Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.540
Filter
Add more filters

Publication year range
1.
Cell ; 176(5): 1222-1237.e22, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30712875

ABSTRACT

High-acuity vision in primates, including humans, is mediated by a small central retinal region called the fovea. As more accessible organisms lack a fovea, its specialized function and its dysfunction in ocular diseases remain poorly understood. We used 165,000 single-cell RNA-seq profiles to generate comprehensive cellular taxonomies of macaque fovea and peripheral retina. More than 80% of >60 cell types match between the two regions but exhibit substantial differences in proportions and gene expression, some of which we relate to functional differences. Comparison of macaque retinal types with those of mice reveals that interneuron types are tightly conserved. In contrast, projection neuron types and programs diverge, despite exhibiting conserved transcription factor codes. Key macaque types are conserved in humans, allowing mapping of cell-type and region-specific expression of >190 genes associated with 7 human retinal diseases. Our work provides a framework for comparative single-cell analysis across tissue regions and species.


Subject(s)
Fovea Centralis/physiology , Primates/physiology , Retina/physiology , Aged , Animals , Callithrix , Female , Humans , Macaca , Male , Retina/anatomy & histology , Retinal Ganglion Cells/metabolism
2.
Cell ; 167(4): 1088-1098.e6, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27814506

ABSTRACT

The magnitude of the 2013-2016 Ebola virus disease (EVD) epidemic enabled an unprecedented number of viral mutations to occur over successive human-to-human transmission events, increasing the probability that adaptation to the human host occurred during the outbreak. We investigated one nonsynonymous mutation, Ebola virus (EBOV) glycoprotein (GP) mutant A82V, for its effect on viral infectivity. This mutation, located at the NPC1-binding site on EBOV GP, occurred early in the 2013-2016 outbreak and rose to high frequency. We found that GP-A82V had heightened ability to infect primate cells, including human dendritic cells. The increased infectivity was restricted to cells that have primate-specific NPC1 sequences at the EBOV interface, suggesting that this mutation was indeed an adaptation to the human host. GP-A82V was associated with increased mortality, consistent with the hypothesis that the heightened intrinsic infectivity of GP-A82V contributed to disease severity during the EVD epidemic.


Subject(s)
Ebolavirus/genetics , Ebolavirus/pathogenicity , Hemorrhagic Fever, Ebola/virology , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Africa, Western/epidemiology , Amino Acid Substitution , Animals , Callithrix , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cheirogaleidae , Cytoplasm/virology , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/epidemiology , Humans , Intracellular Signaling Peptides and Proteins , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Niemann-Pick C1 Protein , Protein Conformation, alpha-Helical , Viral Envelope Proteins/metabolism , Virion/chemistry , Virion/pathogenicity , Virulence
3.
Annu Rev Neurosci ; 44: 27-48, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34236888

ABSTRACT

The common marmoset (Callithrix jacchus), a small New World primate, is receiving substantial attention in the neuroscience and biomedical science fields because its anatomical features, functional and behavioral characteristics, and reproductive features and its amenability to available genetic modification technologies make it an attractive experimental subject. In this review, I outline the progress of marmoset neuroscience research and summarize both the current status (opportunities and limitations) of and the future perspectives on the application of marmosets in neuroscience and disease modeling.


Subject(s)
Callithrix , Neurosciences , Animals , Neurobiology , Reproduction
4.
Immunity ; 52(1): 167-182.e7, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31883839

ABSTRACT

Multiple sclerosis (MS) is a demyelinating, autoimmune disease of the central nervous system. While work has focused on myelin and axon loss in MS, less is known about mechanisms underlying synaptic changes. Using postmortem human MS tissue, a preclinical nonhuman primate model of MS, and two rodent models of demyelinating disease, we investigated synapse changes in the visual system. Similar to other neurodegenerative diseases, microglial synaptic engulfment and profound synapse loss were observed. In mice, synapse loss occurred independently of local demyelination and neuronal degeneration but coincided with gliosis and increased complement component C3, but not C1q, at synapses. Viral overexpression of the complement inhibitor Crry at C3-bound synapses decreased microglial engulfment of synapses and protected visual function. These results indicate that microglia eliminate synapses through the alternative complement cascade in demyelinating disease and identify a strategy to prevent synapse loss that may be broadly applicable to other neurodegenerative diseases. VIDEO ABSTRACT.


Subject(s)
Complement C3/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Microglia/pathology , Multiple Sclerosis/pathology , Synapses/pathology , Thalamus/pathology , Aged , Aged, 80 and over , Animals , Callithrix , Cell Line, Tumor , Complement C3/antagonists & inhibitors , Disease Models, Animal , Female , Gliosis/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Receptors, Complement 3b/metabolism
5.
Cell ; 157(3): 726-39, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24746791

ABSTRACT

Systems-level identification and analysis of cellular circuits in the brain will require the development of whole-brain imaging with single-cell resolution. To this end, we performed comprehensive chemical screening to develop a whole-brain clearing and imaging method, termed CUBIC (clear, unobstructed brain imaging cocktails and computational analysis). CUBIC is a simple and efficient method involving the immersion of brain samples in chemical mixtures containing aminoalcohols, which enables rapid whole-brain imaging with single-photon excitation microscopy. CUBIC is applicable to multicolor imaging of fluorescent proteins or immunostained samples in adult brains and is scalable from a primate brain to subcellular structures. We also developed a whole-brain cell-nuclear counterstaining protocol and a computational image analysis pipeline that, together with CUBIC reagents, enable the visualization and quantification of neural activities induced by environmental stimulation. CUBIC enables time-course expression profiling of whole adult brains with single-cell resolution.


Subject(s)
Neuroimaging/methods , Animals , Brain/cytology , Callithrix , Indicators and Reagents/chemistry , Mice , Microscopy/methods
6.
Nature ; 624(7991): 390-402, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092918

ABSTRACT

Divergence of cis-regulatory elements drives species-specific traits1, but how this manifests in the evolution of the neocortex at the molecular and cellular level remains unclear. Here we investigated the gene regulatory programs in the primary motor cortex of human, macaque, marmoset and mouse using single-cell multiomics assays, generating gene expression, chromatin accessibility, DNA methylome and chromosomal conformation profiles from a total of over 200,000 cells. From these data, we show evidence that divergence of transcription factor expression corresponds to species-specific epigenome landscapes. We find that conserved and divergent gene regulatory features are reflected in the evolution of the three-dimensional genome. Transposable elements contribute to nearly 80% of the human-specific candidate cis-regulatory elements in cortical cells. Through machine learning, we develop sequence-based predictors of candidate cis-regulatory elements in different species and demonstrate that the genomic regulatory syntax is highly preserved from rodents to primates. Finally, we show that epigenetic conservation combined with sequence similarity helps to uncover functional cis-regulatory elements and enhances our ability to interpret genetic variants contributing to neurological disease and traits.


Subject(s)
Conserved Sequence , Evolution, Molecular , Gene Expression Regulation , Gene Regulatory Networks , Mammals , Neocortex , Animals , Humans , Mice , Callithrix/genetics , Chromatin/genetics , Chromatin/metabolism , Conserved Sequence/genetics , DNA Methylation , DNA Transposable Elements/genetics , Epigenome , Gene Expression Regulation/genetics , Macaca/genetics , Mammals/genetics , Motor Cortex/cytology , Motor Cortex/metabolism , Multiomics , Neocortex/cytology , Neocortex/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Single-Cell Analysis , Transcription Factors/metabolism , Genetic Variation/genetics
7.
Nature ; 609(7925): 136-143, 2022 09.
Article in English | MEDLINE | ID: mdl-35709828

ABSTRACT

Gastrulation controls the emergence of cellular diversity and axis patterning in the early embryo. In mammals, this transformation is orchestrated by dynamic signalling centres at the interface of embryonic and extraembryonic tissues1-3. Elucidating the molecular framework of axis formation in vivo is fundamental for our understanding of human development4-6 and to advance stem-cell-based regenerative approaches7. Here we illuminate early gastrulation of marmoset embryos in utero using spatial transcriptomics and stem-cell-based embryo models. Gaussian process regression-based 3D transcriptomes delineate the emergence of the anterior visceral endoderm, which is hallmarked by conserved (HHEX, LEFTY2, LHX1) and primate-specific (POSTN, SDC4, FZD5) factors. WNT signalling spatially coordinates the formation of the primitive streak in the embryonic disc and is counteracted by SFRP1 and SFRP2 to sustain pluripotency in the anterior domain. Amnion specification occurs at the boundaries of the embryonic disc through ID1, ID2 and ID3 in response to BMP signalling, providing a developmental rationale for amnion differentiation of primate pluripotent stem cells (PSCs). Spatial identity mapping demonstrates that primed marmoset PSCs exhibit the highest similarity to the anterior embryonic disc, whereas naive PSCs resemble the preimplantation epiblast. Our 3D transcriptome models reveal the molecular code of lineage specification in the primate embryo and provide an in vivo reference to decipher human development.


Subject(s)
Callithrix , Gastrulation , Uterus , Animals , Callithrix/embryology , Cell Differentiation , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Endoderm/cytology , Endoderm/embryology , Female , Gene Expression Profiling , Germ Layers/cytology , Germ Layers/embryology , Humans , Pluripotent Stem Cells/cytology
8.
Nature ; 594(7862): 227-233, 2021 06.
Article in English | MEDLINE | ID: mdl-33910227

ABSTRACT

The accurate and complete assembly of both haplotype sequences of a diploid organism is essential to understanding the role of variation in genome functions, phenotypes and diseases1. Here, using a trio-binning approach, we present a high-quality, diploid reference genome, with both haplotypes assembled independently at the chromosome level, for the common marmoset (Callithrix jacchus), an primate model system that is widely used in biomedical research2,3. The full spectrum of heterozygosity between the two haplotypes involves 1.36% of the genome-much higher than the 0.13% indicated by the standard estimation based on single-nucleotide heterozygosity alone. The de novo mutation rate is 0.43 × 10-8 per site per generation, and the paternal inherited genome acquired twice as many mutations as the maternal. Our diploid assembly enabled us to discover a recent expansion of the sex-differentiation region and unique evolutionary changes in the marmoset Y chromosome. In addition, we identified many genes with signatures of positive selection that might have contributed to the evolution of Callithrix biological features. Brain-related genes were highly conserved between marmosets and humans, although several genes experienced lineage-specific copy number variations or diversifying selection, with implications for the use of marmosets as a model system.


Subject(s)
Callithrix/genetics , Diploidy , Evolution, Molecular , Genome/genetics , Genomics/standards , Animals , Biomedical Research , DNA Copy Number Variations , Female , Germ-Line Mutation/genetics , Haplotypes/genetics , Heterozygote , Humans , INDEL Mutation/genetics , Male , Reference Standards , Selection, Genetic , Sex Differentiation/genetics , Y Chromosome/genetics
9.
Nature ; 598(7879): 111-119, 2021 10.
Article in English | MEDLINE | ID: mdl-34616062

ABSTRACT

The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch-seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.


Subject(s)
Motor Cortex/cytology , Neurons/classification , Single-Cell Analysis , Animals , Atlases as Topic , Callithrix/genetics , Epigenesis, Genetic , Epigenomics , Female , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Gene Expression Profiling , Glutamates/metabolism , Humans , In Situ Hybridization, Fluorescence , Male , Mice , Middle Aged , Motor Cortex/anatomy & histology , Neurons/cytology , Neurons/metabolism , Organ Specificity , Phylogeny , Species Specificity , Transcriptome
10.
Nature ; 598(7879): 86-102, 2021 10.
Article in English | MEDLINE | ID: mdl-34616075

ABSTRACT

Here we report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Our results advance the collective knowledge and understanding of brain cell-type organization1-5. First, our study reveals a unified molecular genetic landscape of cortical cell types that integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a consensus taxonomy of transcriptomic types and their hierarchical organization that is conserved from mouse to marmoset and human. Third, in situ single-cell transcriptomics provides a spatially resolved cell-type atlas of the motor cortex. Fourth, cross-modal analysis provides compelling evidence for the transcriptomic, epigenomic and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types. We further present an extensive genetic toolset for targeting glutamatergic neuron types towards linking their molecular and developmental identity to their circuit function. Together, our results establish a unifying and mechanistic framework of neuronal cell-type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.


Subject(s)
Motor Cortex/cytology , Neurons/classification , Single-Cell Analysis , Animals , Atlases as Topic , Callithrix , Epigenomics , Female , Gene Expression Profiling , Glutamates/metabolism , Humans , In Situ Hybridization, Fluorescence , Male , Mice , Motor Cortex/anatomy & histology , Neurons/cytology , Neurons/metabolism , Organ Specificity , Phylogeny , Species Specificity , Transcriptome
11.
Proc Natl Acad Sci U S A ; 121(16): e2313820121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38598343

ABSTRACT

In primates, high-acuity vision is mediated by the fovea, a small specialized central region of the retina. The fovea, unique to the anthropoid lineage among mammals, undergoes notable neuronal morphological changes during postnatal maturation. However, the extent of cellular similarity across anthropoid foveas and the molecular underpinnings of foveal maturation remain unclear. Here, we used high-throughput single-cell RNA sequencing to profile retinal cells of the common marmoset (Callithrix jacchus), an early divergent in anthropoid evolution from humans, apes, and macaques. We generated atlases of the marmoset fovea and peripheral retina for both neonates and adults. Our comparative analysis revealed that marmosets share almost all their foveal types with both humans and macaques, highlighting a conserved cellular structure among primate foveas. Furthermore, by tracing the developmental trajectory of cell types in the foveal and peripheral retina, we found distinct maturation paths for each. In-depth analysis of gene expression differences demonstrated that cone photoreceptors and Müller glia (MG), among others, show the greatest molecular divergence between these two regions. Utilizing single-cell ATAC-seq and gene-regulatory network inference, we uncovered distinct transcriptional regulations differentiating foveal cones from their peripheral counterparts. Further analysis of predicted ligand-receptor interactions suggested a potential role for MG in supporting the maturation of foveal cones. Together, these results provide valuable insights into foveal development, structure, and evolution.


Subject(s)
Callithrix , Retina , Humans , Animals , Infant, Newborn , Callithrix/anatomy & histology , Retina/metabolism , Fovea Centralis/physiology , Retinal Cone Photoreceptor Cells , Macaca , Mammals
12.
Proc Natl Acad Sci U S A ; 121(9): e2313831121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38377216

ABSTRACT

Auditory dorsal and ventral pathways in the human brain play important roles in supporting speech and language processing. However, the evolutionary root of the dual auditory pathways in the primate brain is unclear. By parcellating the auditory cortex of marmosets (a New World monkey species), macaques (an Old World monkey species), and humans using the same individual-based analysis method and tracking the pathways from the auditory cortex based on multi-shell diffusion-weighted MRI (dMRI), homologous auditory dorsal and ventral fiber tracks were identified in these primate species. The ventral pathway was found to be well conserved in all three primate species analyzed but extend to more anterior temporal regions in humans. In contrast, the dorsal pathway showed a divergence between monkey and human brains. First, frontal regions in the human brain have stronger connections to the higher-level auditory regions than to the lower-level auditory regions along the dorsal pathway, while frontal regions in the monkey brain show opposite connection patterns along the dorsal pathway. Second, the left lateralization of the dorsal pathway is only found in humans. Moreover, the connectivity strength of the dorsal pathway in marmosets is more similar to that of humans than macaques. These results demonstrate the continuity and divergence of the dual auditory pathways in the primate brains along the evolutionary path, suggesting that the putative neural networks supporting human speech and language processing might have emerged early in primate evolution.


Subject(s)
Auditory Cortex , Callithrix , Animals , Humans , Diffusion Magnetic Resonance Imaging , Language , Auditory Cortex/diagnostic imaging , Auditory Pathways , Macaca , Neural Pathways , Brain Mapping
13.
PLoS Biol ; 21(6): e3002158, 2023 06.
Article in English | MEDLINE | ID: mdl-37384809

ABSTRACT

The primate brain has unique anatomical characteristics, which translate into advanced cognitive, sensory, and motor abilities. Thus, it is important that we gain insight on its structure to provide a solid basis for models that will clarify function. Here, we report on the implementation and features of the Brain/MINDS Marmoset Connectivity Resource (BMCR), a new open-access platform that provides access to high-resolution anterograde neuronal tracer data in the marmoset brain, integrated to retrograde tracer and tractography data. Unlike other existing image explorers, the BMCR allows visualization of data from different individuals and modalities in a common reference space. This feature, allied to an unprecedented high resolution, enables analyses of features such as reciprocity, directionality, and spatial segregation of connections. The present release of the BMCR focuses on the prefrontal cortex (PFC), a uniquely developed region of the primate brain that is linked to advanced cognition, including the results of 52 anterograde and 164 retrograde tracer injections in the cortex of the marmoset. Moreover, the inclusion of tractography data from diffusion MRI allows systematic analyses of this noninvasive modality against gold-standard cellular connectivity data, enabling detection of false positives and negatives, which provide a basis for future development of tractography. This paper introduces the BMCR image preprocessing pipeline and resources, which include new tools for exploring and reviewing the data.


Subject(s)
Brain , Callithrix , Animals , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods , Prefrontal Cortex/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Neural Pathways
14.
Nature ; 587(7834): 432-436, 2020 11.
Article in English | MEDLINE | ID: mdl-33029013

ABSTRACT

Perceptual sensitivity varies from moment to moment. One potential source of this variability is spontaneous fluctuations in cortical activity that can travel as waves1. Spontaneous travelling waves have been reported during anaesthesia2-7, but it is not known whether they have a role during waking perception. Here, using newly developed analytic techniques to characterize the moment-to-moment dynamics of noisy multielectrode data, we identify spontaneous waves of activity in the extrastriate visual cortex of awake, behaving marmosets (Callithrix jacchus). In monkeys trained to detect faint visual targets, the timing and position of spontaneous travelling waves before target onset predicted the magnitude of target-evoked activity and the likelihood of target detection. By contrast, spatially disorganized fluctuations of neural activity were much less predictive. These results reveal an important role for spontaneous travelling waves in sensory processing through the modulation of neural and perceptual sensitivity.


Subject(s)
Brain Waves , Visual Cortex/physiology , Visual Perception/physiology , Wakefulness/physiology , Action Potentials , Animals , Behavior, Animal , Callithrix/physiology , Electrodes , Evoked Potentials, Visual , Female , Male , Photic Stimulation , Probability , Retina/physiology
15.
Nature ; 586(7828): 262-269, 2020 10.
Article in English | MEDLINE | ID: mdl-32999462

ABSTRACT

Primates and rodents, which descended from a common ancestor around 90 million years ago1, exhibit profound differences in behaviour and cognitive capacity; the cellular basis for these differences is unknown. Here we use single-nucleus RNA sequencing to profile RNA expression in 188,776 individual interneurons across homologous brain regions from three primates (human, macaque and marmoset), a rodent (mouse) and a weasel (ferret). Homologous interneuron types-which were readily identified by their RNA-expression patterns-varied in abundance and RNA expression among ferrets, mice and primates, but varied less among primates. Only a modest fraction of the genes identified as 'markers' of specific interneuron subtypes in any one species had this property in another species. In the primate neocortex, dozens of genes showed spatial expression gradients among interneurons of the same type, which suggests that regional variation in cortical contexts shapes the RNA expression patterns of adult neocortical interneurons. We found that an interneuron type that was previously associated with the mouse hippocampus-the 'ivy cell', which has neurogliaform characteristics-has become abundant across the neocortex of humans, macaques and marmosets but not mice or ferrets. We also found a notable subcortical innovation: an abundant striatal interneuron type in primates that had no molecularly homologous counterpart in mice or ferrets. These interneurons expressed a unique combination of genes that encode transcription factors, receptors and neuropeptides and constituted around 30% of striatal interneurons in marmosets and humans.


Subject(s)
Interneurons/cytology , Primates , Animals , Callithrix , Cerebral Cortex/cytology , Female , Ferrets , Hippocampus/cytology , Humans , Interneurons/metabolism , LIM-Homeodomain Proteins/metabolism , Lysosomal Membrane Proteins/metabolism , Macaca , Male , Mice , Neostriatum/cytology , Nerve Tissue Proteins/metabolism , RNA/genetics , Species Specificity , Transcription Factors/metabolism
16.
Proc Natl Acad Sci U S A ; 120(24): e2221756120, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37276391

ABSTRACT

How humans and animals segregate sensory information into discrete, behaviorally meaningful categories is one of the hallmark questions in neuroscience. Much of the research around this topic in the auditory system has centered around human speech perception, in which categorical processes result in an enhanced sensitivity for acoustically meaningful differences and a reduced sensitivity for nonmeaningful distinctions. Much less is known about whether nonhuman primates process their species-specific vocalizations in a similar manner. We address this question in the common marmoset, a small arboreal New World primate with a rich vocal repertoire produced across a range of behavioral contexts. We first show that marmosets perceptually categorize their vocalizations in ways that correspond to previously defined call types for this species. Next, we show that marmosets are differentially sensitive to changes in particular acoustic features of their most common call types and that these sensitivity differences are matched to the population statistics of their vocalizations in ways that likely maximize category formation. Finally, we show that marmosets are less sensitive to changes in these acoustic features when within the natural range of variability of their calls, which possibly reflects perceptual specializations which maintain existing call categories. These findings suggest specializations for categorical vocal perception in a New World primate species and pave the way for future studies examining their underlying neural mechanisms.


Subject(s)
Callithrix , Speech Perception , Animals , Humans , Vocalization, Animal , Acoustics , Species Specificity
17.
Proc Natl Acad Sci U S A ; 120(18): e2300545120, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37098066

ABSTRACT

The Old World macaque monkey and New World common marmoset provide fundamental models for human visual processing, yet the human ancestral lineage diverged from these monkey lineages over 25 Mya. We therefore asked whether fine-scale synaptic wiring in the nervous system is preserved across these three primate families, despite long periods of independent evolution. We applied connectomic electron microscopy to the specialized foveal retina where circuits for highest acuity and color vision reside. Synaptic motifs arising from the cone photoreceptor type sensitive to short (S) wavelengths and associated with "blue-yellow" (S-ON and S-OFF) color-coding circuitry were reconstructed. We found that distinctive circuitry arises from S cones for each of the three species. The S cones contacted neighboring L and M (long- and middle-wavelength sensitive) cones in humans, but such contacts were rare or absent in macaques and marmosets. We discovered a major S-OFF pathway in the human retina and established its absence in marmosets. Further, the S-ON and S-OFF chromatic pathways make excitatory-type synaptic contacts with L and M cone types in humans, but not in macaques or marmosets. Our results predict that early-stage chromatic signals are distinct in the human retina and imply that solving the human connectome at the nanoscale level of synaptic wiring will be critical for fully understanding the neural basis of human color vision.


Subject(s)
Color Vision , Connectome , Animals , Humans , Callithrix , Color Perception/physiology , Retina/physiology , Retinal Cone Photoreceptor Cells/physiology , Macaca , Cercopithecidae
18.
J Neurosci ; 44(4)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38050176

ABSTRACT

Each time we make an eye movement, attention moves before the eyes, resulting in a perceptual enhancement at the target. Recent psychophysical studies suggest that this pre-saccadic attention enhances the visual features at the saccade target, whereas covert attention causes only spatially selective enhancements. While previous nonhuman primate studies have found that pre-saccadic attention does enhance neural responses spatially, no studies have tested whether changes in neural tuning reflect an automatic feature enhancement. Here we examined pre-saccadic attention using a saccade foraging task developed for marmoset monkeys (one male and one female). We recorded from neurons in the middle temporal area with peripheral receptive fields that contained a motion stimulus, which would either be the target of a saccade or a distracter as a saccade was made to another location. We established that marmosets, like macaques, show enhanced pre-saccadic neural responses for saccades toward the receptive field, including increases in firing rate and motion information. We then examined if the specific changes in neural tuning might support feature enhancements for the target. Neurons exhibited diverse changes in tuning but predominantly showed additive and multiplicative increases that were uniformly applied across motion directions. These findings confirm that marmoset monkeys, like macaques, exhibit pre-saccadic neural enhancements during saccade foraging tasks with minimal training requirements. However, at the level of individual neurons, the lack of feature-tuned enhancements is similar to neural effects reported during covert spatial attention.


Subject(s)
Callithrix , Saccades , Animals , Male , Female , Eye Movements , Attention/physiology , Macaca , Photic Stimulation
19.
J Neurosci ; 44(21)2024 May 22.
Article in English | MEDLINE | ID: mdl-38627088

ABSTRACT

The lateral intraparietal area (LIP) plays a crucial role in target selection and attention in primates, but the laminar microcircuitry of this region is largely unknown. To address this, we used ultra-high density laminar electrophysiology with Neuropixels probes to record neural activity in the posterior parietal cortex (PPC) of two adult marmosets while they performed a simple visual target selection task. Our results reveal neural correlates of visual target selection in the marmoset, similar to those observed in macaques and humans, with distinct timing and profiles of activity across cell types and cortical layers. Notably, a greater proportion of neurons exhibited stimulus-related activity in superficial layers whereas a greater proportion of infragranular neurons exhibited significant postsaccadic activity. Stimulus-related activity was first observed in granular layer putative interneurons, whereas target discrimination activity emerged first in supragranular layers putative pyramidal neurons, supporting a canonical laminar circuit underlying visual target selection in marmoset PPC. These findings provide novel insights into the neural basis of visual attention and target selection in primates.


Subject(s)
Callithrix , Parietal Lobe , Animals , Parietal Lobe/physiology , Parietal Lobe/cytology , Male , Female , Attention/physiology , Photic Stimulation/methods , Neurons/physiology , Visual Perception/physiology
20.
EMBO J ; 40(22): e107757, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34636430

ABSTRACT

Positron emission tomography (PET) allows biomolecular tracking but PET monitoring of brain networks has been hampered by a lack of suitable reporters. Here, we take advantage of bacterial dihydrofolate reductase, ecDHFR, and its unique antagonist, TMP, to facilitate in vivo imaging in the brain. Peripheral administration of radiofluorinated and fluorescent TMP analogs enabled PET and intravital microscopy, respectively, of neuronal ecDHFR expression in mice. This technique can be used to the visualize neuronal circuit activity elicited by chemogenetic manipulation in the mouse hippocampus. Notably, ecDHFR-PET allows mapping of neuronal projections in non-human primate brains, demonstrating the applicability of ecDHFR-based tracking technologies for network monitoring. Finally, we demonstrate the utility of TMP analogs for PET studies of turnover and self-assembly of proteins tagged with ecDHFR mutants. These results establish opportunities for a broad spectrum of previously unattainable PET analyses of mammalian brain circuits at the molecular level.


Subject(s)
Brain/diagnostic imaging , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Tetrahydrofolate Dehydrogenase/genetics , Animals , Brain/cytology , Callithrix , Carbon Radioisotopes/chemistry , Fluorine Radioisotopes/chemistry , Genes, Reporter , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Molecular Imaging/methods , Nerve Net/diagnostic imaging , Proteins/analysis , Proteins/metabolism , Radiopharmaceuticals/chemical synthesis , Tetrahydrofolate Dehydrogenase/metabolism , Trimethoprim/analogs & derivatives , Trimethoprim/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL