Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 249
Filter
Add more filters

Publication year range
1.
Exp Cell Res ; 439(1): 114096, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38768700

ABSTRACT

Early vascularization plays an essential role during the whole process in bone regeneration because of the function of secreting cytokines, transporting nutrients and metabolic wastes. As the preliminary basis of bone repair, angiogenesis is regulated by immune cells represented by macrophages to a great extent. However, with the discovery of the endolymphatic circulation system inside bone tissue, the role of vascularization became complicated and confusing. Herein, we developed a macrophage/lymphatic endothelial cells (LECs)/human umbilical vein endothelial cells (HUVECs) co-culture system to evaluate the effect of macrophage treated lymphatic endothelial cells on angiogenesis in vitro and in vivo. In this study, we collected the medium from macrophage (CM) for LECs culture. We found that CM2 could promote the expression of LECs markers and migration ability, which indicated the enhanced lymphogenesis. In addition, the medium from LECs was collected for culturing HUVECs. The CM2-treated LECs showed superior angiogenesis property including the migration capacity and expression of angiogenetic markers, which suggested the superior vascularization. Rat femoral condyle defect model was applied to confirm the hypothesis in vivo. Generally, M2-macrophage treated LECs showed prominent angiogenetic potential coupling with osteogenesis.


Subject(s)
Coculture Techniques , Human Umbilical Vein Endothelial Cells , Macrophages , Neovascularization, Physiologic , Osteogenesis , Humans , Animals , Human Umbilical Vein Endothelial Cells/metabolism , Macrophages/metabolism , Rats , Endothelial Cells/metabolism , Cell Movement , Rats, Sprague-Dawley , Bone Regeneration/physiology , Mice , Cells, Cultured , Male , Angiogenesis
2.
Biochem Biophys Res Commun ; 704: 149699, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38412668

ABSTRACT

With an increasing understanding of the mechanisms of fracture healing, it has been found that nerve injury plays a crucial role in the process, but the specific mechanism is yet to be completely revealed. To address this issue and provide novel insights for fracture treatment, we compiled this review. This review aims to study the impact of nerve injury on fracture healing, exploring the role of neurotrophic factors in the healing process. We first revisited the effects of the central nervous system (CNS) and the peripheral nervous system (PNS) on the skeletal system, and further explained the phenomenon of significantly accelerated fracture healing under nerve injury conditions. Then, from the perspective of neurotrophic factors, we delved into the physiological functions and mechanisms of neurotrophic factors, such as nerve growth factor (NGF), Neuropeptides (NPs), and Brain-derived neurotrophic factor (BDNF), in bone metabolism. These effects include direct actions on bone cells, improvement of local blood supply, regulation of bone growth factors, control of cellular signaling pathways, promotion of callus formation and bone regeneration, and synergistic or antagonistic effects with other endocrine factors, such as Sema3A and Transforming Growth Factor ß (TGF-ß). Finally, we discussed the treatments of fractures with nerve injuries and the future research directions in this review, suggesting that the relationship between nerve injury and fracture healing, as well as the role of nerve injury in other skeletal diseases.


Subject(s)
Fractures, Bone , Neuropeptides , Peripheral Nervous System Diseases , Humans , Fracture Healing/physiology , Bone Regeneration/physiology
3.
Calcif Tissue Int ; 114(6): 625-637, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643416

ABSTRACT

Loss of p21 leads to increased bone formation post-injury; however, the mechanism(s) by which this occurs remains undetermined. E2f1 is downstream of p21 and as a transcription factor can act directly on gene expression; yet it is unknown if E2f1 plays a role in the osteogenic effects observed when p21 is differentially regulated. In this study we aimed to investigate the interplay between p21 and E2f1 and determine if the pro-regenerative osteogenic effects observed with the loss of p21 are E2f1 dependent. To accomplish this, we employed knockout p21 and E2f1 mice and additionally generated a p21/E2f1 double knockout. These mice underwent burr-hole injuries to their proximal tibiae and healing was assessed over 7 days via microCT imaging. We found that p21 and E2f1 play distinct roles in bone regeneration where the loss of p21 increased trabecular bone formation and loss of E2f1 increased cortical bone formation, yet loss of E2f1 led to poorer bone repair overall. Furthermore, when E2f1 was absent, either individually or simultaneously with p21, there was a dramatic decrease of the number of osteoblasts, osteoclasts, and chondrocytes at the site of injury compared to p21-/- and C57BL/6 mice. Together, these results suggest that E2f1 regulates the cell populations required for bone repair and has a distinct role in bone formation/repair compared to p21-/-E2f1-/-. These results highlight the possibility of cell cycle and/or p21/E2f1 being potential druggable targets that could be leveraged in clinical therapies to improve bone healing in pathologies such as osteoporosis.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21 , E2F1 Transcription Factor , Osteogenesis , Animals , Mice , Bone Regeneration/physiology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , E2F1 Transcription Factor/metabolism , E2F1 Transcription Factor/genetics , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/metabolism , Osteogenesis/physiology
4.
Periodontol 2000 ; 94(1): 161-179, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38323368

ABSTRACT

Bone grafts are typically categorized into four categories: autografts, allografts, xenografts, and synthetic alloplasts. While it was originally thought that all bone grafts should be slowly resorbed and replaced with native bone over time, accumulating evidence has in fact suggested that the use of nonresorbable xenografts is favored for certain clinical indications. Thus, many clinicians take advantage of the nonresorbable properties/features of xenografts for various clinical indications, such as contour augmentation, sinus grafting, and guided bone regeneration, which are often combined with allografts (e.g., human freeze-dried bone allografts [FDBAs] and human demineralized freeze-dried bone allografts [DFDBAs]). Thus, many clinicians have advocated different 50/50 or 70/30 ratios of allograft/xenograft combination approaches for various grafting procedures. Interestingly, many clinicians believe that one of the main reasons for the nonresorbability or low substitution rates of xenografts has to do with their foreign animal origin. Recent research has indicated that the sintering technique and heating conducted during their processing changes the dissolution rate of hydroxyapatite, leading to a state in which osteoclasts are no longer able to resorb (dissolve) the sintered bone. While many clinicians often combine nonresorbable xenografts with the bone-inducing properties of allografts for a variety of bone augmentation procedures, clinicians are forced to use two separate products owing to their origins (the FDA/CE does not allow the mixture of allografts with xenografts within the same dish/bottle). This has led to significant progress in understanding the dissolution rates of xenografts at various sintering temperature changes, which has since led to the breakthrough development of nonresorbable bone allografts sintered at similar temperatures to nonresorbable xenografts. The advantage of the nonresorbable bone allograft is that they can now be combined with standard allografts to create a single mixture combining the advantages of both allografts and xenografts while allowing the purchase and use of a single product. This review article presents the concept with evidence derived from a 52-week monkey study that demonstrated little to no resorption along with in vitro data supporting this novel technology as a "next-generation" biomaterial with optimized bone grafting material properties.


Subject(s)
Allografts , Bone Transplantation , Humans , Bone Transplantation/methods , Animals , Heterografts , Bone Regeneration/physiology , Bone Substitutes/therapeutic use , Bone Resorption
5.
Curr Osteoporos Rep ; 22(2): 290-298, 2024 04.
Article in English | MEDLINE | ID: mdl-38358401

ABSTRACT

PURPOSE OF REVIEW: Interfacial tissue exists throughout the body at cartilage-to-bone (osteochondral interface) and tendon-to-bone (enthesis) interfaces. Healing of interfacial tissues is a current challenge in regenerative approaches because the interface plays a critical role in stabilizing and distributing the mechanical stress between soft tissues (e.g., cartilage and tendon) and bone. The purpose of this review is to identify new directions in the field of interfacial tissue development and physiology that can guide future regenerative strategies for improving post-injury healing. RECENT FINDINGS: Cues from interfacial tissue development may guide regeneration including biological cues such as cell phenotype and growth factor signaling; structural cues such as extracellular matrix (ECM) deposition, ECM, and cell alignment; and mechanical cues such as compression, tension, shear, and the stiffness of the cellular microenvironment. In this review, we explore new discoveries in the field of interfacial biology related to ECM remodeling, cellular metabolism, and fate. Based on emergent findings across multiple disciplines, we lay out a framework for future innovations in the design of engineered strategies for interface regeneration. Many of the key mechanisms essential for interfacial tissue development and adaptation have high potential for improving outcomes in the clinic.


Subject(s)
Bone Regeneration , Extracellular Matrix , Humans , Extracellular Matrix/physiology , Bone Regeneration/physiology , Bone and Bones/physiology , Tendons/physiology , Tissue Engineering/methods , Cartilage/physiology , Regeneration/physiology , Wound Healing/physiology
6.
Eur J Oral Sci ; 132(4): e13006, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38989803

ABSTRACT

Lymphatics are involved in the resolution of inflammation and wound healing, but their role in the oral wound healing process after tooth extraction has never been investigated. We therefore sought to evaluate the healing process following the extraction of maxillary molars in two transgenic mouse models: K14-VEGFR3-Ig mice, which lack initial mucosal lymphatic vessels, and K14-VEGFC mice, which have hyperplastic mucosal lymphatics. Maxillary molars were extracted from both transgenic mouse types and their corresponding wild-type (WT) controls. Mucosal and alveolar bone healing were evaluated. A delayed epithelialization and bone regeneration were observed in K14-VEGFR3-Ig mice compared with their WT littermates. The hampered wound closure was accompanied by decreased levels of epidermal growth factor (EGF) and persistent inflammation, characterized by infiltrates of immune cells and elevated levels of pro-inflammatory markers in the wounds. Hyperplastic mucosal lymphatics did not enhance the healing process after tooth extraction in K14-VEGFC mice. The findings indicate that initial mucosal lymphatics play a major role in the initial phase of the oral wound healing process.


Subject(s)
Lymphatic Vessels , Mice, Transgenic , Tooth Extraction , Vascular Endothelial Growth Factor C , Vascular Endothelial Growth Factor Receptor-3 , Wound Healing , Animals , Wound Healing/physiology , Mice , Vascular Endothelial Growth Factor C/metabolism , Lymphatic Vessels/pathology , Vascular Endothelial Growth Factor Receptor-3/metabolism , Molar , Mouth Mucosa/pathology , Bone Regeneration/physiology , Epidermal Growth Factor/analysis , Epidermal Growth Factor/metabolism , Re-Epithelialization
7.
BMC Musculoskelet Disord ; 25(1): 455, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851675

ABSTRACT

BACKGROUND: Masquelet membrane induction technology is one of the treatment strategies for large bone defect (LBD). However, the angiogenesis ability of induced membrane decreases with time and autologous bone grafting is associated with donor site morbidity. This study investigates if the PRP-FG-nHA/PA66 scaffold can be used as a spacer instead of PMMA to improve the angiogenesis ability of induced membrane and reduce the amount of autologous bone graft. METHODS: Platelet rich plasma (PRP) was prepared and PRP-FG-nHA/PA66 scaffold was synthesized and observed. The sustained release of VEGFA and porosity of the scaffold were analyzed. We established a femur LBD model in male SD rats. 55 rats were randomly divided into four groups depending on the spacer filled in the defect area. "Defect only" group (n = 10), "PMMA" group (n = 15), "PRP-nHA/PA66" group (n = 15) and "PRP-FG-nHA/PA66" group (n = 15 ). At 6 weeks, the spacers were removed and the defects were grafted. The induced membrane and bone were collected and stained. The bone formation was detected by micro-CT and the callus union was scored on a three point system. RESULTS: The PRP-FG-nHA/PA66 scaffold was porosity and could maintain a high concentration of VEGFA after 30 days of preparation. The induced membrane in PRP-FG-nHA/PA66 group was thinner than PMMA, but the vessel density was higher.The weight of autogenous bone grafted in PRP-FG-nHA/PA66 group was significantly smaller than that of PMMA group. In PRP-FG-nHA/PA66 group, the bone defect was morphologically repaired. CONCLUSION: The study showed that PRP-FG-nHA/PA66 scaffold can significantly reduce the amount of autologous bone graft, and can achieve similar bone defect repair effect as PMMA. Our findings provide some reference and theoretical support for the treatment of large segmental bone defects in humans.


Subject(s)
Femur , Platelet-Rich Plasma , Rats, Sprague-Dawley , Tissue Scaffolds , Animals , Male , Rats , Femur/surgery , Femur/pathology , Vascular Endothelial Growth Factor A , Bone Regeneration/physiology , Neovascularization, Physiologic , Bone Transplantation/methods , Durapatite/chemistry , Disease Models, Animal , Osteogenesis/physiology
8.
Int Orthop ; 48(6): 1419-1426, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38509382

ABSTRACT

PURPOSE: The study is aimed at evaluating the long-term (at a minimum follow-up of 10 years) impact of non-vascularized fibular harvest on the donor limbs. METHODS: There were 27 donor limbs (n = 19 children) available for retrospective radiological review. The graft was obtained bilaterally in eight patients. The following parameters were evaluated in the follow-up radiographs: continuity/non-continuity of fibular regenerate, width of the regenerated fibula, distal fibular station, medial proximal tibial angle, posterior proximal tibial angle, lateral distal tibial angle (LDTA), anterior distal tibial angle, and tibia diaphyseal angulation (interphyseal angles). For analysis and comparisons, the donor limbs were compared to the healthy limbs (controls) of the children with unilateral harvest. Additionally, the impact of continuous and non-continuous fibular regeneration was separately analyzed. RESULTS: The mean child's age at the time of fibular harvest was four years. The mean follow-up was 12.8 years. The fibula was found regenerated in continuity in 22 limbs of 15 children (81.5%). When analyzed as a combined group (both continuous and non-continuous fibular regenerations), all the donor limb radiological parameters matched those of healthy limbs except LDTA (p = 0.04). In the subgroup analysis between non-continuous and continuous fibulae, significant abnormalities were again obvious in LDTA (p = 0.0001). The non-continuous fibulae were significantly lesser in width. All limbs with non-continuous fibular regeneration manifested ankle valgus. CONCLUSIONS: The non-vascularized fibula emerged as a relatively safe procedure in the long term with minimal affections of the knee, ankle, or tibial anatomy when longitudinal integrity of fibula was restored. The non-regenerations of the fibula may be prone to developing ankle valgus.


Subject(s)
Bone Transplantation , Fibula , Radiography , Humans , Fibula/transplantation , Child , Male , Retrospective Studies , Follow-Up Studies , Female , Radiography/methods , Child, Preschool , Bone Transplantation/methods , Tissue and Organ Harvesting/methods , Adolescent , Tibia/diagnostic imaging , Tibia/surgery , Bone Regeneration/physiology
9.
Int J Mol Sci ; 25(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38396834

ABSTRACT

The periosteum is known as the thin connective tissue covering most bone surfaces. Its extrusive bone regeneration capacity was confirmed from the very first century-old studies. Recently, pluripotent stem cells in the periosteum with unique physiological properties were unveiled. Existing in dynamic contexts and regulated by complex molecular networks, periosteal stem cells emerge as having strong capabilities of proliferation and multipotential differentiation. Through continuous exploration of studies, we are now starting to acquire more insight into the great potential of the periosteum in bone formation and repair in situ or ectopically. It is undeniable that the periosteum is developing further into a more promising strategy to be harnessed in bone tissue regeneration. Here, we summarized the development and structure of the periosteum, cell markers, and the biological features of periosteal stem cells. Then, we reviewed their pivotal role in bone repair and the underlying molecular regulation. The understanding of periosteum-related cellular and molecular content will help enhance future research efforts and application transformation of the periosteum.


Subject(s)
Bone Regeneration , Periosteum , Bone Regeneration/physiology , Osteogenesis/physiology , Stem Cells , Cell Differentiation , Tissue Engineering
10.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542453

ABSTRACT

Promoting the efficiency of bone regeneration in bone loss diseases is a significant clinical challenge. Traditional therapies often fail to achieve better therapeutic outcomes and shorter treatment times. However, in recent years, extracellular vesicles (EVs) have gained significant attention due to their exceptional osteogenic function in bone regeneration and superior therapeutic effects compared to traditional cell therapy. EVs have emerged as a promising therapy for tissue defect regeneration due to their various physiological functions, such as regulating the immune response and promoting tissue repair and regeneration. Moreover, EVs have good biocompatibility, low immunogenicity, and long-term stability, and can be improved through pretreatment and other methods. Studies investigating the mechanisms by which extracellular vesicles promote bone regeneration and applying EVs from different sources using various methods to animal models of bone defects have increased. Therefore, this paper reviews the types of EVs used for bone regeneration, their sources, roles, delivery pathways, scaffold biomaterials, and applications.


Subject(s)
Bone Diseases , Extracellular Vesicles , Animals , Bone Regeneration/physiology , Osteogenesis , Extracellular Vesicles/metabolism , Biocompatible Materials/metabolism , Cell- and Tissue-Based Therapy , Bone Diseases/therapy , Bone Diseases/metabolism
11.
Medicina (Kaunas) ; 60(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38792956

ABSTRACT

The regeneration of periodontal bone defects continues to be an essential therapeutic concern in dental biomaterials. Numerous biomaterials have been utilized in this sector so far. However, the immune response and vascularity in defect regions may be disregarded when evaluating the effectiveness of biomaterials for bone repair. Among several regenerative treatments, the most recent technique of in situ tissue engineering stands out for its ability to replicate endogenous restorative processes by combining scaffold with particular growth factors. Regenerative medicine solutions that combine biomaterials/scaffolds, cells, and bioactive substances have attracted significant interest, particularly for bone repair and regeneration. Dental stem cells (DSCs) share the same progenitor and immunomodulatory properties as other types of MSCs, and because they are easily isolable, they are regarded as desirable therapeutic agents in regenerative dentistry. Recent research has demonstrated that DSCs sown on newly designed synthetic bio-material scaffolds preserve their proliferative capacity while exhibiting increased differentiation and immuno-suppressive capabilities. As researchers discovered how short peptide sequences modify the adhesion and proliferative capacities of scaffolds by activating or inhibiting conventional osteogenic pathways, the scaffolds became more effective at priming MSCs. In this review, the many components of tissue engineering applied to bone engineering will be examined, and the impact of biomaterials on periodontal regeneration and bone cellular biology/molecular genetics will be addressed and updated.


Subject(s)
Bone Regeneration , Tissue Engineering , Tissue Scaffolds , Humans , Tissue Engineering/methods , Bone Regeneration/physiology , Bone Regeneration/drug effects , Biocompatible Materials/therapeutic use , Periodontium/physiology
12.
J Orthop Traumatol ; 25(1): 28, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789881

ABSTRACT

Mesenchymal stem cells are core to bone homeostasis and repair. They both provide the progenitor cells from which bone cells are formed and regulate the local cytokine environment to create a pro-osteogenic environment. Dysregulation of these cells is often seen in orthopaedic pathology and can be manipulated by the physician treating the patient. This narrative review aims to describe the common applications of cell therapies to bone healing whilst also suggesting the future direction of these techniques.


Subject(s)
Cell- and Tissue-Based Therapy , Mesenchymal Stem Cell Transplantation , Humans , Bone Regeneration/physiology , Cell- and Tissue-Based Therapy/methods , Fracture Healing/physiology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells , Osteogenesis/physiology
13.
Sci Adv ; 10(6): eadk6722, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38324693

ABSTRACT

Reconstructing extensive cranial defects represents a persistent clinical challenge. Here, we reported a hybrid three-dimensional (3D) printed scaffold with modification of QK peptide and KP peptide for effectively promoting endogenous cranial bone regeneration. The hybrid 3D printed scaffold consists of vertically aligned cryogel fibers that guide and promote cell penetration into the defect area in the early stages of bone repair. Then, the conjugated QK peptide and KP peptide further regulate the function of the recruited cells to promote vascularization and osteogenic differentiation in the defect area. The regenerated bone volume and surface coverage of the dual peptide-modified hybrid scaffold were significantly higher than the positive control group. In addition, the dual peptide-modified hybrid scaffold demonstrated sustained enhancement of bone regeneration and avoidance of bone resorption compared to the collagen sponge group. We expect that the design of dual peptide-modified hybrid scaffold will provide a promising strategy for bone regeneration.


Subject(s)
Osteogenesis , Tissue Scaffolds , Cryogels , Bone Regeneration/physiology , Peptides , Printing, Three-Dimensional
14.
Nat Commun ; 15(1): 119, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38168072

ABSTRACT

The sophisticated hierarchical structure that precisely combines contradictory mechanical and biological characteristics is ideal for biomaterials, but it is challenging to achieve. Herein, we engineer a spatiotemporally hierarchical guided bone regeneration (GBR) membrane by rational bilayer integration of densely porous N-halamine functionalized bacterial cellulose nanonetwork facing the gingiva and loosely porous chitosan-hydroxyapatite composite micronetwork facing the alveolar bone. Our GBR membrane asymmetrically combine stiffness and flexibility, ingrowth barrier and ingrowth guiding, as well as anti-bacteria and cell-activation. The dense layer has a mechanically matched space maintenance capacity toward gingiva, continuously blocks fibroblasts, and prevents bacterial invasion with multiple mechanisms including release-killing, contact-killing, anti-adhesion, and nanopore-blocking; the loose layer is ultra-soft to conformally cover bone surfaces and defect cavity edges, enables ingrowth of osteogenesis-associated cells, and creates a favorable osteogenic microenvironment. As a result, our all-in-one porous membrane possesses full protective abilities in GBR.


Subject(s)
Bone Regeneration , Membranes, Artificial , Porosity , Bone Regeneration/physiology , Osteogenesis , Biocompatible Materials/chemistry
15.
Int J Periodontics Restorative Dent ; 44(3): 331-338, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38787709

ABSTRACT

Successful bone augmentation relies on primary wound closure. The labial frenum is a soft tissue that connects the lip to the alveolar mucosa or gingiva. However, the frenum may exert biomechanical forces to the wound edge, causing wound instability. The aim of this study is to review the frenum composition and classifications and to understand the significance of the frenum in wound stability upon bone regeneration. Together with a manual search, an electronic search was conducted through three online databases on studies published until September 2022. A total of 300 articles were identified, and 9 studies were included in this review. Two of the included studies discovered that 35% to 37.5% of the labial frenum had muscle fibers. Other studies showed that the labial frenum was mainly composed of connective tissue with elastic fibers. There are two widely used classifications for the frenum based on its morphology and attachment position. No studies specifically evaluated the impact of the frenum on bone regeneration, but the frenum location intercorrelated with the amount of keratinized tissue, which could influence wound stability. A modified frenum classification for the edentulous ridge and a decision diagram to manage the frenum is proposed for research and evidence-based practice.


Subject(s)
Bone Regeneration , Labial Frenum , Humans , Bone Regeneration/physiology , Alveolar Ridge Augmentation/methods , Gingiva
16.
J Am Acad Orthop Surg ; 32(10): e476-e481, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700858

ABSTRACT

With an aging population, and an anticipated increase in overall fracture incidence, a sound understanding of bone healing and how technology can optimize this process is crucial. Concentrated bone marrow aspirate (cBMA) is a technology that capitalizes on skeletal stem and progenitor cells (SSPCs) to enhance the regenerative capacity of bone. This overview highlights the science behind cBMA, discusses the role of SSPCs in bone homeostasis and fracture repair, and briefly details the clinical evidence supporting the use of cBMA in fracture healing. Despite promising early clinical results, a lack of standardization in harvest and processing techniques, coupled with patient variability, presents challenges in optimizing the use of cBMA. However, cBMA remains an emerging technology that may certainly play a crucial role in the future of fracture healing augmentation.


Subject(s)
Fracture Healing , Humans , Fracture Healing/physiology , Bone Marrow Transplantation/methods , Cell- and Tissue-Based Therapy/methods , Bone Regeneration/physiology , Fractures, Bone/therapy , Bone Marrow Cells/cytology
17.
Cells ; 13(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38920674

ABSTRACT

Bone/fracture healing is a complex process with different steps and four basic tissue layers being affected: cortical bone, periosteum, fascial tissue surrounding the fracture, and bone marrow. Stem cells and their derivatives, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells, skeletal stem cells, and multipotent stem cells, can function to artificially introduce highly regenerative cells into decrepit biological tissues and augment the healing process at the tissue level. Stem cells are molecularly and functionally indistinguishable from standard human tissues. The widespread appeal of stem cell therapy lies in its potential benefits as a therapeutic technology that, if harnessed, can be applied in clinical settings. This review aims to establish the molecular pathophysiology of bone healing and the current stem cell interventions that disrupt or augment the bone healing process and, finally, considers the future direction/therapeutic options related to stem cells and bone healing.


Subject(s)
Bone Regeneration , Fracture Healing , Humans , Bone Regeneration/physiology , Animals , Stem Cells/cytology , Stem Cell Transplantation/methods
18.
ACS Biomater Sci Eng ; 10(3): 1302-1322, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38346448

ABSTRACT

The treatment of bone defects has been a long-standing challenge in clinical practice. Among the various bone tissue engineering approaches, there has been substantial progress in the development of drug delivery systems based on functional drugs and appropriate carrier materials owing to technological advances in recent years. A large number of materials based on functional nanocarriers have been developed and applied to improve the complex osteogenic microenvironment, including for promoting osteogenic activity, inhibiting osteoclast activity, and exerting certain antibacterial effects. This Review discusses the physicochemical properties, drug loading mechanisms, advantages and disadvantages of nanoparticles (NPs) used for constructing drug delivery systems. In addition, we provide an overview of the osteogenic microenvironment regulation mechanism of drug delivery systems based on nanoparticle (NP) carriers and the construction strategies of drug delivery systems. Finally, the advantages and disadvantages of NP carriers are summarized along with their prospects and future research trends in bone tissue engineering. This Review thus provides advanced strategies for the design and application of drug delivery systems based on NPs in the treatment of bone defects.


Subject(s)
Nanoparticle Drug Delivery System , Nanoparticles , Drug Delivery Systems , Bone Regeneration/physiology , Nanoparticles/therapeutic use , Nanoparticles/chemistry , Tissue Engineering
19.
Br J Oral Maxillofac Surg ; 62(5): 433-440, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38760261

ABSTRACT

This systematic review aimed to evaluate results reported in the literature regarding the success rate of the titanium mesh technique for the placement of dental implants. The topic focused on titanium mesh used as a physical barrier for ridge reconstruction in cases of partial or total edentulism. The authors conducted an electronic search of four databases up to October 2023. Six articles fulfilled the inclusion criteria and were analysed. A total of 100 titanium meshes with a minimum of 4.6 months follow up after surgery were studied, and 241 implants were placed. The review shows that the use of titanium mesh is a predictable method for the rehabilitation of complex atrophic sites. Further investigation generating long-term data is needed to confirm these findings.


Subject(s)
Bone Regeneration , Surgical Mesh , Titanium , Humans , Bone Regeneration/physiology , Dental Implantation, Endosseous/methods , Dental Implants , Alveolar Ridge Augmentation/methods , Guided Tissue Regeneration, Periodontal/methods
20.
Int J Implant Dent ; 10(1): 26, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801622

ABSTRACT

PURPOSE: Particulate bovine bone substitutes (BS) are commonly used in oral regeneration. However, more literature is needed focusing on comparative analyses among various particulate bovine BS. This study evaluates pre-clinical and clinical data of different particulate bovine BS in oral regeneration. METHODS: A narrative review was conducted by screening the PubMed database Included in the review were pre-clinical and clinical studies until 2024 comparing a minimum of two distinct particulate bovine BS. In addition to examining general data concerning manufacturing and treatment processes, biological safety, physical and chemical characteristics, and graft resorption, particular emphasis was placed on assessing pre-clinical and clinical data related to ridge preservation, sinus floor elevation, peri-implant defects, and various forms of alveolar ridge augmentation utilizing particulate bovine BS. RESULTS: Various treatment temperatures ranging from 300 to 1,250 °C and the employment of chemical cleaning steps were identified for the manufacturing process of particulate bovine BS deemed to possess biosecurity. A notable heterogeneity was observed in the physical and chemical characteristics of particulate bovine BS, with minimal or negligible graft resorption. Variations were evident in particle and pore sizes and the porosity of particulate bovine BS. Pre-clinical assessments noted a marginal inclination towards favorable outcomes for particulate bovine BS subjected to higher treatment temperatures. However, clinical data are insufficient. No distinctions were observed regarding ridge preservation, while slight advantages were noted for high-temperature treated particulate bovine BS in sinus floor elevation. CONCLUSIONS: Subtle variances in both pre-clinical and clinical outcomes were observed in across various particulate bovine BS. Due to inadequate data, numerous considerations related to diverse particulate bovine BS, including peri-implant defects, must be more conclusive. Additional clinical studies are imperative to address these knowledge gaps effectively.


Subject(s)
Bone Substitutes , Cattle , Animals , Bone Substitutes/therapeutic use , Humans , Alveolar Ridge Augmentation/methods , Bone Regeneration/physiology
SELECTION OF CITATIONS
SEARCH DETAIL