Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
EMBO Rep ; 25(6): 2592-2609, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38671295

ABSTRACT

Various cytokines have been implicated in cancer cachexia. One such cytokine is IL-6, deemed as a key cachectic factor in mice inoculated with colon carcinoma 26 (C26) cells, a widely used cancer cachexia model. Here we tested the causal role of IL-6 in cancer cachexia by knocking out the IL-6 gene in C26 cells. We found that the growth of IL-6 KO tumors was dramatically delayed. More strikingly, while IL-6 KO tumors eventually reached the similar size as wild-type tumors, cachexia still took place, despite no elevation in circulating IL-6. In addition, the knockout of leukemia inhibitory factor (LIF), another IL-6 family cytokine proposed as a cachectic factor in the model, also affected tumor growth but not cachexia. We further showed an increase in the infiltration of immune cell population in the IL-6 KO tumors compared with wild-type controls and the defective IL-6 KO tumor growth was rescued in immunodeficient mice while cachexia was not. Thus, IL-6 promotes tumor growth by facilitating immune evasion but is dispensable for cachexia.


Subject(s)
Cachexia , Interleukin-6 , Mice, Knockout , Animals , Mice , Cachexia/pathology , Cachexia/genetics , Cachexia/metabolism , Cachexia/etiology , Cachexia/immunology , Cell Line, Tumor , Cell Proliferation , Colonic Neoplasms/immunology , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Immune Evasion , Interleukin-6/metabolism , Interleukin-6/genetics , Leukemia Inhibitory Factor/metabolism , Leukemia Inhibitory Factor/genetics
2.
BMC Cancer ; 24(1): 414, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38570770

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) presents with a high mortality rate. Two important features of PDAC contribute to this poor outcome. The first is metastasis which occurs in ~ 80% of PDAC patients. The second is cachexia, which compromises treatment tolerance for patients and reduces their quality of life. Although various mouse models of PDAC exist, recapitulating both metastatic and cachectic features have been challenging. METHODS: Here, we optimize an orthotopic mouse model of PDAC by altering several conditions, including the subcloning of parental murine PDAC cells, implantation site, number of transplanted cells, and age of recipient mice. We perform spatial profiling to compare primary and metastatic immune microenvironments and RNA sequencing to gain insight into the mechanisms of muscle wasting in PDAC-induced cachexia, comparing non-metastatic to metastatic conditions. RESULTS: These modifications extend the time course of the disease and concurrently increase the rate of metastasis to approximately 70%. Furthermore, reliable cachexia endpoints are achieved in both PDAC mice with and without metastases, which is reminiscent of patients. We also find that cachectic muscles from PDAC mice with metastasis exhibit a similar transcriptional profile to muscles derived from mice and patients without metastasis. CONCLUSION: Together, this model is likely to be advantageous in both advancing our understanding of the mechanism of PDAC cachexia, as well as in the evaluation of novel therapeutics.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Mice , Animals , Cachexia/genetics , Quality of Life , Pancreatic Neoplasms/complications , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Phenotype , Tumor Microenvironment
3.
Lipids Health Dis ; 23(1): 144, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760797

ABSTRACT

BACKGROUND: Cancer-associated cachexia (CAC) arises from malignant tumors and leads to a debilitating wasting syndrome. In the pathophysiology of CAC, the depletion of fat plays an important role. The mechanisms of CAC-induced fat loss include the enhancement of lipolysis, inhibition of lipogenesis, and browning of white adipose tissue (WAT). However, few lipid-metabolic enzymes have been reported to be involved in CAC. This study hypothesized that ELOVL6, a critical enzyme for the elongation of fatty acids, may be involved in fat loss in CAC. METHODS: Transcriptome sequencing technology was used to identify CAC-related genes in the WAT of a CAC rodent model. Then, the expression level of ELOVL6 and the fatty acid composition were analyzed in a large clinical sample. Elovl6 was knocked down by siRNA in 3T3-L1 mouse preadipocytes to compare with wild-type 3T3-L1 cells treated with tumor cell conditioned medium. RESULTS: In the WAT of patients with CAC, a significant decrease in the expression of ELOVL6 was found, which was linearly correlated with the extent of body mass reduction. Gas chromatographic analysis revealed an increase in palmitic acid (C16:0) and a decrease in linoleic acid (C18:2n-6) in these tissue samples. After treatment with tumor cell-conditioned medium, 3T3-L1 mouse preadipocytes showed a decrease in Elovl6 expression, and Elovl6-knockdown cells exhibited a reduction in preadipocyte differentiation and lipogenesis. Similarly, the knockdown of Elovl6 in 3T3-L1 cells resulted in a significant increase in palmitic acid (C16:0) and a marked decrease in oleic acid (C18:1n-9) content. CONCLUSION: Overall, the expression of ELOVL6 was decreased in the WAT of CAC patients. Decreased expression of ELOVL6 might induce fat loss in CAC patients by potentially altering the fatty acid composition of adipocytes. These findings suggest that ELOVL6 may be used as a valuable biomarker for the early diagnosis of CAC and may hold promise as a target for future therapies.


Subject(s)
3T3-L1 Cells , Adipose Tissue, White , Cachexia , Fatty Acid Elongases , Neoplasms , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Animals , Cachexia/genetics , Cachexia/metabolism , Cachexia/pathology , Mice , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/complications , Neoplasms/pathology , Male , Female , Palmitic Acid/metabolism , Lipogenesis/genetics , Middle Aged , Fatty Acids/metabolism
4.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000167

ABSTRACT

Skeletal muscle aging and sarcopenia result in similar changes in the levels of aging markers. However, few studies have examined cancer sarcopenia from the perspective of aging. Therefore, this study investigated aging in cancer sarcopenia and explored its causes in vitro and in vivo. In mouse aging, in vitro cachexia, and mouse cachexia models, skeletal muscles showed similar changes in aging markers including oxidative stress, fibrosis, reduced muscle differentiation potential, and telomere shortening. Furthermore, examination of mitochondrial DNA from skeletal muscle revealed a 5 kb deletion in the major arc; truncation of complexes I, IV, and V in the electron transport chain; and reduced oxidative phosphorylation (OXPHOS). The mouse cachexia model demonstrated high levels of high-mobility group box-1 (HMGB1) and tumor necrosis factor-α (TNFα) in cancer ascites. Continuous administration of neutralizing antibodies against HMGB1 and TNFα in this model reduced oxidative stress and abrogated mitochondrial DNA deletion. These results suggest that in cancer sarcopenia, mitochondrial oxidative stress caused by inflammatory cytokines leads to mitochondrial DNA damage, which in turn leads to decreased OXPHOS and the promotion of aging.


Subject(s)
Aging , DNA Damage , DNA, Mitochondrial , HMGB1 Protein , Muscle, Skeletal , Oxidative Stress , Sarcopenia , Animals , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mice , Aging/metabolism , Aging/genetics , Sarcopenia/metabolism , Sarcopenia/pathology , Sarcopenia/genetics , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Cachexia/metabolism , Cachexia/pathology , Cachexia/genetics , Cachexia/etiology , Oxidative Phosphorylation , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Male , Mice, Inbred C57BL
5.
Int J Mol Sci ; 25(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38203330

ABSTRACT

Cachexia is a devastating fat tissue and muscle wasting syndrome associated with every major chronic illness, including cancer, chronic obstructive pulmonary disease, kidney disease, AIDS, and heart failure. Despite two decades of intense research, cachexia remains under-recognized by oncologists. While numerous drug candidates have been proposed for cachexia treatment, none have achieved clinical success. Only a few drugs are approved by the FDA for cachexia therapy, but a very low success rate is observed among patients. Currently, the identification of drugs from herbal medicines is a frontier research area for many diseases. In this milieu, network pharmacology, transcriptomics, cheminformatics, and molecular docking approaches were used to identify potential bioactive compounds from herbal medicines for the treatment of cancer-related cachexia. The network pharmacology approach is used to select the 32 unique genes from 238 genes involved in cachexia-related pathways, which are targeted by 34 phytocompounds identified from 12 different herbal medicines used for the treatment of muscle wasting in many countries. Gene expression profiling and functional enrichment analysis are applied to decipher the role of unique genes in cancer-associated cachexia pathways. In addition, the pharmacological properties and molecular interactions of the phytocompounds were analyzed to find the target compounds for cachexia therapy. Altogether, combined omics and network pharmacology approaches were used in the current study to untangle the complex prognostic genes involved in cachexia and phytocompounds with anti-cachectic efficacy. However, further functional and experimental validations are required to confirm the efficacy of these phytocompounds as commercial drug candidates for cancer-associated cachexia.


Subject(s)
Neoplasms , Plants, Medicinal , Humans , Prognosis , Cachexia/etiology , Cachexia/genetics , Molecular Docking Simulation , Network Pharmacology , Gene Expression Profiling , Plant Extracts , Neoplasms/complications , Neoplasms/drug therapy , Neoplasms/genetics
6.
Comput Biol Med ; 172: 108233, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452471

ABSTRACT

BACKGROUND: Cancer cachexia is a severe metabolic syndrome marked by skeletal muscle atrophy. A successful clinical intervention for cancer cachexia is currently lacking. The study of cachexia mechanisms is largely based on preclinical animal models and the availability of high-throughput transcriptomic datasets of cachectic mouse muscles is increasing through the extensive use of next generation sequencing technologies. METHODS: Cachectic mouse muscle transcriptomic datasets of ten different studies were combined and mined by seven attribute weighting models, which analysed both categorical variables and numerical variables. The transcriptomic signature of cancer cachexia was identified by attribute weighting algorithms and was used to evaluate the performance of eleven pattern discovery models. The signature was employed to find the best combination of drugs (drug repurposing) for developing cancer cachexia treatment strategies, as well as to evaluate currently used cachexia drugs by literature mining. RESULTS: Attribute weighting algorithms ranked 26 genes as the transcriptomic signature of muscle from mice with cancer cachexia. Deep Learning and Random Forest models performed better in differentiating cancer cachexia cases based on muscle transcriptomic data. Literature mining revealed that a combination of melatonin and infliximab has negative interactions with 2 key genes (Rorc and Fbxo32) upregulated in the transcriptomic signature of cancer cachexia in muscle. CONCLUSIONS: The integration of machine learning, meta-analysis and literature mining was found to be an efficient approach to identifying a robust transcriptomic signature for cancer cachexia, with implications for improving clinical diagnosis and management of this condition.


Subject(s)
Cachexia , Neoplasms , Animals , Mice , Cachexia/genetics , Cachexia/metabolism , Data Mining , Gene Expression Profiling , Machine Learning , Meta-Analysis as Topic , Muscle, Skeletal , Neoplasms/complications , Neoplasms/genetics , Neoplasms/metabolism
7.
Nat Commun ; 15(1): 627, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245529

ABSTRACT

Cancer cachexia is a systemic metabolic syndrome characterized by involuntary weight loss, and muscle and adipose tissue wasting. Mechanisms underlying cachexia remain poorly understood. Leukemia inhibitory factor (LIF), a multi-functional cytokine, has been suggested as a cachexia-inducing factor. In a transgenic mouse model with conditional LIF expression, systemic elevation of LIF induces cachexia. LIF overexpression decreases de novo lipogenesis and disrupts lipid homeostasis in the liver. Liver-specific LIF receptor knockout attenuates LIF-induced cachexia, suggesting that LIF-induced functional changes in the liver contribute to cachexia. Mechanistically, LIF overexpression activates STAT3 to downregulate PPARα, a master regulator of lipid metabolism, leading to the downregulation of a group of PPARα target genes involved in lipogenesis and decreased lipogenesis in the liver. Activating PPARα by fenofibrate, a PPARα agonist, restores lipid homeostasis in the liver and inhibits LIF-induced cachexia. These results provide valuable insights into cachexia, which may help develop strategies to treat cancer cachexia.


Subject(s)
Cachexia , Neoplasms , Animals , Mice , Cachexia/genetics , Cachexia/metabolism , Leukemia Inhibitory Factor/genetics , Leukemia Inhibitory Factor/metabolism , Lipids , Lipogenesis/genetics , Liver/metabolism , Mice, Transgenic , Neoplasms/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism
8.
J Cachexia Sarcopenia Muscle ; 15(1): 149-158, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38123146

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is highly associated with cachexia and weight loss, which is driven by the tumour's effect on the body. Data are lacking on differences in these metrics based on PDAC anatomic location. We hypothesize that the primary tumour's anatomic region influences the prevalence and severity of unintentional weight loss. METHODS: Treatment naïve patients with PDAC who underwent pancreatectomy at a single institution between 2012 and 2020 were identified retrospectively. Patients with pancreatic head or distal tumours were matched by sex, age, N and T stage. Serologic and anthropometric variables were obtained at the time of diagnosis. Skeletal muscle index (SMI), muscle radiation attenuation (MRA) and adiposity were measured. The primary outcome was presence of significant weight loss [>5% body weight (BW) loss in past 6 months]. Signed rank tests, Cochran Mantel Haenszel tests and Kaplan-Meier survival analysis are presented. RNA-seq of tumours was performed to explore enriched pathways related to cachexia and weight loss. RESULTS: Pancreatic head tumours (n = 24) were associated with higher prevalence (70.8% vs. 41.7%, P = 0.081) and degree of weight loss (7.9% vs. 2.5%, P = 0.014) compared to distal tumours (n = 24). BMI (P = 0.642), SMI (P = 0.738) and MRA (P = 0.478) were similar between groups. Combining BW loss, SMI and MRA into a composite score, patients with pancreatic head cancers met more criteria associated with poor prognosis (P = 0.142). Serum albumin (3.9 vs. 4.4 g/dL, P = 0.002) was lower and bilirubin (4.5 vs. 0.4 mg/dL, P < 0.001) were higher with pancreatic head tumours. Survival differed by tumour location (P = 0.014) with numerically higher median overall survival with distal tumours (11.1 vs. 21.8 months; P = 0.066). Transcriptomic analysis revealed inactivation of appetite stimulation, weight regulation and nutrient digestion/metabolism pathways in pancreatic head tumours. CONCLUSIONS: Resectable pancreatic head PDAC is associated with higher prevalence of significant weight loss and more poor prognosis features. Pancreaticobiliary obstruction and hypoalbuminemia in patients with head tumours suggests compounding effects of nutrient malabsorption and systemic inflammation on molecular drivers of cachexia, possibly contributing to shorter survival. Therefore, PDAC-associated cachexia is a heterogenous syndrome, which may be influenced by the primary tumour location. Select patients with resectable pancreatic head tumours may benefit from nutritional rehabilitation to improve outcomes.


Subject(s)
Carcinoma, Pancreatic Ductal , Head and Neck Neoplasms , Pancreatic Neoplasms , Humans , Cachexia/genetics , Cachexia/complications , Retrospective Studies , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Gene Expression Profiling , Head and Neck Neoplasms/complications
9.
Curr Opin Support Palliat Care ; 18(3): 120-125, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39007915

ABSTRACT

PURPOSE OF THE REVIEW: Cancer-associated cachexia is a wasting syndrome entailing loss in body mass and a shortened life expectancy. There is currently no effective treatment to abrogate this syndrome, which leads to 20-30% of deaths in patients with cancer. While there have been advancements in defining signaling factors/pathways in cancer-induced muscle wasting, targeting the same in the clinic has not been as successful. Krüppel-like factor 10 (KLF10), a transcription factor implicated in muscle regulation, is regulated by the transforming growth factor-beta signaling pathway. This review proposes KLF10 as a potential convergence point of diverse signaling pathways involved in muscle wasting. RECENT FINDINGS: KLF10 was discovered as a target of transforming growth factor-beta decades ago but more recently it has been shown that deletion of KLF10 rescues cancer-induced muscle wasting. Moreover, KLF10 has also been shown to bind key atrophy genes associated with muscle atrophy in vitro . SUMMARY: There is an elevated need to explore targets in cachexia, which will successfully translate into the clinic. Investigating a convergence point downstream of multiple signaling pathways might hold promise in developing effective therapies for cachexia.


Subject(s)
Cachexia , Early Growth Response Transcription Factors , Kruppel-Like Transcription Factors , Neoplasms , Signal Transduction , Cachexia/etiology , Cachexia/genetics , Cachexia/physiopathology , Humans , Kruppel-Like Transcription Factors/genetics , Neoplasms/complications , Early Growth Response Transcription Factors/genetics , Muscular Atrophy/genetics , Transforming Growth Factor beta/metabolism , Muscle, Skeletal/metabolism
10.
Fundam Clin Pharmacol ; 38(3): 596-605, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38192190

ABSTRACT

BACKGROUND/OBJECTIVES: Clinical responses to naldemedine vary between individuals with advanced cancer. This is a prospective, single-center, observational study aimed to evaluate the influence of genetic polymorphisms and cachexia status on plasma naldemedine and clinical responses. METHODS: Forty-eight patients being treated with naldemedine for opioid-induced constipation under treatment of cancer pain were enrolled. Plasma naldemedine concentrations were determined on the fourth day or later after administration of naldemedine, and the associations with genotypes, cachexia status, and clinical responses were assessed. RESULTS: Cancer patients exhibited a large variation in the plasma naldemedine concentrations, and it was correlated with serum total protein level. Patients who were homozygous CYP3A5*3 had a higher plasma concentration of naldemedine than those with the *1 allele. ABCB1 genotypes tested in this study were not associated with plasma naldemedine. A negative correlation was observed between the plasma naldemedine concentration and 4ß-hydroxycholesterol level. The plasma naldemedine concentration was lower in patients with refractory cachexia than in those with precachexia and cachexia. While serum levels of interleukin-6 (IL-6) and acute-phase proteins were higher in patients with refractory cachexia, they were not associated with plasma naldemedine. A higher plasma concentration of naldemedine, CYP3A5*3/*3, and an earlier naldemedine administration after starting opioid analgesics were related to improvement of bowel movements. CONCLUSION: Plasma naldemedine increased under deficient activity of CYP3A5 in cancer patients. Cachectic patients with a higher serum IL-6 had a lower plasma naldemedine. Plasma naldemedine, related to CYP3A5 genotype, and the initiation timing of naldemedine were associated with improved bowel movements.


Subject(s)
Analgesics, Opioid , Cachexia , Cancer Pain , Cytochrome P-450 CYP3A , Naltrexone , Polymorphism, Genetic , Humans , Male , Female , Cachexia/genetics , Cachexia/drug therapy , Cachexia/etiology , Middle Aged , Analgesics, Opioid/pharmacokinetics , Analgesics, Opioid/adverse effects , Analgesics, Opioid/administration & dosage , Naltrexone/analogs & derivatives , Naltrexone/pharmacokinetics , Naltrexone/therapeutic use , Naltrexone/adverse effects , Prospective Studies , Aged , Cytochrome P-450 CYP3A/genetics , Cancer Pain/drug therapy , Cancer Pain/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/complications , Genotype , ATP Binding Cassette Transporter, Subfamily B/genetics , Adult , Opioid-Induced Constipation/genetics , Opioid-Induced Constipation/drug therapy , Defecation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL