Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23.428
Filter
Add more filters

Publication year range
1.
Cell ; 185(20): 3807-3822.e12, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36179671

ABSTRACT

Fungal microorganisms (mycobiota) comprise a small but immunoreactive component of the human microbiome, yet little is known about their role in human cancers. Pan-cancer analysis of multiple body sites revealed tumor-associated mycobiomes at up to 1 fungal cell per 104 tumor cells. In lung cancer, Blastomyces was associated with tumor tissues. In stomach cancers, high rates of Candida were linked to the expression of pro-inflammatory immune pathways, while in colon cancers Candida was predictive of metastatic disease and attenuated cellular adhesions. Across multiple GI sites, several Candida species were enriched in tumor samples and tumor-associated Candida DNA was predictive of decreased survival. The presence of Candida in human GI tumors was confirmed by external ITS sequencing of tumor samples and by culture-dependent analysis in an independent cohort. These data implicate the mycobiota in the pathogenesis of GI cancers and suggest that tumor-associated fungal DNA may serve as diagnostic or prognostic biomarkers.


Subject(s)
Lung Neoplasms , Mycobiome , Biomarkers , Candida/genetics , DNA, Fungal , Fungi/genetics , Humans
2.
Nat Immunol ; 24(11): 1782-1784, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37872314
3.
Immunity ; 54(11): 2442-2444, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34758334

ABSTRACT

Fungal proteases are well-known allergens. In this issue of Immunity, Wu et al. (2021) observe that allergic airway responses to Candida albicans are mediated by the peptide toxin candidalysin rather than proteases. Candidalysin promotes these responses by stimulating platelets to release the Wnt antagonist Dickkopf-1.


Subject(s)
Asthma , Candida , Candida albicans , Humans
4.
Nat Immunol ; 23(7): 997-999, 2022 07.
Article in English | MEDLINE | ID: mdl-35761087

Subject(s)
Candida , Th17 Cells
5.
Annu Rev Microbiol ; 77: 583-602, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37406342

ABSTRACT

Candida auris is a multidrug-resistant fungal pathogen that presents a serious threat to global human health. Since the first reported case in 2009 in Japan, C. auris infections have been reported in more than 40 countries, with mortality rates between 30% and 60%. In addition, C. auris has the potential to cause outbreaks in health care settings, especially in nursing homes for elderly patients, owing to its efficient transmission via skin-to-skin contact. Most importantly, C. auris is the first fungal pathogen to show pronounced and sometimes untreatable clinical drug resistance to all known antifungal classes, including azoles, amphotericin B, and echinocandins. In this review, we explore the causes of the rapid spread of C. auris. We also highlight its genome organization and drug resistance mechanisms and propose future research directions that should be undertaken to curb the spread of this multidrug-resistant pathogen.


Subject(s)
Candida auris , Candida , Humans , Aged , Candida/genetics , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Echinocandins , Amphotericin B
6.
PLoS Pathog ; 20(3): e1012076, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38466738

ABSTRACT

Candida auris is a fungal pathogen of humans responsible for nosocomial infections with high mortality rates. High levels of resistance to antifungal drugs and environmental persistence mean these infections are difficult to treat and eradicate from a healthcare setting. Understanding the life cycle and the genetics of this fungus underpinning clinically relevant traits, such as antifungal resistance and virulence, is of the utmost importance to develop novel treatments and therapies. Epidemiological and genomic studies have identified five geographical clades (I-V), which display phenotypic and genomic differences. Aggregation of cells, a phenotype primarily of clade III strains, has been linked to reduced virulence in some infection models. The aggregation phenotype has thus been associated with conferring an advantage for (skin) colonisation rather than for systemic infection. However, strains with different clade affiliations were compared to infer the effects of different morphologies on virulence. This makes it difficult to distinguish morphology-dependent causes from clade-specific or even strain-specific genetic factors. Here, we identify two different types of aggregation: one induced by antifungal treatment which is a result of a cell separation defect; and a second which is controlled by growth conditions and only occurs in strains with the ability to aggregate. The latter aggregation type depends on an ALS-family adhesin which is differentially expressed during aggregation in an aggregative C. auris strain. Finally, we demonstrate that macrophages cannot clear aggregates, suggesting that aggregation might after all provide a benefit during systemic infection and could facilitate long-term persistence in the host.


Subject(s)
Antifungal Agents , Candida , Humans , Antifungal Agents/therapeutic use , Candida/genetics , Candida auris , Virulence , Drug Resistance, Fungal , Adhesins, Bacterial/metabolism , Microbial Sensitivity Tests
7.
Mol Microbiol ; 121(4): 696-716, 2024 04.
Article in English | MEDLINE | ID: mdl-38178569

ABSTRACT

Candida albicans has the capacity to neutralize acidic growth environments by releasing ammonia derived from the catabolism of amino acids. The molecular components underlying alkalization and its physiological significance remain poorly understood. Here, we present an integrative model with the cytosolic NAD+-dependent glutamate dehydrogenase (Gdh2) as the principal ammonia-generating component. We show that alkalization is dependent on the SPS-sensor-regulated transcription factor STP2 and the proline-responsive activator Put3. These factors function in parallel to derepress GDH2 and the two proline catabolic enzymes PUT1 and PUT2. Consistently, a double mutant lacking STP2 and PUT3 exhibits a severe alkalization defect that nearly phenocopies that of a gdh2-/- strain. Alkalization is dependent on mitochondrial activity and in wild-type cells occurs as long as the conditions permit respiratory growth. Strikingly, Gdh2 levels decrease and cells transiently extrude glutamate as the environment becomes more alkaline. Together, these processes constitute a rudimentary regulatory system that counters and limits the negative effects associated with ammonia generation. These findings align with Gdh2 being dispensable for virulence, and based on a whole human blood virulence assay, the same is true for C. glabrata and C. auris. Using a transwell co-culture system, we observed that the growth and proliferation of Lactobacillus crispatus, a common component of the acidic vaginal microenvironment and a potent antagonist of C. albicans, is unaffected by fungal-induced alkalization. Consequently, although Candida spp. can alkalinize their growth environments, other fungal-associated processes are more critical in promoting dysbiosis and virulent fungal growth.


Subject(s)
Amino Acids , Candida albicans , Female , Humans , Candida albicans/metabolism , Amino Acids/metabolism , Ammonia/metabolism , Candida/metabolism , Proline/metabolism , Candida glabrata/metabolism
8.
PLoS Pathog ; 19(3): e1011239, 2023 03.
Article in English | MEDLINE | ID: mdl-36913408

ABSTRACT

Candida auris is an emerging multidrug-resistant fungal pathogen and a new global threat to human health. A unique morphological feature of this fungus is its multicellular aggregating phenotype, which has been thought to be associated with defects in cell division. In this study, we report a new aggregating form of two clinical C. auris isolates with increased biofilm forming capacity due to enhanced adherence of adjacent cells and surfaces. Unlike the previously reported aggregating morphology, this new aggregating multicellular form of C. auris can become unicellular after treatment with proteinase K or trypsin. Genomic analysis demonstrated that amplification of the subtelomeric adhesin gene ALS4 is the reason behind the strain's enhanced adherence and biofilm forming capacities. Many clinical isolates of C. auris have variable copy numbers of ALS4, suggesting that this subtelomeric region exhibits instability. Global transcriptional profiling and quantitative real-time PCR assays indicated that genomic amplification of ALS4 results in a dramatic increase in overall levels of transcription. Compared to the previously characterized nonaggregative/yeast-form and aggregative-form strains of C. auris, this new Als4-mediated aggregative-form strain of C. auris displays several unique characteristics in terms of its biofilm formation, surface colonization, and virulence.


Subject(s)
Antifungal Agents , Candida , Humans , Candida/genetics , Candida auris , Biofilms , Genomics , Microbial Sensitivity Tests
9.
PLoS Pathog ; 19(4): e1011268, 2023 04.
Article in English | MEDLINE | ID: mdl-37053164

ABSTRACT

Candia auris is an emerging human pathogenic yeast; yet, despite phenotypic attributes and genomic evidence suggesting that it probably emerged from a natural reservoir, we know nothing about the environmental phase of its life cycle and the transmission pathways associated with it. The thermotolerant characteristics of C. auris have been hypothesised to be an environmental adaptation to increasing temperatures due to global warming (which may have facilitated its ability to tolerate the mammalian thermal barrier that is considered a protective strategy for humans against colonisation by environmental fungi with pathogenic potential). Thus, C. auris may be the first human pathogenic fungus to have emerged as a result of climate change. In addition, the release of antifungal chemicals, such as azoles, into the environment (from both pharmaceutical and agricultural sources) is likely to be responsible for the environmental enrichment of resistant strains of C. auris; however, the survival and dissemination of C. auris in the natural environment is poorly understood. In this paper, we critically review the possible pathways through which C. auris can be introduced into the environment and evaluate the environmental characteristics that can influence its persistence and transmission in natural environments. Identifying potential environmental niches and reservoirs of C. auris and understanding its emergence against a backdrop of climate change and environmental pollution will be crucial for the development of effective epidemiological and environmental management responses.


Subject(s)
Candida auris , Candida , Animals , Humans , Antifungal Agents/therapeutic use , Candida/genetics , Climate Change , Mammals , Microbial Sensitivity Tests
10.
PLoS Pathog ; 19(12): e1011843, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38127686

ABSTRACT

Candida auris recently emerged as an urgent public health threat, causing outbreaks of invasive infections in healthcare settings throughout the world. This fungal pathogen persists on the skin of patients and on abiotic surfaces despite antiseptic and decolonization attempts. The heightened capacity for skin colonization and environmental persistence promotes rapid nosocomial spread. Following skin colonization, C. auris can gain entrance to the bloodstream and deeper tissues, often through a wound or an inserted medical device, such as a catheter. C. auris possesses a variety of virulence traits, including the capacity for biofilm formation, production of adhesins and proteases, and evasion of innate immune responses. In this review, we highlight the interactions of C. auris with the host, emphasizing the intersection of laboratory studies and clinical observations.


Subject(s)
Candida , Candidiasis , Humans , Candidiasis/microbiology , Virulence , Candida auris , Disease Outbreaks , Antifungal Agents
11.
PLoS Pathog ; 19(10): e1011698, 2023 10.
Article in English | MEDLINE | ID: mdl-37856418

ABSTRACT

Candida auris, is an emerging fungal pathogen that can cause life-threatening infections in humans. Unlike many other Candida species that colonize the intestine, C. auris most efficiently colonizes the skin. Such colonization contaminates the patient's environment and can result in rapid nosocomial transmission. In addition, this transmission can lead to outbreaks of systemic infections that have mortality rates between 40% and 60%. C. auris isolates resistant to all known classes of antifungals have been identified and as such, understanding the underlying biochemical mechanisms of how skin colonization initiates and progresses is critical to developing better therapeutic options. With this review, we briefly summarize what is known about horizontal transmission and current tools used to identify, understand, and control C. auris infections.


Subject(s)
Candidiasis , Humans , Candidiasis/microbiology , Candida auris , Candida , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Disease Outbreaks , Microbial Sensitivity Tests
12.
PLoS Pathog ; 19(8): e1011583, 2023 08.
Article in English | MEDLINE | ID: mdl-37651385

ABSTRACT

Fungal infections are rising, with over 1.5 billion cases and more than 1 million deaths recorded each year. Among these, Candida infections are frequent in at-risk populations and the rapid development of drug resistance and tolerance contributes to their clinical persistence. Few antifungal drugs are available, and their efficacy is declining due to the environmental overuse and the expansion of multidrug-resistant species. One way to prolong their utility is by applying them in combination therapy. Here, we highlight recently described azole potentiators belonging to different categories: natural, repurposed, or novel compounds. We showcase examples of molecules and discuss their identified or proposed mode of action. We also emphasise the challenges in azole potentiator development, compounded by the lack of animal testing, the overreliance on Candida albicans and Candida auris, as well as the limited understanding of compound efficacy.


Subject(s)
Candida , Candidiasis , Animals , Candida albicans , Candidiasis/drug therapy , Antifungal Agents/pharmacology , Azoles/pharmacology
13.
PLoS Pathog ; 19(6): e1011478, 2023 06.
Article in English | MEDLINE | ID: mdl-37363924

ABSTRACT

Metals such as Fe, Cu, Zn, and Mn are essential trace nutrients for all kingdoms of life, including microbial pathogens and their hosts. During infection, the mammalian host attempts to starve invading microbes of these micronutrients through responses collectively known as nutritional immunity. Nutritional immunity for Zn, Fe and Cu has been well documented for fungal infections; however Mn handling at the host-fungal pathogen interface remains largely unexplored. This work establishes the foundation of fungal resistance against Mn associated nutritional immunity through the characterization of NRAMP divalent metal transporters in the opportunistic fungal pathogen, Candida albicans. Here, we identify C. albicans Smf12 and Smf13 as two NRAMP transporters required for cellular Mn accumulation. Single or combined smf12Δ/Δ and smf13Δ/Δ mutations result in a 10-80 fold reduction in cellular Mn with an additive effect of double mutations and no losses in cellular Cu, Fe or Zn. As a result of low cellular Mn, the mutants exhibit impaired activity of mitochondrial Mn-superoxide dismutase 2 (Sod2) and cytosolic Mn-Sod3 but no defects in cytosolic Cu/Zn-Sod1 activity. Mn is also required for activity of Golgi mannosyltransferases, and smf12Δ/Δ and smf13Δ/Δ mutants show a dramatic loss in cell surface phosphomannan and in glycosylation of proteins, including an intracellular acid phosphatase and a cell wall Cu-only Sod5 that is key for oxidative stress resistance. Importantly, smf12Δ/Δ and smf13Δ/Δ mutants are defective in formation of hyphal filaments, a deficiency rescuable by supplemental Mn. In a disseminated mouse model for candidiasis where kidney is the primary target tissue, we find a marked loss in total kidney Mn during fungal invasion, implying host restriction of Mn. In this model, smf12Δ/Δ and smf13Δ/Δ C. albicans mutants displayed a significant loss in virulence. These studies establish a role for Mn in Candida pathogenesis.


Subject(s)
Candida albicans , Candidiasis , Mice , Animals , Candida albicans/metabolism , Manganese/metabolism , Candidiasis/microbiology , Candida , Morphogenesis , Fungal Proteins/metabolism , Mammals
14.
PLoS Pathog ; 19(11): e1011677, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37917600

ABSTRACT

Candida albicans, the primary etiology of human mycoses, is well-adapted to catabolize proline to obtain energy to initiate morphological switching (yeast to hyphal) and for growth. We report that put1-/- and put2-/- strains, carrying defective Proline UTilization genes, display remarkable proline sensitivity with put2-/- mutants being hypersensitive due to the accumulation of the toxic intermediate pyrroline-5-carboxylate (P5C), which inhibits mitochondrial respiration. The put1-/- and put2-/- mutations attenuate virulence in Drosophila and murine candidemia models and decrease survival in human neutrophils and whole blood. Using intravital 2-photon microscopy and label-free non-linear imaging, we visualized the initial stages of C. albicans cells infecting a kidney in real-time, directly deep in the tissue of a living mouse, and observed morphological switching of wildtype but not of put2-/- cells. Multiple members of the Candida species complex, including C. auris, are capable of using proline as a sole energy source. Our results indicate that a tailored proline metabolic network tuned to the mammalian host environment is a key feature of opportunistic fungal pathogens.


Subject(s)
Candida albicans , Saccharomyces cerevisiae , Animals , Mice , Humans , Virulence , Saccharomyces cerevisiae/genetics , Proline/metabolism , Candida , Mammals
15.
PLoS Pathog ; 19(5): e1011158, 2023 05.
Article in English | MEDLINE | ID: mdl-37196016

ABSTRACT

The pathogenic yeast Pichia kudriavzevii, previously known as Candida krusei, is more distantly related to Candida albicans than clinically relevant CTG-clade Candida species. Its cell wall, a dynamic organelle that is the first point of interaction between pathogen and host, is relatively understudied, and its wall proteome remains unidentified to date. Here, we present an integrated study of the cell wall in P. kudriavzevii. Our comparative genomic studies and experimental data indicate that the general structure of the cell wall in P. kudriavzevii is similar to Saccharomyces cerevisiae and C. albicans and is comprised of ß-1,3-glucan, ß-1,6-glucan, chitin, and mannoproteins. However, some pronounced differences with C. albicans walls were observed, for instance, higher mannan and protein levels and altered protein mannosylation patterns. Further, despite absence of proteins with high sequence similarity to Candida adhesins, protein structure modeling identified eleven proteins related to flocculins/adhesins in S. cerevisiae or C. albicans. To obtain a proteomic comparison of biofilm and planktonic cells, P. kudriavzevii cells were grown to exponential phase and in static 24-h cultures. Interestingly, the 24-h static cultures of P. kudriavzevii yielded formation of floating biofilm (flor) rather than adherence to polystyrene at the bottom. The proteomic analysis of both conditions identified a total of 33 cell wall proteins. In line with a possible role in flor formation, increased abundance of flocculins, in particular Flo110, was observed in the floating biofilm compared to exponential cells. This study is the first to provide a detailed description of the cell wall in P. kudriavzevii including its cell wall proteome, and paves the way for further investigations on the importance of flor formation and flocculins in the pathogenesis of P. kudriavzevii.


Subject(s)
Proteome , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Proteome/analysis , Proteomics , Candida albicans/genetics , Candida/genetics , Biofilms , Genomics , Cell Wall/metabolism
16.
PLoS Pathog ; 19(9): e1011692, 2023 09.
Article in English | MEDLINE | ID: mdl-37769015

ABSTRACT

The signals that denote mammalian host environments and dictate the activation of signaling pathways in human-associated microorganisms are often unknown. The transcription regulator Rtg1/3 in the human fungal pathogen Candida albicans is a crucial determinant of host colonization and pathogenicity. Rtg1/3's activity is controlled, in part, by shuttling the regulator between the cytoplasm and nucleus of the fungus. The host signal(s) that Rtg1/3 respond(s) to, however, have remained unclear. Here we report that neutrophil-derived reactive oxygen species (ROS) direct the subcellular localization of this C. albicans transcription regulator. Upon engulfment of Candida cells by human or mouse neutrophils, the regulator shuttles to the fungal nucleus. Using genetic and chemical approaches to disrupt the neutrophils' oxidative burst, we establish that the oxidants produced by the NOX2 complex-but not the oxidants generated by myeloperoxidase-trigger Rtg1/3's migration to the nucleus. Furthermore, screening a collection of C. albicans kinase deletion mutants, we implicate the MKC1 signaling pathway in the ROS-dependent regulation of Rtg1/3 in this fungus. Finally, we show that Rtg1/3 contributes to C. albicans virulence in the nematode Caenorhabditis elegans in an ROS-dependent manner as the rtg1 and rtg3 mutants display virulence defects in wild-type but not in ROS deficient worms. Our findings establish NOX2-derived ROS as a key signal that directs the activity of the pleiotropic fungal regulator Rtg1/3.


Subject(s)
Candida albicans , Neutrophils , Animals , Mice , Humans , Reactive Oxygen Species/metabolism , Neutrophils/metabolism , Candida , Oxidants/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Mammals
17.
PLoS Biol ; 20(8): e3001762, 2022 08.
Article in English | MEDLINE | ID: mdl-35976859

ABSTRACT

Candida albicans biofilms are a complex multilayer community of cells that are resistant to almost all classes of antifungal drugs. The bottommost layers of biofilms experience nutrient limitation where C. albicans cells are required to respire. We previously reported that a protein Ndu1 is essential for Candida mitochondrial respiration; loss of NDU1 causes inability of C. albicans to grow on alternative carbon sources and triggers early biofilm detachment. Here, we screened a repurposed library of FDA-approved small molecule inhibitors to identify those that prevent NDU1-associated functions. We identified an antihelminthic drug, Niclosamide (NCL), which not only prevented growth on acetate, C. albicans hyphenation and early biofilm growth, but also completely disengaged fully grown biofilms of drug-resistant C. albicans and Candida auris from their growth surface. To overcome the suboptimal solubility and permeability of NCL that is well known to affect its in vivo efficacy, we developed NCL-encapsulated Eudragit EPO (an FDA-approved polymer) nanoparticles (NCL-EPO-NPs) with high niclosamide loading, which also provided long-term stability. The developed NCL-EPO-NPs completely penetrated mature biofilms and attained anti-biofilm activity at low microgram concentrations. NCL-EPO-NPs induced ROS activity in C. albicans and drastically reduced oxygen consumption rate in the fungus, similar to that seen in an NDU1 mutant. NCL-EPO-NPs also significantly abrogated mucocutaneous candidiasis by fluconazole-resistant strains of C. albicans, in mice models of oropharyngeal and vulvovaginal candidiasis. To our knowledge, this is the first study that targets biofilm detachment as a target to get rid of drug-resistant Candida biofilms and uses NPs of an FDA-approved nontoxic drug to improve biofilm penetrability and microbial killing.


Subject(s)
Candidiasis , Nanoparticles , Animals , Antifungal Agents/pharmacology , Biofilms , Candida , Candida albicans , Candidiasis/microbiology , Fluconazole/pharmacology , Mice , Microbial Sensitivity Tests , Niclosamide/pharmacology , Niclosamide/therapeutic use
18.
Clin Microbiol Rev ; 36(3): e0001923, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37439685

ABSTRACT

Fungal endocarditis accounts for 1% to 3% of all infective endocarditis cases, is associated with high morbidity and mortality (>70%), and presents numerous challenges during clinical care. Candida spp. are the most common causes of fungal endocarditis, implicated in over 50% of cases, followed by Aspergillus and Histoplasma spp. Important risk factors for fungal endocarditis include prosthetic valves, prior heart surgery, and injection drug use. The signs and symptoms of fungal endocarditis are nonspecific, and a high degree of clinical suspicion coupled with the judicious use of diagnostic tests is required for diagnosis. In addition to microbiological diagnostics (e.g., blood culture for Candida spp. or galactomannan testing and PCR for Aspergillus spp.), echocardiography remains critical for evaluation of potential infective endocarditis, although radionuclide imaging modalities such as 18F-fluorodeoxyglucose positron emission tomography/computed tomography are increasingly being used. A multimodal treatment approach is necessary: surgery is usually required and should be accompanied by long-term systemic antifungal therapy, such as echinocandin therapy for Candida endocarditis or voriconazole therapy for Aspergillus endocarditis.


Subject(s)
Candidiasis , Endocarditis, Bacterial , Endocarditis , Mycoses , Humans , Mycoses/drug therapy , Endocarditis/diagnosis , Endocarditis/epidemiology , Endocarditis/therapy , Endocarditis, Bacterial/diagnosis , Antifungal Agents/therapeutic use , Candidiasis/diagnosis , Candida , Aspergillus
19.
J Infect Dis ; 229(2): 588-598, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38001054

ABSTRACT

BACKGROUND: Use of mixed-oil (MO) intravenous fat emulsion (IFE) was shown to inhibit Candida albicans biofilm formation and overall rate of catheter-related bloodstream infections (CR-BSIs) compared with soybean-oil (SO) IFE). We aimed to delineate this inhibitory mechanism and impact of IFE choice on distribution of fungal CR-BSIs. METHODS: Transcriptional profiling was conducted on C. albicans grown in SO-IFE, MO-IFE, or SO-IFE with capric acid. Overexpression strains of shared down-regulated genes were constructed using a tetracycline-off system to assess hypha and biofilm formation in IFEs. A 5-year retrospective multicenter cohort study was performed to assess differences in CR-BSIs caused by Candida species based on the IFE formulation received in pediatric patients. RESULTS: Genes significantly down-regulated in MO-IFE and SO-IFE with capric acid included CDC11, HGC1, and UME6. Overexpression of HGC1 or UME6 enabled filamentation in capric acid and MO-IFE. Interestingly, only overexpression of UME6 was sufficient to rescue biofilm growth in MO-IFE. MO-IFE administration was associated with a higher proportion of non-albicans Candida versus C. albicans CR-BSIs (42% vs 33%; odds ratio, 1.22 [95% confidence interval, .46-3.26]). CONCLUSIONS: MO-IFE affects C. albicans biofilm formation and hyphal growth via a UME6-dependent mechanism. A numerical but not statistically significant difference in distribution of Candida spp. among CR-BSIs was observed.


Delivery of carbohydrates, amino acids, and lipids via intravenous catheters is necessary for some patients to supply daily caloric needs. These nutrient-dense parenteral solutions can promote microbial biofilm growth on the catheter surface, which may seed subsequent catheter-related bloodstream infection (CR-BSI). In fact, receipt of parenteral nutrition is an established risk factor for CR-BSI caused by the polymorphic fungal pathogen Candida albicans. New intravenous fat emulsions (IFEs) have gained market share and IFEs containing capric acid (mixed-oil [MO] IFE) compared with those without (soybean-oil [SO] IFE) impair the C. albicans yeast-to-hypha switch­a trait strongly associated with pathogenicity and biofilm formation. In this study, we found that MO-IFE and capric acid reduced expression of a transcriptional regulator involved in hyphal extension (UME6) and down-regulated genes involved in cell partitioning (HGC1). Overexpression of these genes enabled hyphal growth in MO-IFE. Secondly, we sought to determine whether the type of IFE administered was associated with the clinical incidence of CR-BSIs caused by C. albicans or other common non-albicans Candida species. There was a nonsignificant numerical reduction in C. albicans infections in patients administered MO-IFE compared with SO-IFE. Collectively, this work shows that IFEs differentially affect Candida biology with potential infectious consequences for the patient.


Subject(s)
Candida , Sepsis , Humans , Child , Candida/genetics , Fat Emulsions, Intravenous , Cohort Studies , Candida albicans/genetics , Biofilms , Catheters , Hyphae
20.
J Infect Dis ; 229(2): 599-607, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38109276

ABSTRACT

BACKGROUND: Candida auris isolates exhibit elevated amphotericin B (AMB) minimum inhibitory concentrations (MICs). As liposomal AMB (L-AMB) can be safely administered at high doses, we explored L-AMB pharmacodynamics against C. auris isolates in an in vitro pharmacokinetic/pharmacodynamic (PK/PD) dilution model. METHODS: Four C. auris isolates with Clinical and Laboratory Standards Institute (CLSI) AMB MICs = 0.5-2 mg/L were tested in an in vitro PK/PD model simulating L-AMB pharmacokinetics. The in vitro model was validated using a Candida albicans isolate tested in animals. The peak concentration (Cmax)/MIC versus log10 colony-forming units (CFU)/mL reduction from the initial inoculum was analyzed with the sigmoidal model with variable slope (Emax model). Monte Carlo analysis was performed for the standard (3 mg/kg) and higher (5 mg/kg) L-AMB doses. RESULTS: The in vitro PK/PD relationship Cmax/MIC versus log10 CFU/mL reduction followed a sigmoidal pattern (R2 = 0.91 for C. albicans, R2 = 0.86 for C. auris). The Cmax/MIC associated with stasis was 2.1 for C. albicans and 9 for C. auris. The probability of target attainment was >95% with 3 mg/kg for wild-type C. albicans isolates with MIC ≤2 mg/L and C. auris isolates with MIC ≤1 mg/L whereas 5 mg/kg L-AMB is needed for C. auris isolates with MIC 2 mg/L. CONCLUSIONS: L-AMB was 4-fold less active against C. auris than C. albicans. Candida auris isolates with CLSI MIC 2 mg/L would require a higher L-AMB dose.


Subject(s)
Amphotericin B , Antifungal Agents , Animals , Amphotericin B/pharmacology , Antifungal Agents/pharmacokinetics , Candida auris , Candida , Candida albicans , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL