Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.235
Filter
Add more filters

Publication year range
1.
Mol Cell ; 81(17): 3526-3541.e8, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34186021

ABSTRACT

BAP1 is mutated or deleted in many cancer types, including mesothelioma, uveal melanoma, and cholangiocarcinoma. It is the catalytic subunit of the PR-DUB complex, which removes PRC1-mediated H2AK119ub1, essential for maintaining transcriptional repression. However, the precise relationship between BAP1 and Polycombs remains elusive. Using embryonic stem cells, we show that BAP1 restricts H2AK119ub1 deposition to Polycomb target sites. This increases the stability of Polycomb with their targets and prevents diffuse accumulation of H2AK119ub1 and H3K27me3. Loss of BAP1 results in a broad increase in H2AK119ub1 levels that is primarily dependent on PCGF3/5-PRC1 complexes. This titrates PRC2 away from its targets and stimulates H3K27me3 accumulation across the genome, leading to a general chromatin compaction. This provides evidence for a unifying model that resolves the apparent contradiction between BAP1 catalytic activity and its role in vivo, uncovering molecular vulnerabilities that could be useful for BAP1-related pathologies.


Subject(s)
Chromatin/metabolism , Polycomb-Group Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Animals , Cell Line/metabolism , Chromatin/genetics , Chromatin/physiology , Embryonic Stem Cells/metabolism , Heterochromatin , Histones/metabolism , Humans , Mice , Mouse Embryonic Stem Cells/metabolism , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 2/metabolism , Polycomb-Group Proteins/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/physiology , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/physiology , Ubiquitination
2.
Mol Cell ; 70(6): 1081-1088.e5, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29932901

ABSTRACT

Multiple deadenylases are known in vertebrates, the PAN2-PAN3 (PAN2/3) and CCR4-NOT (CNOT) complexes, and PARN, yet their differential functions remain ambiguous. Moreover, the role of poly(A) binding protein (PABP) is obscure, limiting our understanding of the deadenylation mechanism. Here, we show that CNOT serves as a predominant nonspecific deadenylase for cytoplasmic poly(A)+ RNAs, and PABP promotes deadenylation while preventing premature uridylation and decay. PAN2/3 selectively trims long tails (>∼150 nt) with minimal effect on transcriptome, whereas PARN does not affect mRNA deadenylation. CAF1 and CCR4, catalytic subunits of CNOT, display distinct activities: CAF1 trims naked poly(A) segments and is blocked by PABPC, whereas CCR4 is activated by PABPC to shorten PABPC-protected sequences. Concerted actions of CAF1 and CCR4 delineate the ∼27 nt periodic PABPC footprints along shortening tail. Our study unveils distinct functions of deadenylases and PABPC, re-drawing the view on mRNA deadenylation and regulation.


Subject(s)
Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Poly(A)-Binding Proteins/metabolism , RNA Stability , RNA, Messenger/metabolism , Receptors, CCR4/metabolism , Transcription Factors/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line/metabolism , Cytoplasm/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , HEK293 Cells , HeLa Cells , Humans , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Poly A/metabolism , Poly(A)-Binding Proteins/genetics , Polyadenylation , RNA, Messenger/genetics , Receptors, CCR4/genetics , Transcription Factors/genetics , Transcriptome
3.
J Med Virol ; 95(1): e28387, 2023 01.
Article in English | MEDLINE | ID: mdl-36478267

ABSTRACT

Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC) is a distinct subtype of gastric cancer (GC) distinguished by the presence of the EBV genome and limited viral gene expression within malignant epithelial cells. EBV infection is generally thought to be a relatively late event following atrophic gastritis in carcinogenesis, which implies the heterogeneity of EBVaGC. To facilitate the study of the role of EBV in EBVaGC, we established two EBV-positive GC cell lines (AGS-EBV and HGC27-EBV) with an epitheliotropic EBV strain M81 and characterized viral and cellular gene expression profiles in comparison to SNU719, a naturally derived EBV-positive GC cell line. Like SNU719, AGS-EBV and HGC27-EBV stably maintained their EBV genomes and expressed EBV-encoded small RNAs and nuclear antigen EBNA1. Comprehensive analysis of the expression of EBV-encoded miRNAs within the BamHI-A region rightward transcript region, and the transcripts of EBV latent and lytic genes in cell lines, as well as xenografts, reveals that AGS-EBV and HGC27-EBV cells undergo distinct viral expression profiles. A very small fraction of AGS-EBV and SNU719 cells can spontaneously produce infectious progeny virions, while HGC27-EBV does not. AGS-EBV (both M81 and Akata) cells largely mimic SNU719 cells in viral gene expression profiles, and altered cellular functions and pathways perturbed by EBV infection. Phylogenetic analysis of the EBV genome shows both M81 and Akata EBV strains are closely related to clinical EBVaGC isolates. Taken together, these two newly established EBV-positive GC cell lines can serve as models to further investigate the role of EBV in different contexts of gastric carcinogenesis and identify novel therapeutics against EBVaGC.


Subject(s)
Epstein-Barr Virus Infections , Stomach Neoplasms , Humans , Carcinogenesis , Cell Line/metabolism , Cell Line/virology , Herpesvirus 4, Human/genetics , Phylogeny , Stomach Neoplasms/metabolism , Stomach Neoplasms/virology
4.
Int J Mol Sci ; 23(9)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35563410

ABSTRACT

Non-coding micro-RNA (miRNAs) regulate the protein expression responsible for cell growth and proliferation. miRNAs also play a role in a cancer cells' response to drug treatment. Knowing that leukemia and lymphoma cells show different responses to active forms of vitamin D3, we decided to investigate the role of selected miRNA molecules and regulated proteins, analyzing if there is a correlation between the selected miRNAs and regulated proteins in response to two active forms of vitamin D3, calcitriol and tacalcitol. A total of nine human cell lines were analyzed: five leukemias: MV-4-1, Thp-1, HL-60, K562, and KG-1; and four lymphomas: Raji, Daudi, Jurkat, and U2932. We selected five miRNA molecules-miR-27b, miR-32, miR-125b, miR-181a, and miR-181b-and the proteins regulated by these molecules, namely, CYP24A1, Bak1, Bim, p21, p27, p53, and NF-kB. The results showed that the level of selected miRNAs correlates with the level of proteins, especially p27, Bak1, NFκB, and CYP24A1, and miR-27b and miR-125b could be responsible for the anticancer activity of active forms of vitamin D3 in human leukemia and lymphoma.


Subject(s)
Cholecalciferol , Leukemia , Lymphoma , MicroRNAs , Cell Line/drug effects , Cell Line/metabolism , Cell Proliferation , Cholecalciferol/pharmacology , Humans , Leukemia/genetics , Leukemia/metabolism , Lymphoma/genetics , Lymphoma/metabolism , MicroRNAs/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Vitamin D3 24-Hydroxylase
5.
J Hepatol ; 75(2): 351-362, 2021 08.
Article in English | MEDLINE | ID: mdl-33741397

ABSTRACT

BACKGROUND & AIMS: About 15% of intrahepatic cholangiocarcinomas (iCCAs) express fibroblast growth factor receptor 2 (FGFR2) fusion proteins (FFs), usually alongside mutational inactivation of TP53, CDKN2A or BAP1. In FFs, FGFR2 residues 1-768 fuse to sequences encoded by a diverse array of partner genes (>60) causing oncogenic FF activation. While FGFR-specific tyrosine kinase inhibitors (F-TKI) provide clinical benefit in FF+ iCCA, responses are partial and/or limited by resistance mechanisms, such as the V565F substitution in the FGFR2 gatekeeper residue. Improving on FF targeting in iCCA therefore remains a critical unmet need. Herein, we aimed to generate a murine model of FF-driven iCCA and use this to uncover actionable FF-associated dependencies. METHODS: Four iCCA FFs carrying different fusion sequences were expressed in Tp53-/- mouse liver organoids. Tumorigenic properties of genetically modified liver organoids were assessed by transplantation into immuno-deficient mice. Cellular models derived from neoplastic lesions were exploited for pre-clinical studies. RESULTS: Transplantation of FF-expressing liver organoids yielded tumors diagnosed as CCA based on histological, phenotypic and transcriptomic analyses. The penetrance of this tumorigenic phenotype was influenced by FF identity. Tumor organoids and 2D cell lines derived from CCA lesions were addicted to FF signaling via Ras-Erk, regardless of FF identity or V565F mutation. Dual blockade of FF and the Ras-Erk pathway by concomitant pharmacological inhibition of FFs and Mek1/2 provided greater therapeutic efficacy than single agent F-TKI in vitro and in vivo. CONCLUSIONS: FF-driven iCCA pathogenesis was successfully modeled on a Tp53-/- murine background, revealing biological heterogeneity among structurally different FFs. Double blockade of FF-ERK signaling deserves consideration for precision-based approaches against human FF+ iCCA. LAY SUMMARY: Intrahepatic cholangiocarcinoma (iCCA) is a rare cancer that is difficult to treat. A subtype of iCCA is caused by genomic alterations that generate oncogenic drivers known as FGFR2 fusions. Patients with FGFR2 fusions respond to FGFR inhibitors, but clinical responses are often of modest duration. We used animal and cellular models to show that FGFR2 fusions require the activity of a downstream effector named Mek1/2. We found that dual blockade of FGFR2 fusions and Mek1/2 was more effective than isolated inhibition of FGFR2 fusions, pointing to the potential clinical utility of dual FGFR2-MEK1/2 blockade in patients with iCCA.


Subject(s)
Cholangiocarcinoma/etiology , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Tumor Suppressor Protein p53/drug effects , Analysis of Variance , Animals , Cell Line/metabolism , Cholangiocarcinoma/genetics , Disease Models, Animal , Mice , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Signal Transduction/drug effects
6.
Mol Biol Rep ; 48(12): 7677-7688, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34648138

ABSTRACT

BACKGROUND: Hepatic stellate cells (HSCs) are liver-resident myofibroblast precursors responsible for the production of collagen and maintenance of the hepatic extracellular matrix (ECM). As such, they are generally associated with fibrotic liver diseases. HSCs become "activated" in response to tissue damage or pathogen invasion, a process most commonly driven by transforming growth factor-ß1 (TGF-ß1). Despite this, the full extent of TGF-ß1 signalling in these cells is poorly understood. Clarifying the range and diversity of this signalling will further improve our understanding of the process of HSC activation. METHODS AND RESULTS: RNA sequencing was used to quantitate the transcriptomic changes induced in LX-2 cells, an activated human HSC line, following TGF-b1 treatment. In total, 5,258 genes were found to be significantly differentially expressed with a false discovery rate cut-off of < 0.1. The topmost deregulated of these genes included those with no currently characterised role in either HSC activation or fibrotic processes, including CIITA and SERPINB2. In silico analysis revealed the prominent signalling pathways downstream of TGF-ß1 in LX-2 cells. CONCLUSIONS: In this study, we describe the genes and signalling pathways significantly deregulated in LX-2 cells following TGF-ß1 treatment. We identified several highly deregulated genes with no currently characterised role in HSC activation, which may represent novel mediators of fibrotic responses in HSCs or the liver macroenvironment. This work may be of use in the identification of new markers of liver fibrosis and could provide insight into prospective genes or pathways that might be targeted for the amelioration of fibrotic liver disease in the future.


Subject(s)
Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/physiology , Transforming Growth Factor beta1/metabolism , Actins/genetics , Base Sequence/genetics , Cell Line/metabolism , Cell Proliferation/drug effects , Collagen Type I/genetics , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Humans , Liver/metabolism , Liver Cirrhosis/pathology , Sequence Analysis, RNA/methods , Signal Transduction/drug effects , Signal Transduction/genetics , Smad3 Protein/metabolism , Transcriptome/genetics , Transforming Growth Factor beta1/pharmacology
7.
Nature ; 520(7547): 307-11, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25877200

ABSTRACT

Cell line misidentification, contamination and poor annotation affect scientific reproducibility. Here we outline simple measures to detect or avoid cross-contamination, present a framework for cell line annotation linked to short tandem repeat and single nucleotide polymorphism profiles, and provide a catalogue of synonymous cell lines. This resource will enable our community to eradicate the use of misidentified lines and generate credible cell-based data.


Subject(s)
Cell Line/classification , Cell Line/metabolism , Data Curation , Guidelines as Topic , Cell Separation , Genotype , Microsatellite Repeats/genetics , Polymorphism, Single Nucleotide/genetics , Quality Control , Reproducibility of Results , Species Specificity , Terminology as Topic
8.
Proc Natl Acad Sci U S A ; 115(23): E5279-E5288, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29784813

ABSTRACT

A protein synthesis enzyme, leucyl-tRNA synthetase (LRS), serves as a leucine sensor for the mechanistic target of rapamycin complex 1 (mTORC1), which is a central effector for protein synthesis, metabolism, autophagy, and cell growth. However, its significance in mTORC1 signaling and cancer growth and its functional relationship with other suggested leucine signal mediators are not well-understood. Here we show the kinetics of the Rag GTPase cycle during leucine signaling and that LRS serves as an initiating "ON" switch via GTP hydrolysis of RagD that drives the entire Rag GTPase cycle, whereas Sestrin2 functions as an "OFF" switch by controlling GTP hydrolysis of RagB in the Rag GTPase-mTORC1 axis. The LRS-RagD axis showed a positive correlation with mTORC1 activity in cancer tissues and cells. The GTP-GDP cycle of the RagD-RagB pair, rather than the RagC-RagA pair, is critical for leucine-induced mTORC1 activation. The active RagD-RagB pair can overcome the absence of the RagC-RagA pair, but the opposite is not the case. This work suggests that the GTPase cycle of RagD-RagB coordinated by LRS and Sestrin2 is critical for controlling mTORC1 activation, and thus will extend the current understanding of the amino acid-sensing mechanism.


Subject(s)
Leucine-tRNA Ligase/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Monomeric GTP-Binding Proteins/metabolism , Cell Line/metabolism , GTP Phosphohydrolases/metabolism , Humans , Leucine/metabolism , Lysosomes/metabolism , Multiprotein Complexes/metabolism , Nuclear Proteins/metabolism , Protein Binding , Protein Biosynthesis , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
9.
Int J Mol Sci ; 22(21)2021 Oct 24.
Article in English | MEDLINE | ID: mdl-34768886

ABSTRACT

Exposure to heavy metals, including arsenic and cadmium, is associated with neurodegenerative disorders such as Parkinson's disease. However, the mechanistic details of how these metals contribute to pathogenesis are not well understood. To search for underlying mechanisms involving α-synuclein, the protein that forms amyloids in Parkinson's disease, we here assessed the effects of arsenic and cadmium on α-synuclein amyloid formation in vitro and in Saccharomyces cerevisiae (budding yeast) cells. Atomic force microscopy experiments with acetylated human α-synuclein demonstrated that amyloid fibers formed in the presence of the metals have a different fiber pitch compared to those formed without metals. Both metal ions become incorporated into the amyloid fibers, and cadmium also accelerated the nucleation step in the amyloid formation process, likely via binding to intermediate species. Fluorescence microscopy analyses of yeast cells expressing fluorescently tagged α-synuclein demonstrated that arsenic and cadmium affected the distribution of α-synuclein aggregates within the cells, reduced aggregate clearance, and aggravated α-synuclein toxicity. Taken together, our in vitro data demonstrate that interactions between these two metals and α-synuclein modulate the resulting amyloid fiber structures, which, in turn, might relate to the observed effects in the yeast cells. Whilst our study advances our understanding of how these metals affect α-synuclein biophysics, further in vitro characterization as well as human cell studies are desired to fully appreciate their role in the progression of Parkinson's disease.


Subject(s)
Metals, Heavy/toxicity , Neurodegenerative Diseases , alpha-Synuclein/metabolism , Amyloid/metabolism , Arsenites/toxicity , Cadmium/toxicity , Cell Line/metabolism , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Parkinson Disease/etiology , Parkinson Disease/metabolism , Saccharomyces cerevisiae/metabolism , alpha-Synuclein/drug effects
10.
PLoS Pathog ; 14(11): e1007412, 2018 11.
Article in English | MEDLINE | ID: mdl-30383867

ABSTRACT

The bloodstream forms of Trypanosoma brucei (BSF), the parasite protist causing sleeping sickness, primarily proliferate in the blood of their mammalian hosts. The skin and adipose tissues were recently identified as additional major sites for parasite development. Glucose was the only carbon source known to be used by bloodstream trypanosomes to feed their central carbon metabolism, however, the metabolic behaviour of extravascular tissue-adapted parasites has not been addressed yet. Since the production of glycerol is an important primary function of adipocytes, we have adapted BSF trypanosomes to a glucose-depleted but glycerol-rich culture medium (CMM_Glyc/GlcNAc) and compared their metabolism and proteome to those of parasites grown in standard glucose-rich conditions (CMM_Glc). BSF were shown to consume 2-folds more oxygen per consumed carbon unit in CMM_Glyc/GlcNAc and were 11.5-times more sensitive to SHAM, a specific inhibitor of the plant-like alternative oxidase (TAO), which is the only mitochondrial terminal oxidase expressed in BSF. This is consistent with (i) the absolute requirement of the mitochondrial respiratory activity to convert glycerol into dihydroxyacetone phosphate, as deduced from the updated metabolic scheme and (ii) with the 1.8-fold increase of the TAO expression level compared to the presence of glucose. Proton NMR analysis of excreted end products from glycerol and glucose metabolism showed that these two carbon sources are metabolised through the same pathways, although the contributions of the acetate and succinate branches are more important in the presence of glycerol than glucose (10.2% versus 3.4% of the excreted end products, respectively). In addition, metabolomic analyses by mass spectrometry showed that, in the absence of glucose, 13C-labelled glycerol was incorporated into hexose phosphates through gluconeogenesis. As expected, RNAi-mediated down-regulation of glycerol kinase expression abolished glycerol metabolism and was lethal for BSF grown in CMM_Glyc/GlcNAc. Interestingly, BSF have adapted their metabolism to grow in CMM_Glyc/GlcNAc by concomitantly increasing their rate of glycerol consumption and decreasing that of glucose. However, the glycerol kinase activity was 7.8-fold lower in CMM_Glyc/GlcNAc, as confirmed by both western blotting and proteomic analyses. This suggests that the huge excess in glycerol kinase that is not absolutely required for glycerol metabolism, might be used for another yet undetermined non-essential function in glucose rich-conditions. Altogether, these data demonstrate that BSF trypanosomes are well-adapted to glycerol-rich conditions that could be encountered by the parasite in extravascular niches, such as the skin and adipose tissues.


Subject(s)
Glycerol/metabolism , Trypanosoma brucei brucei/metabolism , Adipose Tissue/metabolism , Cell Line/metabolism , Culture Media/chemistry , Gluconeogenesis , Glucose/metabolism , Glycolysis , Metabolomics , Mitochondria/metabolism , Succinic Acid/metabolism , Tandem Mass Spectrometry/methods , Trypanosoma brucei brucei/pathogenicity
11.
Metabolomics ; 16(10): 107, 2020 10 07.
Article in English | MEDLINE | ID: mdl-33026554

ABSTRACT

INTRODUCTION: It is widely but erroneously believed that drugs get into cells by passing through the phospholipid bilayer portion of the plasma and other membranes. Much evidence shows, however, that this is not the case, and that drugs cross biomembranes by hitchhiking on transporters for other natural molecules to which these drugs are structurally similar. Untargeted metabolomics can provide a method for determining the differential uptake of such metabolites. OBJECTIVES: Blood serum contains many thousands of molecules and provides a convenient source of biologically relevant metabolites. Our objective was to detect and identify metabolites present in serum, but to also establish a method capable of measure their uptake and secretion by different cell lines. METHODS: We develop an untargeted LC-MS/MS method to detect a broad range of compounds present in human serum. We apply this to the analysis of the time course of the uptake and secretion of metabolites in serum by several human cell lines, by analysing changes in the serum that represents the extracellular phase (the 'exometabolome' or metabolic footprint). RESULTS: Our method measures some 4000-5000 metabolic features in both positive and negative electrospray ionisation modes. We show that the metabolic footprints of different cell lines differ greatly from each other. CONCLUSION: Our new, 15-min untargeted metabolome method allows for the robust and convenient measurement of differences in the uptake of serum compounds by cell lines following incubation in serum. This will enable future research to study these differences in multiple cell lines that will relate this to transporter expression, thereby advancing our knowledge of transporter substrates, both natural and xenobiotic compounds.


Subject(s)
Metabolomics/methods , Plasma/chemistry , Animals , Cell Line/metabolism , Cell Line, Tumor/metabolism , Cell Membrane/metabolism , Chromatography, Liquid/methods , Drug Carriers/metabolism , Drug Delivery Systems/methods , Humans , Mammals/metabolism , Membrane Proteins/metabolism , Metabolome , Phospholipids/metabolism , Tandem Mass Spectrometry/methods
12.
Dis Colon Rectum ; 63(12): 1610-1620, 2020 12.
Article in English | MEDLINE | ID: mdl-33149023

ABSTRACT

BACKGROUND: Colorectal cancer is a leading cause of cancer-related death. Early onset colorectal cancer (age ≤45 y) is increasing and associated with advanced disease. Although distinct molecular subtypes of colorectal cancer have been characterized, it is unclear whether age-related molecular differences exist. OBJECTIVE: We sought to identify differences in gene expression between early and late-onset (age ≥65 y) colorectal cancer. DESIGN: We performed a review of our institution's colorectal cancer registry and identified patients with colorectal cancer with tissue specimens available for analysis. We used the Cancer Genome Atlas to initially identify differences in gene expression between early and late-onset colorectal cancer. In vitro experiments were performed on 2 colorectal cancer cell lines. SETTINGS: The study was conducted at a tertiary medical center. PATIENTS: Patients with early onset (n = 28) or late onset (age ≥65 y; n = 38) at time of diagnosis were included. MAIN OUTCOME MEASURES: The primary outcome was differential gene expression in patients with early versus late-onset colorectal cancer. The secondary outcome was patient mortality. RESULTS: Seven genes had increased expression in younger patients using The Cancer Genome Atlas. Only PEG10 was sufficiently expressed with quantitative polymerase chain reaction and had increased expression in our early onset group. Multivariable linear regression analysis identified age as a significant independent predictor of increased PEG10 expression. Outcomes data from The Cancer Genome Atlas suggests that PEG10 is associated with poor overall survival. In vitro studies in HCT-116 and HT-29 cell lines showed that PEG10 contributes to cellular proliferation and invasion in colorectal cancer. LIMITATIONS: Tissue samples were from formalin-fixed, paraffin-embedded sections. Many patients did not have mutational status for review. CONCLUSIONS: PEG10 is differentially expressed in early onset colorectal cancer and may functionally contribute to tumor cell proliferation and invasion. An increase in PEG10 expression correlates with decreased overall survival. See Video Abstract at http://links.lww.com/DCR/B343. LA EXPRESIÓN DIFERENCIAL DE PEG10 CONTRIBUYE A LA ENFERMEDAD AGRESIVA EN EL CÁNCER COLORRECTAL DE INICIO TEMPRANO VERSUS INICIO TARDÍO: El cáncer colorrectal es una de las principales causas de muerte relacionada con el cáncer. El cáncer colorrectal de inicio temprano (edad ≤45 años) está en aumento y asociado con enfermedad avanzada. Aunque se han caracterizado distintos subtipos moleculares del cáncer colorrectal, no está claro si existen diferencias moleculares relacionadas con la edad.Se buscó identificar diferencias en la expresión génica entre el cáncer colorrectal de inicio temprano y tardío (edad ≥ 65 años).Realizamos una revisión del registro de cáncer colorrectal de nuestra institución e identificamos pacientes con cáncer colorrectal con muestras de tejido disponibles para su análisis. Utilizamos el Atlas del Genoma del Cáncer para identificar inicialmente las diferencias en la expresión génica entre el cáncer colorrectal de inicio temprano y de inicio tardío. Se realizaron experimentos in vitro en dos líneas celulares de cáncer colorrectal.El estudio se realizó en un centro médico de tercer nivel.Se incluyeron pacientes con inicio temprano (n = 28) e inicio tardío (edad ≥65 años, n = 38) al momento del diagnóstico.El resultado primario fue la expresión diferencial de genes en pacientes con cáncer colorrectal de inicio temprano versus tardío. El resultado secundario fue la mortalidad de los pacientes.Siete genes aumentaron su expresión en pacientes más jóvenes usando el Atlas del Genoma del Cáncer. Solo PEG10 se expresó suficientemente con la reacción en cadena de la polimerasa cuantitativa y tuvo una mayor expresión en nuestro grupo de inicio temprano. El análisis de regresión lineal multivariable identificó la edad como un predictor independiente significativo del aumento de la expresión de PEG10. Los datos de resultados de el Atlas del Genoma del Cáncer sugieren que PEG10 está asociado con una pobre supervivencia general. Los estudios in vitro en líneas celulares HCT-116 y HT-29 mostraron que PEG10 contribuye a la proliferación e invasión celular en el cáncer colorrectal.Las muestras de tejido fueron de portaobjetos embebidos en parafina fijados con formalina. Muchos pacientes no tenían el estado de mutación para su revisión.El PEG10 se expresa diferencialmente en el cáncer colorrectal de inicio temprano y puede contribuir funcionalmente a la proliferación e invasión de células tumorales. El aumento en la expresión de PEG10 se correlaciona con la disminución de la supervivencia general. Consulte Video Resumen en http://links.lww.com/DCR/B343.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , DNA-Binding Proteins/genetics , Late Onset Disorders/genetics , RNA-Binding Proteins/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , Cell Line/metabolism , Cell Proliferation/genetics , Colorectal Neoplasms/pathology , Female , Gene Expression , Humans , Late Onset Disorders/epidemiology , Male , Mortality/trends , Neoplasm Invasiveness/genetics , Real-Time Polymerase Chain Reaction/methods , Severity of Illness Index , Time Factors
13.
Bioorg Chem ; 102: 104040, 2020 09.
Article in English | MEDLINE | ID: mdl-32659485

ABSTRACT

A bright far-red emitting flavonoid derivative (FuraET) was synthesized in good yields by inserting a π extension group (i.e., furan) into the flavonoid skeleton, via using the Suzuki-Miyaura cross-coupling reaction. FuaraET exhibited optical absorption at λab ≈ 450 nm and emission λem ≈ 660 nm by recognizing as the first far-red emitting flavonoid derivative reported. FuraET exhibited a large Stokes shift (Δλ > 150 nm) high fluorescent quantum yield (φfl ≈ 0.2-0.4), and good photostability indicating excellent characteristics for an imaging probe. Live cell fluorescent confocal microscopy imaging revealed the exceptional selectivity of the FuraET towards cellular lysosomes (Mander's overlap coefficients >0.9). The observed non-alkalinizing nature and high biocompatibility (LC50 > 50 µM) suggested that FuraET can a reliable lysosome marker for live cell imaging experiments. Our further study also indicated that FuraET may likely internalized into hydrophobic regions of the cellular lysosomes in contrast to acidic lysosomal lumen.


Subject(s)
Cell Line/metabolism , Flavonoids/chemistry , Lysosomes/chemistry , Microscopy, Confocal/methods , Optical Imaging/methods , Cell Line/cytology , Humans , Molecular Structure
14.
Mar Drugs ; 18(4)2020 Apr 12.
Article in English | MEDLINE | ID: mdl-32290587

ABSTRACT

BACKGROUND: Previously published work has demonstrated that the LPS injection of Ciona robusta leads to the overexpression of a truncated form of an immune-related mRNA (C8short) by means of Ciona robusta (CR) alternative polyadenylation (APA) (CR-APA). METHODS: The 3D structure of the C8short-derived Ciona robusta chemo-attractive peptide (CrCP) was evaluated by homology modeling. The biological activity of the CrCP was studied in vitro using a primary human dermal cell line (HuDe). Real-Time PCR was used to investigate the expression levels of genes involved in cell motility. NF-κB signaling was studied by western blotting. RESULTS: In silico modeling showed that CrCP displayed structural characteristics already reported for a short domain of the vertebrate CRK gene, suggesting its possible involvement in cell migration mechanisms. In vitro assays demonstrated that CrCP was capable of inducing the motility of HuDe cells in both wound healing and chemo-attractive experiments. qPCR demonstrated the capability of CrCP to modulate the expression of the matrix metalloproteinase-7 (MMP-7) and E-cadherin genes. Finally, western blot analysis demonstrated that treatment with CrCP induced activation of the NF-κB signaling pathway. CONCLUSION: Our results describe the characterization of the 3D structure and chemo-attractive activity of an LPS-induced CrCP peptide from Ciona robusta.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Ciona , Peptides/pharmacology , Animals , Cell Line/drug effects , Cell Line/metabolism , Cell Movement/drug effects , Lipopolysaccharides/pharmacology , RNA, Messenger/metabolism
15.
J Fish Biol ; 96(2): 418-426, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31755106

ABSTRACT

A continuous cell line MPF derived from the fin of black carp Mylopharyngodon piceus was established and characterised in this study. Mylopharyngodon piceus fin (MPF) cells were subcultured for more than 80 passages with high viability recovery after long-term storage. The karyotyping analysis revealed that MPF had a modal diploid chromosome number (2n = 48) and identical ribosomal RNA sequence with black carp. In addition, the expression of pluripotency-associated markers including nanog, oct4 and vasa, were detected in MPF. The transient transfection efficiency of MPF reached 23% with a fluorescent reporter by modified electroporation and stable expression of red fluorescent MPF was established by the baculovirus system, indicating that MPF is an ideal platform for studying gene functions in vitro. Lastly, cytopathic effects were also observed and RNA transcripts of a viral gene increased after infection by spring viremia of carp virus (SVCV), suggesting that MPF could be an alternative tool for investigating pathogen-host interactions in black carp. In conclusion, a fin cell line that is susceptible to SVCV was established as a potential adult stem-cell line, providing a suitable tool for future genetic analyses and pathogen-host studies in black carp.


Subject(s)
Animal Fins/cytology , Cyprinidae , Primary Cell Culture/methods , Rhabdoviridae/growth & development , Animal Fins/metabolism , Animal Fins/virology , Animals , Cell Line/metabolism , Cell Line/virology , Cyprinidae/metabolism , Cyprinidae/virology , Fish Diseases/virology , Fish Proteins/genetics , Fish Proteins/metabolism , Fishes , Gene Expression , Genetic Markers/genetics , Genetic Markers/physiology , Genetic Predisposition to Disease , Host Microbial Interactions , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/virology , Rhabdoviridae Infections/virology , Transfection/methods
16.
Cell Immunol ; 337: 54-61, 2019 03.
Article in English | MEDLINE | ID: mdl-30773217

ABSTRACT

Dendritic cells (DC) have the unique ability to capture microorganisms and activate naive T lymphocytes. Obtaining DC derived from progenitors demands high cost and prolonged cultivation. Different immortalized DC has been isolated but most of them have immature phenotype and depending on growing factors or other stimuli to be used. In this study we characterized the cell line AP284 as a DC. AP284 cells express high levels of CD11b, MHC class II, 33D1 and CD209b. They also express high amounts of CD80 costimulatory molecule and different toll like receptors (TLR). After stimuli with TLR agonist they produce surprising amount of IL-12p40 related to IL-23 formation but not IL-12p70. They are also able to produce IL-6 and favor amplification of a Th17 but not Th1 profile. This DC line may be useful for a better understanding of factors and cellular interactions responsible for the induction of IL-12p40, IL-23 and Th17 generation.


Subject(s)
Cell Culture Techniques/methods , Dendritic Cells/immunology , Th17 Cells/metabolism , Animals , Cell Differentiation , Cell Line/metabolism , Cells, Cultured , Dendritic Cells/metabolism , Interleukin-12/metabolism , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Th1 Cells/immunology , Th17 Cells/immunology , Toll-Like Receptor 7/metabolism , Toll-Like Receptors/metabolism
17.
Proc Natl Acad Sci U S A ; 113(49): 14007-14012, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27872304

ABSTRACT

The study of the isotopic fractionation of endogen elements and toxic heavy metals in living organisms for biomedical applications, and for metabolic and toxicological studies, is a cutting-edge research topic. This paper shows that human neuroblastoma cells incorporated small amounts of uranium (U) after exposure to 10 µM natural U, with preferential uptake of the 235U isotope with regard to 238U. Efforts were made to develop and then validate a procedure for highly accurate n(238U)/n(235U) determinations in microsamples of cells. We found that intracellular U is enriched in 235U by 0.38 ± 0.13‰ (2σ, n = 7) relative to the exposure solutions. These in vitro experiments provide clues for the identification of biological processes responsible for uranium isotopic fractionation and link them to potential U incorporation pathways into neuronal cells. Suggested incorporation processes are a kinetically controlled process, such as facilitated transmembrane diffusion, and the uptake through a high-affinity uranium transport protein involving the modification of the uranyl (UO22+) coordination sphere. These findings open perspectives on the use of isotopic fractionation of metals in cellular models, offering a probe to track uptake/transport pathways and to help decipher associated cellular metabolic processes.


Subject(s)
Chemical Fractionation/methods , Uranium/analysis , Cell Culture Techniques , Cell Line/metabolism , Humans , Isotopes , Neurons/metabolism , Uranium/metabolism
18.
Medicina (Kaunas) ; 55(7)2019 Jul 07.
Article in English | MEDLINE | ID: mdl-31284672

ABSTRACT

Background and objectives: Arabinoxylans (AX) can gel and exhibit antioxidant capacity. Previous studies have demonstrated the potential application of AX microspheres as colon-targeted drug carriers. However, the cytotoxicity of AX gels has not been investigated so far. Therefore, the aim of the present study was to prepare AX-based particles (AXM) by coaxial electrospraying method and to investigate their antioxidant potential and cytotoxicity on human colon cells. Materials and Methods: The gelation of AX was studied by monitoring the storage (G') and loss (G'') moduli. The morphology of AXM was evaluated using optical and scanning electron microscopy (SEM). The in vitro antioxidant activity of AX before and after gelation was measured using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods. In addition, the effect of AX and AXM on the proliferation of human colon cells (CCD 841 CoN) was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: The final G' and G'' values for AX gels were 293 and 0.31 Pa, respectively. AXM presented spherical shape and rough surface with a three-dimensional and porous network. The swelling ratio and mesh size of AXM were 35 g water/g AX and 27 nm, respectively. Gelation decreased the antioxidant activity of AX by 61-64 %. AX and AXM did not affect proliferation or show any toxic effect on the normal human colon cell line CCD 841 CoN. Conclusion: The results indicate that AXM could be promising biocompatible materials with antioxidant activity.


Subject(s)
Cell Line/drug effects , Xylans/metabolism , Antioxidants/metabolism , Antioxidants/pharmacology , Cell Line/metabolism , Colon/drug effects , Colon/physiopathology , Cytotoxins/pharmacology , Cytotoxins/therapeutic use , Gels/metabolism , Gels/therapeutic use , Humans , Plant Extracts/metabolism , Plant Extracts/therapeutic use , Xylans/pharmacology
19.
Development ; 142(6): 1193-202, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25725069

ABSTRACT

We have previously described the creation and analysis of a Notch1 activity-trap mouse line, Notch1 intramembrane proteolysis-Cre6MT or N1IP::Cre(LO), that marked cells experiencing relatively high levels of Notch1 activation. Here, we report and characterize a second line with improved sensitivity (N1IP::Cre(HI)) to mark cells experiencing lower levels of Notch1 activation. This improvement was achieved by increasing transcript stability and by restoring the native carboxy terminus of Cre, resulting in a five- to tenfold increase in Cre activity. The magnitude of this effect probably impacts Cre activity in strains with carboxy-terminal Ert2 fusion. These two trap lines and the related line N1IP::Cre(ERT2) form a complementary mapping tool kit to identify changes in Notch1 activation patterns in vivo as the consequence of genetic or pharmaceutical intervention, and illustrate the variation in Notch1 signal strength from one tissue to the next and across developmental time.


Subject(s)
Cell Line/physiology , Receptor, Notch1/metabolism , Signal Transduction/physiology , Animals , Blotting, Western , Cell Line/metabolism , Fibroblasts , Galactosides , Gene Knock-In Techniques , Immunohistochemistry , Indoles , Integrases/genetics , Integrases/metabolism , Mice , Receptor, Notch1/genetics , Transfection
20.
Int Immunol ; 29(5): 235-242, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28431112

ABSTRACT

Mast cells (MCs) play pivotal roles in allergic reactions and the host defense against microbial infection through the IgE-dependent and IgE-independent signaling pathways. MC lines that can be analyzed both in vitro and in vivo would be useful for the study of MC-dependent immune responses. Here, we investigated the functional characteristics of a mouse embryonic stem cell-derived MC-like cell line, MEDMC-BRC6. The cell line expressed FcεRI and c-Kit and showed degranulation and production of inflammatory cytokines and chemokines, including TNF-α, IL-6 and MCP-1, upon cross-linking FcεRI with IgE. These cytokines and chemokines were also produced by the cell line by stimulation of TLR2 and TLR4. MEDMC-BRC6 survived in the peritoneal cavity and the ear skin for at least 6 months after the transfer into genetically compatible MC-deficient KitW-sh/W-sh mice, in which systemic anaphylaxis was successfully induced. Thus, MEDMC-BRC6 cells represent a potent tool for investigating the functions of MCs in vitro and in vivo.


Subject(s)
Anaphylaxis/immunology , Cell Line/metabolism , Mast Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Adoptive Transfer , Animals , Cell Degranulation , Cell Differentiation , Chemokine CCL2/metabolism , Immunoglobulin E/immunology , Interleukin-6/metabolism , Mast Cells/cytology , Mast Cells/transplantation , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Proto-Oncogene Proteins c-kit/genetics , Receptors, IgG/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL