Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.373
Filter
Add more filters

Publication year range
1.
Biochem Biophys Res Commun ; 710: 149876, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38579537

ABSTRACT

1,2,4-Butanetriol serves as a precursor in the manufacture of diverse pharmaceuticals and the energetic plasticizer 1,2,4-butanetriol trinitrate. The study involved further modifications to an engineered Candida tropicalis strain, aimed at improving the production efficiency of 1,2,4-butanetriol. Faced with the issue of xylonate accumulation due to the low activity of heterologous xylonate dehydratase, we modulated iron metabolism at the transcriptional level to boost intracellular iron ion availability, thus enhancing the enzyme activity by 2.2-fold. Addressing the NADPH shortfall encountered during 1,2,4-butanetriol biosynthesis, we overexpressed pivotal genes in the NADPH regeneration pathway, achieving a 1,2,4-butanetriol yield of 3.2 g/L. The introduction of calcium carbonate to maintain pH balance led to an increased yield of 4 g/L, marking a 111% improvement over the baseline strain. Finally, the use of corncob hydrolysate as a substrate culminated in 1,2,4-butanetriol production of 3.42 g/L, thereby identifying a novel host for the conversion of corncob hydrolysate to 1,2,4-butanetriol.


Subject(s)
Butanols , Candida tropicalis , Escherichia coli , Escherichia coli/metabolism , Candida tropicalis/genetics , Candida tropicalis/metabolism , Metabolic Engineering , Iron/metabolism , Xylose/metabolism
2.
Yeast ; 41(6): 401-417, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38708451

ABSTRACT

To develop a cost-effective microbial cell factory for the production of biofuels and biochemicals, an understanding of tolerant mechanisms is vital for the construction of robust host strains. Here, we characterized a new function of a key metabolic transcription factor named Znf1 and its involvement in stress response in Saccharomyces cerevisiae to enhance tolerance to advanced biofuel, isobutanol. RNA-sequencing analysis of the wild-type versus the znf1Δ deletion strains in glucose revealed a new role for transcription factor Znf1 in the pentose phosphate pathway (PPP) and energy generation. The gene expression analysis confirmed that isobutanol induces an adaptive cell response, resulting in activation of ATP1-3 and COX6 expression. These genes were Znf1 targets that belong to the electron transport chain, important to produce ATPs. Znf1 also activated PPP genes, required for the generation of key amino acids, cellular metabolites, and maintenance of NADP/NADPH redox balance. In glucose, Znf1 also mediated the upregulation of valine biosynthetic genes of the Ehrlich pathway, namely ILV3, ILV5, and ARO10, associated with the generation of key intermediates for isobutanol production. Using S. cerevisiae knockout collection strains, cells with deleted transcriptional regulatory gene ZNF1 or its targets displayed hypersensitivity to isobutanol and acid inhibitors; in contrast, overexpression of ZNF1 enhanced cell survival. Thus, the transcription factor Znf1 functions in the maintenance of energy homeostasis and redox balance at various checkpoints of yeast metabolic pathways. It ensures the rapid unwiring of gene transcription in response to toxic products/by-products generated during biofuel production. Importantly, we provide a new approach to enhance strain tolerance during the conversion of glucose to biofuels.


Subject(s)
Adenosine Triphosphate , Butanols , Gene Expression Regulation, Fungal , Pentose Phosphate Pathway , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription Factors , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Pentose Phosphate Pathway/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Butanols/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Adenosine Triphosphate/metabolism , Glucose/metabolism , Biofuels
3.
Appl Environ Microbiol ; 90(7): e0028224, 2024 07 24.
Article in English | MEDLINE | ID: mdl-38864631

ABSTRACT

Clostridium acetobutylicum is a solventogenic, anaerobic, gram-positive bacterium that is commonly considered the model organism for studying acetone-butanol-ethanol fermentation. The need to produce these chemicals sustainably and with a minimal impact on the environment has revived the interest in research on this bacterium. The recent development of efficient genetic tools allows to better understand the physiology of this micro-organism, aiming at improving its fermentation capacities. Knowledge about gene essentiality would guide the future genetic editing strategies and support the understanding of crucial cellular functions in this bacterium. In this work, we applied a transposon insertion site sequencing method to generate large mutant libraries containing millions of independent mutants that allowed us to identify a core group of 418 essential genes needed for in vitro development. Future research on this significant biocatalyst will be guided by the data provided in this work, which will serve as a valuable resource for the community. IMPORTANCE: Clostridium acetobutylicum is a leading candidate to synthesize valuable compounds like three and four carbons alcohols. Its ability to convert carbohydrates into a mixture of acetone, butanol, and ethanol as well as other chemicals of interest upon genetic engineering makes it an advantageous organism for the valorization of lignocellulose-derived sugar mixtures. Since, genetic optimization depends on the fundamental insights supplied by accurate gene function assignment, gene essentiality analysis is of great interest as it can shed light on the function of many genes whose functions are still to be confirmed. The data obtained in this study will be of great value for the research community aiming to develop C. acetobutylicum as a platform organism for the production of chemicals of interest.


Subject(s)
Acetone , Butanols , Clostridium acetobutylicum , Ethanol , Fermentation , Genes, Essential , Clostridium acetobutylicum/genetics , Clostridium acetobutylicum/metabolism , Acetone/metabolism , Ethanol/metabolism , Butanols/metabolism , Genes, Essential/genetics
4.
FEMS Yeast Res ; 242024 Jan 09.
Article in English | MEDLINE | ID: mdl-38331422

ABSTRACT

Only trace amount of isobutanol is produced by the native Saccharomyces cerevisiae via degradation of amino acids. Despite several attempts using engineered yeast strains expressing exogenous genes, catabolite repression of glucose must be maintained together with high activity of downstream enzymes, involving iron-sulfur assimilation and isobutanol production. Here, we examined novel roles of nonfermentable carbon transcription factor Znf1 in isobutanol production during xylose utilization. RNA-seq analysis showed that Znf1 activates genes in valine biosynthesis, Ehrlich pathway and iron-sulfur assimilation while coupled deletion or downregulated expression of BUD21 further increased isobutanol biosynthesis from xylose. Overexpression of ZNF1 and xylose-reductase/dehydrogenase (XR-XDH) variants, a xylose-specific sugar transporter, xylulokinase, and enzymes of isobutanol pathway in the engineered S. cerevisiae pho13gre3Δ strain resulted in the superb ZNXISO strain, capable of producing high levels of isobutanol from xylose. The isobutanol titer of 14.809 ± 0.400 g/L was achieved, following addition of 0.05 g/L FeSO4.7H2O in 5 L bioreactor. It corresponded to 155.88 mg/g xylose consumed and + 264.75% improvement in isobutanol yield. This work highlights a new regulatory control of alternative carbon sources by Znf1 on various metabolic pathways. Importantly, we provide a foundational step toward more sustainable production of advanced biofuels from the second most abundant carbon source xylose.


Subject(s)
Butanols , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Metabolic Engineering , Xylose/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Carbon/metabolism , Sulfur/metabolism , Iron/metabolism , Fermentation , DNA-Binding Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
5.
Biotechnol Bioeng ; 121(4): 1298-1313, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38047471

ABSTRACT

Bacteria from diverse genera, including Acetivibrio, Bacillus, Cellulosilyticum, Clostridium, Desulfotomaculum, Lachnoclostridium, Moorella, Ruminiclostridium, and Thermoanaerobacterium, have attracted significant attention due to their versatile metabolic capabilities encompassing acetogenic, cellulolytic, and C1-metabolic properties, and acetone-butanol-ethanol fermentation. Despite their biotechnological significance, a comprehensive understanding of clostridial physiology and evolution has remained elusive. This study reports an extensive comparative genomic analysis of 48 fully sequenced bacterial genomes from these genera. Our investigation, encompassing pan-genomic analysis, central carbon metabolism comparison, exploration of general genome features, and in-depth scrutiny of Cluster of Orthologous Groups genes, has established a holistic whole-genome-based phylogenetic framework. We have classified these strains into acetogenic, butanol-producing, cellulolytic, CO2-fixating, chemo(litho/organo)trophic, and heterotrophic categories, often exhibiting overlaps. Key outcomes include the identification of misclassified species and the revelation of insights into metabolic features, energy conservation, substrate utilization, stress responses, and regulatory mechanisms. These findings can provide guidance for the development of efficient microbial systems for sustainable bioenergy production. Furthermore, by addressing fundamental questions regarding genetic relationships, conserved genomic features, pivotal enzymes, and essential genes, this study has also contributed to our comprehension of clostridial biology, evolution, and their shared metabolic potential.


Subject(s)
Bacteria, Anaerobic , Clostridium , Phylogeny , Clostridium/metabolism , Bacteria, Anaerobic/metabolism , Fermentation , Genomics , Butanols/metabolism
6.
Microb Cell Fact ; 23(1): 49, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347493

ABSTRACT

Corn cob is a major waste mass-produced in corn agriculture. Corn cob hydrolysate containing xylose, arabinose, and glucose is the hydrolysis product of corn cob. Herein, a recombinant Escherichia coli strain BT-10 was constructed to transform corn cob hydrolysate into 1,2,4-butanetriol, a platform substance with diversified applications. To eliminate catabolite repression and enhance NADPH supply for alcohol dehydrogenase YqhD catalyzed 1,2,4-butanetriol generation, ptsG encoding glucose transporter EIICBGlc and pgi encoding phosphoglucose isomerase were deleted. With four heterologous enzymes including xylose dehydrogenase, xylonolactonase, xylonate dehydratase, α-ketoacid decarboxylase and endogenous YqhD, E. coli BT-10 can produce 36.63 g/L 1,2,4-butanetriol with a productivity of 1.14 g/[L·h] using xylose as substrate. When corn cob hydrolysate was used as the substrate, 43.4 g/L 1,2,4-butanetriol was generated with a productivity of 1.09 g/[L·h] and a yield of 0.9 mol/mol. With its desirable characteristics, E. coli BT-10 is a promising strain for commercial 1,2,4-butanetriol production.


Subject(s)
Butanols , Escherichia coli , Zea mays , Escherichia coli/genetics , Metabolic Engineering , Xylose , Glucose , Fermentation
7.
Nature ; 555(7698): 683-687, 2018 03 29.
Article in English | MEDLINE | ID: mdl-29562237

ABSTRACT

The optimization of engineered metabolic pathways requires careful control over the levels and timing of metabolic enzyme expression. Optogenetic tools are ideal for achieving such precise control, as light can be applied and removed instantly without complex media changes. Here we show that light-controlled transcription can be used to enhance the biosynthesis of valuable products in engineered Saccharomyces cerevisiae. We introduce new optogenetic circuits to shift cells from a light-induced growth phase to a darkness-induced production phase, which allows us to control fermentation with only light. Furthermore, optogenetic control of engineered pathways enables a new mode of bioreactor operation using periodic light pulses to tune enzyme expression during the production phase of fermentation to increase yields. Using these advances, we control the mitochondrial isobutanol pathway to produce up to 8.49 ± 0.31 g l-1 of isobutanol and 2.38 ± 0.06 g l-1 of 2-methyl-1-butanol micro-aerobically from glucose. These results make a compelling case for the application of optogenetics to metabolic engineering for the production of valuable products.


Subject(s)
Bioreactors/microbiology , Fermentation/radiation effects , Light , Metabolic Engineering/methods , Metabolic Networks and Pathways/radiation effects , Optogenetics/methods , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/radiation effects , Biofuels/supply & distribution , Butanols/metabolism , Darkness , Ethanol/metabolism , Pentanols/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development
8.
Appl Microbiol Biotechnol ; 108(1): 143, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231267

ABSTRACT

Clostridia are known for their solvent production, especially the production of butanol. Concerning the projected depletion of fossil fuels, this is of great interest. The cultivation of clostridia is known to be challenging, and it is difficult to achieve reproducible results and robust processes. However, existing publications usually concentrate on the cultivation conditions of the main culture. In this paper, the influence of cryo-conservation and pre-culture on growth and solvent production in the resulting main cultivation are examined. A protocol was developed that leads to reproducible cultivations of Clostridium acetobutylicum. Detailed investigation of the cell conservation in cryo-cultures ensured reliable cell growth in the pre-culture. Moreover, a reason for the acid crash in the main culture was found, based on the cultivation conditions of the pre-culture. The critical parameter to avoid the acid crash and accomplish the shift to the solventogenesis of clostridia is the metabolic phase in which the cells of the pre-culture were at the time of inoculation of the main culture; this depends on the cultivation time of the pre-culture. Using cells from the exponential growth phase to inoculate the main culture leads to an acid crash. To achieve the solventogenic phase with butanol production, the inoculum should consist of older cells which are in the stationary growth phase. Considering these parameters, which affect the entire cultivation process, reproducible results and reliable solvent production are ensured. KEY POINTS: • Both cryo- and pre-culture strongly impact the cultivation of C. acetobutylicum • Cultivation conditions of the pre-culture are a reason for the acid crash • Inoculum from cells in stationary growth phase ensures shift to solventogenesis.


Subject(s)
Clostridium acetobutylicum , Solvents , 1-Butanol , Butanols , Cell Cycle , Firmicutes
9.
Appl Microbiol Biotechnol ; 108(1): 33, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38175234

ABSTRACT

Due to the limited resources and environmental problems associated with fossil fuels, there is a growing interest in utilizing renewable resources for the production of biofuels through microbial fermentation. Isobutanol is a promising biofuel that could potentially replace gasoline. However, its production efficiency is currently limited by the use of naturally isolated microorganisms. These naturally isolated microorganisms often encounter problems such as a limited range of substrates, low tolerance to solvents or inhibitors, feedback inhibition, and an imbalanced redox state. This makes it difficult to improve their production efficiency through traditional process optimization methods. Fortunately, recent advancements in genetic engineering technologies have made it possible to enhance microbial hosts for the increased production of isobutanol from renewable resources. This review provides a summary of the strategies and synthetic biology approaches that have been employed in the past few years to improve naturally isolated or non-natural microbial hosts for the enhanced production of isobutanol by utilizing different renewable resources. Furthermore, it also discusses the challenges that are faced by engineered microbial hosts and presents future perspectives to enhancing isobutanol production. KEY POINTS: • Promising potential of isobutanol to replace gasoline • Engineering of native and non-native microbial host for isobutanol production • Challenges and opportunities for enhanced isobutanol production.


Subject(s)
Biofuels , Gasoline , Butanols , Cloning, Molecular
10.
Lett Appl Microbiol ; 77(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38216452

ABSTRACT

The diagnosis of human leptospirosis is mainly based on serological assays. Since the extraction by N-butanol has only been studied as an antigen for the diagnosis of cattle leptospirosis, this study aimed to investigate the feasibility of the N-butanol preparation for the diagnosis of human leptospirosis and compare it with sonicated and thermo-resistant antigens in IgM dot-blot test. Paired serum samples from 147 laboratory-confirmed leptospirosis cases were tested. The control group consisted of 148 serum samples from healthy individuals and nonleptospirosis cases. N-butanol antigens from serovar Copenhageni (ButC3) and serovar Patoc (ButP3) showed reactivity with antileptospiral antibodies from patients with confirmed leptospirosis. In the acute phase, sensitivities of IgM dot-blot assay with ButC3 and ButP3 antigens were 47.6% and 51.0%, respectively. In the convalescent phase, sensitivities were 95.9% (ButC3) and 93.2% (ButP3), and no significant differences were observed among the IgM dot-blot tests with other antigens. The specificity of the IgM dot-blot test with ButC3 antigen was good (92.6%), but with ButP3 (83.1%), it was significantly lower than with the other tests. The IgM dot-blot test described in this study is simple to perform and presents reliable visual results. Antigens prepared by N-butanol proved to be valuable diagnostic markers of leptospirosis.


Subject(s)
Leptospira , Leptospirosis , Animals , Cattle , Humans , 1-Butanol , Butanols , Antigens, Bacterial , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Bacterial , Leptospirosis/diagnosis , Immunoglobulin M , Sensitivity and Specificity
11.
Chem Biodivers ; 21(2): e202301653, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38158718

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease characterized by aggressive cartilage and bone erosion. This work aimed to evaluate the metabolomic profile of Medicago sativa L. (MS) (alfalfa) seeds and explore its therapeutic impact against RA in rats. Arthritis was induced by complete Freund's adjuvant (CFA) and its severity was assessed by the arthritis index. Treatment with MS seeds butanol fraction and interlukin-1 receptor antagonist (IL-1RA) were evaluated through measuring interlukin-1 receptor (IL-1R) type 1 gene expression, interlukin-1 beta (IL-1ß), oxidative stress markers, C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), prostaglandin E2 (PGE2), caspase-3 (Cas-3), intracellular adhesion molecule-1 (ICAM-1), DNA fragmentation, and chromosomal damage. Total phenolics/ flavonoids content in the ethyl acetate, butanol fraction and crude extract of MS seeds were estimated. The major identified compounds were Quercetin, Trans-taxifolin, Gallic acid, 7,4'-Dihydroxyflavone, Cinnamic acid, Kudzusaponin SA4, Isorhamnetin 3-O-beta-D-2'',3'',4''-triacetylglucopyranoside, Apigenin, 5,7,4'-Trihydroxy-3'-methoxyflavone, Desmethylxanthohumol, Pantothenic acid, Soyasapogenol E, Malvidin, Helilandin B, Stigmasterol, and Wairol. Treatment with MS seeds butanol fraction and IL-1RA enhanced all the biochemical parameters and the histopathological features of the ankle joint. In conclusion, Trans-taxifolin was isolated for the first time from the genus Medicago. MS butanol fraction seeds extract and IL-1 RA were considered as anti-rheumatic agents.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Rats , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Medicago sativa/metabolism , Anti-Inflammatory Agents/pharmacology , Phytotherapy , Inflammation Mediators/metabolism , Inflammation Mediators/therapeutic use , Interleukin 1 Receptor Antagonist Protein/metabolism , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/drug therapy , Interleukins/metabolism , Interleukins/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Oxidative Stress , Butanols , Cytokines/metabolism
12.
Anaerobe ; 87: 102855, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614289

ABSTRACT

OBJECTIVES: The objective of this study was to investigate the effects of medium composition on CO fermentation by Clostridium carboxidivorans. The focus was to reduce the medium cost preserving acceptable levels of solvent production. METHODS: Yeast extract (YE) concentration was set in the range of 0-3 g/L. Different reducing agents were investigated, including cysteine-HCl 0.6 g/L, pure cysteine 0.6 g/L, sodium sulphide (Na2S) 0.6 g/L, cysteine-sodium sulphide 0.6 g/L and cysteine-sodium sulphide 0.72 g/L. The concentration of the metal solution was decreased down to 25 % of the standard value. Fermentation tests were also carried out with and without tungsten or selenium. RESULTS: The results demonstrated that under optimized conditions, namely yeast extract (YE) concentration set at 1 g/L, pure cysteine as the reducing agent and trace metal concentration reduced to 75 % of the standard value, reasonable solvent production was achieved in less than 150 h. Under these operating conditions, the production levels were found to be 1.39 g/L of ethanol and 0.27 g/L of butanol. Furthermore, the study revealed that selenium was not necessary for C. carboxidivorans fermentation, whereas the presence of tungsten played a crucial role in both cell growth and solvent production. CONCLUSIONS: The optimization of the medium composition in CO fermentation by Clostridium carboxidivorans is crucial for cost-effective solvent production. Tuning the yeast extract (YE) concentration, using pure cysteine as the reducing agent and reducing trace metal concentration contribute to reasonable solvent production within a relatively short fermentation period. Tungsten is essential for cell growth and solvent production, while selenium is not required.


Subject(s)
Bioreactors , Clostridium , Culture Media , Fermentation , Clostridium/metabolism , Clostridium/growth & development , Culture Media/chemistry , Bioreactors/microbiology , Carbon Monoxide/metabolism , Ethanol/metabolism , Selenium/metabolism , Butanols/metabolism , Tungsten/metabolism
13.
Prep Biochem Biotechnol ; 54(4): 483-493, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37610720

ABSTRACT

This study aims the third generation biobutanol production in P2 medium supplemented D. salina biomass mixotrophically cultivated with marble waste (MW). The wastes derived from the marble industry contain approximately 90% of carbon-rich compounds. Microalgal growth in mixotrophic conditions was optimized in the 0.4-2 g/L of MW concentration range. The highest microalgal concentration was obtained as 0.481 g/L in the presence of 1 g/L MW. Furthermore, some important parameters for the production of biobutanol, such as microalgal cultivation conditions, initial mixotrophic microalgal biomass loading (50-300 g/L), and fermentation time (24-96 h) were optimized. The highest biobutanol, total ABE, biobutanol yield and productivity were determined as 11.88 g/L, 13.89 g/L, 0.331 g/g and 0.165 g/L/h at the end of 72 h in P2 medium including 60 g/L glucose and 200 g/L microalgal biomass cultivated in 1 g/L MW, respectively. The results show that D. salina is a suitable raw material for supporting Clostridium beijerinckii DSMZ 6422 cells on biobutanol production. To the best of our knowledge, this is the first study on the use of MW which is a promising feedstock on the mixotrophic cultivation of D. salina for biobutanol production.


Subject(s)
Chlorophyceae , Clostridium beijerinckii , Microalgae , Butanols , Biomass , Fermentation , Calcium Carbonate
14.
Molecules ; 29(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39064975

ABSTRACT

The objective of this study was to evaluate the effect of pretreatment and different technological conditions on the course of ABE fermentation of rye straw (RS) and the composition of volatile compounds in the distillates obtained. The highest concentration of ABE and butanol was obtained from the fermentation of pretreated rye straw by alkaline hydrolysis followed by detoxification and enzymatic hydrolysis. After 72 h of fermentation, the maximum butanol concentration, productivity, and yield from RS were 16.11 g/L, 0.224 g/L/h, and 0.402 g/g, respectively. Three different methods to produce butanol were tested: the two-step process (SHF), the simultaneous process (SSF), and simultaneous saccharification with ABE fermentation (consolidation SHF/SSF). The SHF/SSF process observed that ABE concentration (21.28 g/L) was higher than in the SSF (20.03 g/L) and lower compared with the SHF (22.21 g/L). The effect of the detoxification process and various ABE fermentation technologies on the composition of volatile compounds formed during fermentation and distillation were analyzed.


Subject(s)
Butanols , Fermentation , Secale , Volatile Organic Compounds , Secale/chemistry , Secale/metabolism , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Butanols/metabolism , Hydrolysis , Distillation
15.
Molecules ; 29(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38398505

ABSTRACT

Fermentation by lactic acid bacteria (LAB) is a promising approach to meet the increasing demand for meat or dairy plant-based analogues with realistic flavours. However, a detailed understanding of the impact of the substrate, fermentation conditions, and bacterial strains on the volatile organic compounds (VOCs) produced during fermentation is lacking. As a first step, the current study used a defined medium (DM) supplemented with the amino acids L-leucine (Leu), L-isoleucine (Ile), L-phenylalanine (Phe), L-threonine (Thr), L-methionine (Met), or L-glutamic acid (Glu) separately or combined to determine their impact on the VOCs produced by Levilactobacillus brevis WLP672 (LB672). VOCs were measured using headspace solid-phase microextraction (HS-SPME) gas chromatography-mass spectrometry (GC-MS). VOCs associated with the specific amino acids added included: benzaldehyde, phenylethyl alcohol, and benzyl alcohol with added Phe; methanethiol, methional, and dimethyl disulphide with added Met; 3-methyl butanol with added Leu; and 2-methyl butanol with added Ile. This research demonstrated that fermentation by LB672 of a DM supplemented with different amino acids separately or combined resulted in the formation of a range of dairy- and meat-related VOCs and provides information on how plant-based fermentations could be manipulated to generate desirable flavours.


Subject(s)
Butanols , Levilactobacillus brevis , Pentanols , Volatile Organic Compounds , Amino Acids , Fermentation , Volatile Organic Compounds/analysis , Glutamic Acid , Leucine , Isoleucine , Phenylalanine , Solid Phase Microextraction/methods
16.
World J Microbiol Biotechnol ; 40(2): 68, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38200399

ABSTRACT

1,2,4-butanetriol (BT) is a polyol with unique chemical properties, which has a stereocenter and can be divided into D-BT (the S-enantiomer) and L-BT (the R-enantiomer). BT can be used for the synthesis of 1,2,4-butanetriol trinitrate, 3-hydroxytetrahydrofuran, polyurethane, and other chemicals. It is widely used in the military industry, medicine, tobacco, polymer. At present, the BT is mainly synthesized by chemical methods, which are accompanied by harsh reaction conditions, poor selectivity, many by-products, and environmental pollution. Therefore, BT biosynthesis methods with the advantages of mild reaction conditions and green sustainability have become a current research hotspot. In this paper, the research status of microbial synthesis of BT was summarized from the following three aspects: (1) the biosynthetic pathway establishment for BT from xylose; (2) metabolic engineering strategies employed for improving BT production from xylose; (3) other substrates for BT production. Finally, the challenges and prospects of biosynthetic BT were discussed for future methods to improve competitiveness for industrial production.


Subject(s)
Butanols , Xylose , Environmental Pollution
17.
Anal Chem ; 95(34): 12710-12718, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37594054

ABSTRACT

We report the development of a reproducible and highly sensitive surface-enhanced Raman scattering (SERS) substrate using a butanol-induced self-assembly of gold nanoparticles (AuNPs) and its application as a rapid diagnostic platform for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The butanol-induced self-assembly process was used to generate a uniform assembly of AuNPs, with multiple hotspots, to achieve high reproducibility. When an aqueous droplet containing AuNPs and target DNAs was dropped onto a butanol droplet, butanol-induced dehydration occurred, enriching the target DNAs around the AuNPs and increasing the loading density of the DNAs on the AuNP surface. The SERS substrate was evaluated by using Raman spectroscopy, which showed strong electromagnetic enhancement of the Raman signals. The substrate was then tested for the detection of SARS-CoV-2 using SERS, and a very low limit of detection (LoD) of 3.1 × 10-15 M was obtained. This provides sufficient sensitivity for the SARS-CoV-2 screening assay, and the diagnostic time is significantly reduced as no thermocycling steps are required. This study demonstrates a method for the butanol-induced self-assembly of AuNPs and its application as a highly sensitive and reproducible SERS substrate for the rapid detection of SARS-CoV-2. The results suggest the potential of this approach for developing rapid diagnostic platforms for other biomolecules and infectious diseases.


Subject(s)
COVID-19 , Metal Nanoparticles , Humans , Butanols , Gold , SARS-CoV-2 , Dehydration , Reproducibility of Results , COVID-19/diagnosis , 1-Butanol
18.
Metab Eng ; 76: 133-145, 2023 03.
Article in English | MEDLINE | ID: mdl-36724840

ABSTRACT

Cell-free systems are useful tools for prototyping metabolic pathways and optimizing the production of various bioproducts. Mechanistically-based kinetic models are uniquely suited to analyze dynamic experimental data collected from cell-free systems and provide vital qualitative insight. However, to date, dynamic kinetic models have not been applied with rigorous biological constraints or trained on adequate experimental data to the degree that they would give high confidence in predictions and broadly demonstrate the potential for widespread use of such kinetic models. In this work, we construct a large-scale dynamic model of cell-free metabolism with the goal of understanding and optimizing butanol production in a cell-free system. Using a combination of parameterization methods, the resultant model captures experimental metabolite measurements across two experimental conditions for nine metabolites at timepoints between 0 and 24 h. We present analysis of the model predictions, provide recommendations for butanol optimization, and identify the aldehyde/alcohol dehydrogenase as the primary bottleneck in butanol production. Sensitivity analysis further reveals the extent to which various parameters are constrained, and our approach for probing valid parameter ranges can be applied to other modeling efforts.


Subject(s)
1-Butanol , Butanols , Butanols/metabolism , Ethanol/metabolism , Models, Biological , Kinetics
19.
Metab Eng ; 77: 188-198, 2023 05.
Article in English | MEDLINE | ID: mdl-37054966

ABSTRACT

Here, we report the construction of a Clostridium acetobutylicum strain ATCC 824 (pCD07239) by heterologous expression of carbonyl branch genes (CD630_0723∼CD630_0729) from Clostridium difficile, aimed at installing a heterologous Wood-Ljungdahl pathway (WLP). As part of this effort, in order to validate the methyl branch of the WLP in the C. acetobutylicum, we performed 13C-tracing analysis on knockdown mutants of four genes responsible for the formation of 5-methyl-tetrahydrofolate (5-methyl-THF) from formate: CA_C3201, CA_C2310, CA_C2083, and CA_C0291. While C. acetobutylicum 824 (pCD07239) could not grow autotrophically, in heterotrophic fermentation, it began producing butanol at the early growth phase (OD600 of 0.80; 0.162 g/L butanol). In contrast, solvent production in the parent strain did not begin until the early stationary phase (OD600 of 7.40). This study offers valuable insights for future research on biobutanol production during the early growth phase.


Subject(s)
Clostridium acetobutylicum , Clostridium acetobutylicum/genetics , Clostridium acetobutylicum/metabolism , Solvents , Wood , Fermentation , Butanols/metabolism
20.
Exp Dermatol ; 32(10): 1848-1855, 2023 10.
Article in English | MEDLINE | ID: mdl-37587642

ABSTRACT

The mechanotransduction of light-touch sensory stimuli is considered to be the main physiological function of epidermal Merkel cells (MCs). Recently, however, MCs have been demonstrated to be also thermo-sensitive, suggesting that their role in skin physiologically extends well beyond mechanosensation. Here, we demonstrate that in healthy human skin epidermal MCs express functional olfactory receptors, namely OR2AT4, just like neighbouring keratinocytes. Selective stimulation of OR2AT4 by topical application of the synthetic odorant, Sandalore®, significantly increased Piccolo protein expression in MCs, as assessed by quantitative immunohistomorphometry, indicating increased vesicle trafficking and recycling, and significantly reduced nerve growth factor (NGF) immunoreactivity within MCs, possibly indicating increased neurotrophin release upon OR2AT4 activation. Live-cell imaging showed that Sandalore® rapidly induces a loss of FFN206-dependent fluorescence in MCs, suggesting OR2AT4-dependent MC depolarization and subsequent vesicle secretion. Yet, in contrast to keratinocytes, OR2AT4 stimulation by Sandalore® altered neither the number nor the proliferation status of MCs. These preliminary ex vivo findings demonstrate that epidermal MCs also exert OR-dependent chemosensory functions in human skin, and invite one to explore whether these newly identified properties are dysregulated in selected skin disorders, for example, in pruritic dermatoses, and if these novel MC functions can be therapeutically targeted to maintain/promote skin health.


Subject(s)
Merkel Cells , Humans , Butanols/metabolism , Epidermis/metabolism , Mechanoreceptors/physiology , Mechanotransduction, Cellular/physiology , Merkel Cells/metabolism , Merkel Cells/physiology , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Skin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL