic imaging , Visual Cortex/physiology , Young Adult , Neuronal Plasticity/physiology , Acoustic Stimulation , Brain Mapping , Middle Aged , Auditory Perception/physiology , Echolocation/physiology
2.
Hum Brain Mapp ; 45(2): e26583, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339902

ABSTRACT

Although it has been established that cross-modal activations occur in the occipital cortex during auditory processing among congenitally and early blind listeners, it remains uncertain whether these activations in various occipital regions reflect sensory analysis of specific sound properties, non-perceptual cognitive operations associated with active tasks, or the interplay between sensory analysis and cognitive operations. This fMRI study aimed to investigate cross-modal responses in occipital regions, specifically V5/MT and V1, during passive and active pitch perception by early blind individuals compared to sighted individuals. The data showed that V5/MT was responsive to pitch during passive perception, and its activations increased with task complexity. By contrast, widespread occipital regions, including V1, were only recruited during two active perception tasks, and their activations were also modulated by task complexity. These fMRI results from blind individuals suggest that while V5/MT activations are both stimulus-responsive and task-modulated, activations in other occipital regions, including V1, are dependent on the task, indicating similarities and differences between various visual areas during auditory processing.


Subject(s)
Occipital Lobe , Pitch Perception , Humans , Occipital Lobe/diagnostic imaging , Pitch Perception/physiology , Auditory Perception/physiology , Blindness/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain Mapping/methods
3.
J Am Coll Radiol ; 21(6S): S219-S236, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38823946

ABSTRACT

Orbital disorders in children consist of varied pathologies affecting the orbits, orbital contents, visual pathway, and innervation of the extraocular or intraocular muscles. The underlying etiology of these disorders may be traumatic or nontraumatic. Presumed location of the lesion along with the additional findings, such as eye pain, swelling, exophthalmos/enophthalmos, erythema, conjunctival vascular dilatation, intraocular pressure, etc, help in determining if imaging is needed, modality of choice, and extent of coverage (orbits and/or head). Occasionally, clinical signs and symptoms may be nonspecific, and, in these cases, diagnostic imaging studies play a key role in depicting the nature and extent of the injury or disease. In this document, various clinical scenarios are discussed by which a child may present with an orbital or vision abnormality. Imaging studies that might be most appropriate (based on the best available evidence or expert consensus) in these clinical scenarios are also discussed. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.


Subject(s)
Orbital Diseases , Humans , Child , United States , Orbital Diseases/diagnostic imaging , Evidence-Based Medicine , Societies, Medical , Diagnostic Imaging/methods , Blindness/diagnostic imaging
4.
AJNR Am J Neuroradiol ; 45(7): 965-970, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38902008

ABSTRACT

BACKGROUND AND PURPOSE: MR imaging is the technique of choice for patients presenting with acute loss of visual acuity with no obvious ophthalmologic cause. The goal of our study was to compare orbits contrast-enhanced 2D coronal T1WI with a whole-brain contrast-enhanced 3D (WBCE-3D) TSE T1WI at 3T for the detection of optic nerve enhancement. MATERIALS AND METHODS: This institutional review board-approved retrospective single-center study included patients presenting with acute loss of vision who underwent 3T MR imaging from November 2014 to February 2020. Two radiologists, blinded to all data, individually assessed the presence of enhancement of the optic nerve on orbits contrast-enhanced 2D T1WI and WBCE-3D T1WI separately and in random order. A McNemar test and a Cohen κ method were used for comparing the 2 MR imaging sequences. RESULTS: One thousand twenty-three patients (638 women and 385 men; mean age, 42 [SD, 18.3] years) were included. There was a strong concordance between WBCE-3D T1WI and orbits contrast-enhanced 2D T1WI when detecting enhancement of the optic nerve: κ = 0.87 (95% CI, 0.84-0.90). WBCE-3D T1WI was significantly more likely to detect canalicular enhancement compared with orbits contrast-enhanced 2D T1WI: 178/1023 (17.4%) versus 138/1023 (13.5%) (P < .001) and 108/1023 (10.6%) versus 90/1023 (8.8%) (P = .04), respectively. The WBCE-3D T1WI sequence detected 27/1023 (3%) instances of optic disc enhancement versus 0/1023 (0%) on orbits contrast-enhanced 2D T1WI. There were significantly fewer severe artifacts on WBCE-3D T1WI compared with orbits contrast-enhanced 2D T1WI: 68/1023 (6.6%) versus 101/1023 (9.8%) (P < .001). The median reader-reported confidence was significantly higher with coronal T1WI compared with 3D TSE T1WI: 5 (95% CI, 4-5) versus 3 (95% CI, 1-4; P < .001). CONCLUSIONS: Our study showed that there was a strong concordance between WBCE-3D T1WI and orbits contrast-enhanced 2D T1WI when detecting enhancement of the optic nerve in patients with acute loss of visual acuity with no obvious ophthalmologic cause. WBCE-3D T1WI demonstrated higher sensitivity and specificity in diagnosing optic neuritis, particularly in cases involving the canalicular segments.


Subject(s)
Contrast Media , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Humans , Female , Male , Adult , Magnetic Resonance Imaging/methods , Retrospective Studies , Imaging, Three-Dimensional/methods , Middle Aged , Optic Nerve/diagnostic imaging , Blindness/diagnostic imaging , Orbit/diagnostic imaging , Aged , Image Enhancement/methods , Visual Acuity
5.
Medicina (B.Aires) ; 76(6): 376-378, dic. 2016. ilus, tab
Article in Spanish | LILACS | ID: biblio-841614

ABSTRACT

La uveítis intermedia es una enfermedad ocular caracterizada por la inflamación de la úvea, principalmente el vítreo anterior, la retina periférica y la pars plana. Diversas etiologías de carácter infeccioso, inflamatorio sistémico y local pueden asociarse a dicho fenómeno. Un cuadro infrecuente es el síndrome de nefritis túbulo-intersticial aguda asociado a uveítis. Presentamos el caso de una mujer de 64 años con antecedente de tiroiditis de Hashimoto, que desarrolló pérdida brusca de la agudeza visual en contexto de falla renal aguda. Se trata de una paciente con nefritis túbulo-intersticial aguda asociada a uveítis.


Intermediate uveitis is described as inflammation in the anterior vitreous, ciliary body and the peripheral retina. It is a subset of uveitis where the vitreous is the major site of damage. It has been reported to be associated with many local and systemic inflammatory and infectious diseases. An infrequent cause is the tubulointerstitial nephritis and uveitis syndrome. We report a case of an acute visual acuity loss related with renal failure in a 64 years old woman with Hashimoto disease. It was an acute tubulointerstitial nephritis and uveitis syndrome case.


Subject(s)
Humans , Male , Female , Middle Aged , Uveitis/complications , Blindness/etiology , Nephritis, Interstitial/complications , Syndrome , Uveitis/diagnosis , Visual Acuity , Blindness/diagnostic imaging , Acute Disease , Ultrasonography , Hashimoto Disease , Nephritis, Interstitial/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL