Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.211
Filter
Add more filters

Publication year range
1.
Cell ; 187(11): 2652-2656, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788688

ABSTRACT

Mechanobiology-the field studying how cells produce, sense, and respond to mechanical forces-is pivotal in the analysis of how cells and tissues take shape in development and disease. As we venture into the future of this field, pioneers share their insights, shaping the trajectory of future research and applications.


Subject(s)
Biophysics , Animals , Humans , Biomechanical Phenomena , Cell Shape , Mechanotransduction, Cellular
2.
Nat Immunol ; 25(7): 1193-1206, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38834865

ABSTRACT

Immune cells experience large cell shape changes during environmental patrolling because of the physical constraints that they encounter while migrating through tissues. These cells can adapt to such deformation events using dedicated shape-sensing pathways. However, how shape sensing affects immune cell function is mostly unknown. Here, we identify a shape-sensing mechanism that increases the expression of the chemokine receptor CCR7 and guides dendritic cell migration from peripheral tissues to lymph nodes at steady state. This mechanism relies on the lipid metabolism enzyme cPLA2, requires nuclear envelope tensioning and is finely tuned by the ARP2/3 actin nucleation complex. We also show that this shape-sensing axis reprograms dendritic cell transcription by activating an IKKß-NF-κB-dependent pathway known to control their tolerogenic potential. These results indicate that cell shape changes experienced by immune cells can define their migratory behavior and immunoregulatory properties and reveal a contribution of the physical properties of tissues to adaptive immunity.


Subject(s)
Cell Movement , Dendritic Cells , Homeostasis , Lymph Nodes , Mice, Inbred C57BL , Receptors, CCR7 , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Lymph Nodes/immunology , Lymph Nodes/cytology , Receptors, CCR7/metabolism , Mice , Cell Movement/immunology , Cell Shape , NF-kappa B/metabolism , Mice, Knockout , Signal Transduction/immunology , I-kappa B Kinase/metabolism , Actin-Related Protein 2-3 Complex/metabolism
3.
Cell ; 184(18): 4819-4837.e22, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34380046

ABSTRACT

Animal bodies are composed of cell types with unique expression programs that implement their distinct locations, shapes, structures, and functions. Based on these properties, cell types assemble into specific tissues and organs. To systematically explore the link between cell-type-specific gene expression and morphology, we registered an expression atlas to a whole-body electron microscopy volume of the nereid Platynereis dumerilii. Automated segmentation of cells and nuclei identifies major cell classes and establishes a link between gene activation, chromatin topography, and nuclear size. Clustering of segmented cells according to gene expression reveals spatially coherent tissues. In the brain, genetically defined groups of neurons match ganglionic nuclei with coherent projections. Besides interneurons, we uncover sensory-neurosecretory cells in the nereid mushroom bodies, which thus qualify as sensory organs. They furthermore resemble the vertebrate telencephalon by molecular anatomy. We provide an integrated browser as a Fiji plugin for remote exploration of all available multimodal datasets.


Subject(s)
Cell Shape , Gene Expression Regulation , Polychaeta/cytology , Polychaeta/genetics , Single-Cell Analysis , Animals , Cell Nucleus/metabolism , Ganglia, Invertebrate/metabolism , Gene Expression Profiling , Multigene Family , Multimodal Imaging , Mushroom Bodies/metabolism , Polychaeta/ultrastructure
4.
Cell ; 184(8): 2084-2102.e19, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33765444

ABSTRACT

The human brain has undergone rapid expansion since humans diverged from other great apes, but the mechanism of this human-specific enlargement is still unknown. Here, we use cerebral organoids derived from human, gorilla, and chimpanzee cells to study developmental mechanisms driving evolutionary brain expansion. We find that neuroepithelial differentiation is a protracted process in apes, involving a previously unrecognized transition state characterized by a change in cell shape. Furthermore, we show that human organoids are larger due to a delay in this transition, associated with differences in interkinetic nuclear migration and cell cycle length. Comparative RNA sequencing (RNA-seq) reveals differences in expression dynamics of cell morphogenesis factors, including ZEB2, a known epithelial-mesenchymal transition regulator. We show that ZEB2 promotes neuroepithelial transition, and its manipulation and downstream signaling leads to acquisition of nonhuman ape architecture in the human context and vice versa, establishing an important role for neuroepithelial cell shape in human brain expansion.


Subject(s)
Biological Evolution , Brain/cytology , Cell Shape/physiology , Animals , Brain/metabolism , Cell Differentiation , Cell Line , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Gene Expression , Gorilla gorilla , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Neurogenesis , Neurons/cytology , Neurons/metabolism , Organoids/cytology , Organoids/metabolism , Pan troglodytes , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box Binding Homeobox 2/metabolism
5.
Cell ; 177(7): 1672-1674, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31199912

ABSTRACT

Cell membranes can adopt a variety of shapes and curvatures, yet our understanding of the factors involved remains limited. In this issue of Cell, Shurer et al. (2019) demonstrate that the glycocalyx can regulate cell shape from the outside in.


Subject(s)
Glycocalyx , Sugars , Cell Membrane , Cell Shape
6.
Cell ; 177(7): 1757-1770.e21, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31056282

ABSTRACT

Cells bend their plasma membranes into highly curved forms to interact with the local environment, but how shape generation is regulated is not fully resolved. Here, we report a synergy between shape-generating processes in the cell interior and the external organization and composition of the cell-surface glycocalyx. Mucin biopolymers and long-chain polysaccharides within the glycocalyx can generate entropic forces that favor or disfavor the projection of spherical and finger-like extensions from the cell surface. A polymer brush model of the glycocalyx successfully predicts the effects of polymer size and cell-surface density on membrane morphologies. Specific glycocalyx compositions can also induce plasma membrane instabilities to generate more exotic undulating and pearled membrane structures and drive secretion of extracellular vesicles. Together, our results suggest a fundamental role for the glycocalyx in regulating curved membrane features that serve in communication between cells and with the extracellular matrix.


Subject(s)
Cell Shape , Extracellular Matrix/metabolism , Glycocalyx/metabolism , Membrane Glycoproteins/metabolism , Mucins/metabolism , Animals , Cell Line , Extracellular Matrix/genetics , Glycocalyx/genetics , Horses , Humans , Membrane Glycoproteins/genetics , Mucins/genetics
7.
Cell ; 179(5): 1207-1221.e22, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31730858

ABSTRACT

Accurate measurement of clonal genotypes, mutational processes, and replication states from individual tumor-cell genomes will facilitate improved understanding of tumor evolution. We have developed DLP+, a scalable single-cell whole-genome sequencing platform implemented using commodity instruments, image-based object recognition, and open source computational methods. Using DLP+, we have generated a resource of 51,926 single-cell genomes and matched cell images from diverse cell types including cell lines, xenografts, and diagnostic samples with limited material. From this resource we have defined variation in mitotic mis-segregation rates across tissue types and genotypes. Analysis of matched genomic and image measurements revealed correlations between cellular morphology and genome ploidy states. Aggregation of cells sharing copy number profiles allowed for calculation of single-nucleotide resolution clonal genotypes and inference of clonal phylogenies and avoided the limitations of bulk deconvolution. Finally, joint analysis over the above features defined clone-specific chromosomal aneuploidy in polyclonal populations.


Subject(s)
DNA Replication/genetics , Genome, Human , High-Throughput Nucleotide Sequencing , Single-Cell Analysis , Aneuploidy , Animals , Cell Cycle/genetics , Cell Line, Tumor , Cell Shape , Cell Survival , Chromosomes, Human/genetics , Clone Cells , DNA Transposable Elements/genetics , Diploidy , Female , Genotype , Humans , Male , Mice , Mutation/genetics , Phylogeny , Polymorphism, Single Nucleotide/genetics
8.
Annu Rev Cell Dev Biol ; 35: 111-129, 2019 10 06.
Article in English | MEDLINE | ID: mdl-31340125

ABSTRACT

Many cellular processes rely on precise and timely deformation of the cell membrane. While many proteins participate in membrane reshaping and scission, usually in highly specialized ways, Bin/amphiphysin/Rvs (BAR) domain proteins play a pervasive role, as they not only participate in many aspects of cell trafficking but also are highly versatile membrane remodelers. Subtle changes in the shape and size of the BAR domain can greatly impact the way in which BAR domain proteins interact with the membrane. Furthermore, the activity of BAR domain proteins can be tuned by external physical parameters, and so they behave differently depending on protein surface density, membrane tension, or membrane shape. These proteins can form 3D structures that mold the membrane and alter its liquid properties, even promoting scission under various circumstances.As such, BAR domain proteins have numerous roles within the cell. Endocytosis is among the most highly studied processes in which BAR domain proteins take on important roles. Over the years, a more complete picture has emerged in which BAR domain proteins are tied to almost all intracellular compartments; examples include endosomal sorting and tubular networks in the endoplasmic reticulum and T-tubules. These proteins also have a role in autophagy, and their activity has been linked with cancer. Here, we briefly review the history of BAR domain protein discovery, discuss the mechanisms by which BAR domain proteins induce curvature, and attempt to settle important controversies in the field. Finally, we review BAR domain proteins in the context of a cell, highlighting their emerging roles in cell signaling and organelle shaping.


Subject(s)
Carrier Proteins/metabolism , Cell Membrane Structures/chemistry , Membrane Proteins/metabolism , Animals , Carrier Proteins/chemistry , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Membrane Structures/metabolism , Cell Shape , Humans , Membrane Proteins/chemistry , Neoplasms/pathology , Organelles/chemistry , Organelles/metabolism , Protein Domains
9.
Nat Rev Mol Cell Biol ; 20(1): 38-54, 2019 01.
Article in English | MEDLINE | ID: mdl-30323238

ABSTRACT

The cytoskeleton and its components - actin, microtubules and intermediate filaments - have been studied for decades, and multiple roles of the individual cytoskeletal substructures are now well established. However, in recent years it has become apparent that the three cytoskeletal elements also engage in extensive crosstalk that is important for core biological processes. Actin-microtubule crosstalk is particularly important for the regulation of cell shape and polarity during cell migration and division and the establishment of neuronal and epithelial cell shape and function. This crosstalk engages different cytoskeletal regulators and encompasses various physical interactions, such as crosslinking, anchoring and mechanical support. Thus, the cytoskeleton should be considered not as a collection of individual parts but rather as a unified system in which subcomponents co-regulate each other to exert their functions in a precise and highly adaptable manner.


Subject(s)
Actins/metabolism , Microtubules/metabolism , Animals , Cell Shape/physiology , Cytoskeleton/metabolism , Epithelial Cells/metabolism , Humans
10.
Cell ; 165(7): 1820-1820.e1, 2016 Jun 16.
Article in English | MEDLINE | ID: mdl-27315485

ABSTRACT

Cells sense and respond to properties of their microenvironment that can affect cell morphology, protein levels and localization, gene expression, and even nuclear integrity. Tissue micro-stiffness, largely influenced by extracellular matrix, varies dramatically within an organism and can be a useful parameter to both clarify and organize a wide range of cell and molecular processes, such as genomic changes in cancer.


Subject(s)
Biomechanical Phenomena , Cell Culture Techniques , Extracellular Matrix/metabolism , Animals , Cell Shape , Humans , Neoplasms/pathology
11.
Nat Rev Mol Cell Biol ; 18(12): 758-770, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28951564

ABSTRACT

A growing body of evidence suggests that mechanical signals emanating from the cell's microenvironment are fundamental regulators of cell behaviour. Moreover, at the macroscopic scale, the influence of forces, such as the forces generated by blood flow, muscle contraction, gravity and overall tissue rigidity (for example, inside of a tumour lump), is central to our understanding of physiology and disease pathogenesis. Still, how mechanical cues are sensed and transduced at the molecular level to regulate gene expression has long remained enigmatic. The identification of the transcription factors YAP and TAZ as mechanotransducers started to fill this gap. YAP and TAZ read a broad range of mechanical cues, from shear stress to cell shape and extracellular matrix rigidity, and translate them into cell-specific transcriptional programmes. YAP and TAZ mechanotransduction is critical for driving stem cell behaviour and regeneration, and it sheds new light on the mechanisms by which aberrant cell mechanics is instrumental for the onset of multiple diseases, such as atherosclerosis, fibrosis, pulmonary hypertension, inflammation, muscular dystrophy and cancer.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Extracellular Matrix/metabolism , Mechanotransduction, Cellular , Phosphoproteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Acyltransferases , Adaptor Proteins, Signal Transducing/genetics , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cell Shape , Extracellular Matrix/genetics , Extracellular Matrix/pathology , Fibrosis , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Neoplasms/genetics , Neoplasms/metabolism , Phosphoproteins/genetics , Shear Strength , Transcription Factors/genetics , YAP-Signaling Proteins
12.
Cell ; 159(2): 415-27, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25303534

ABSTRACT

Epithelial cells acquire functionally important shapes (e.g., squamous, cuboidal, columnar) during development. Here, we combine theory, quantitative imaging, and perturbations to analyze how tissue geometry, cell divisions, and mechanics interact to shape the presumptive enveloping layer (pre-EVL) on the zebrafish embryonic surface. We find that, under geometrical constraints, pre-EVL flattening is regulated by surface cell number changes following differentially oriented cell divisions. The division pattern is, in turn, determined by the cell shape distribution, which forms under geometrical constraints by cell-cell mechanical coupling. An integrated mathematical model of this shape-division feedback loop recapitulates empirical observations. Surprisingly, the model predicts that cell shape is robust to changes of tissue surface area, cell volume, and cell number, which we confirm in vivo. Further simulations and perturbations suggest the parameter linking cell shape and division orientation contributes to epithelial diversity. Together, our work identifies an evolvable design logic that enables robust cell-level regulation of tissue-level development.


Subject(s)
Epithelial Cells/cytology , Models, Biological , Morphogenesis , Zebrafish/embryology , Animals , Biomechanical Phenomena , Cell Count , Cell Division , Cell Shape , Embryo, Nonmammalian/cytology
13.
Cell ; 156(6): 1132-1138, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24630717

ABSTRACT

Cellular membranes are constantly reshaped by vesicular fission and fusion as well as by interactions with the dynamic cytoskeleton. Signaling activity at membranes depends on their geometric parameters, such as surface area and curvature; these affect local concentration and thereby regulate the potency of molecular reactions. A membrane's shape is thus inextricably tied to information processing. Here, we review how a trinity of signaling, cytoskeletal dynamics, and membrane shape interact within a closed-loop causality that gives rise to an energy-consuming, self-organized system that changes shape to sense the extracellular environment.


Subject(s)
Cell Membrane/metabolism , Signal Transduction , Animals , Cell Membrane/chemistry , Cell Shape , Cytoskeleton/metabolism , ras Proteins/chemistry , ras Proteins/metabolism
14.
Nature ; 613(7943): 345-354, 2023 01.
Article in English | MEDLINE | ID: mdl-36599983

ABSTRACT

Understanding how a subset of expressed genes dictates cellular phenotype is a considerable challenge owing to the large numbers of molecules involved, their combinatorics and the plethora of cellular behaviours that they determine1,2. Here we reduced this complexity by focusing on cellular organization-a key readout and driver of cell behaviour3,4-at the level of major cellular structures that represent distinct organelles and functional machines, and generated the WTC-11 hiPSC Single-Cell Image Dataset v1, which contains more than 200,000 live cells in 3D, spanning 25 key cellular structures. The scale and quality of this dataset permitted the creation of a generalizable analysis framework to convert raw image data of cells and their structures into dimensionally reduced, quantitative measurements that can be interpreted by humans, and to facilitate data exploration. This framework embraces the vast cell-to-cell variability that is observed within a normal population, facilitates the integration of cell-by-cell structural data and allows quantitative analyses of distinct, separable aspects of organization within and across different cell populations. We found that the integrated intracellular organization of interphase cells was robust to the wide range of variation in cell shape in the population; that the average locations of some structures became polarized in cells at the edges of colonies while maintaining the 'wiring' of their interactions with other structures; and that, by contrast, changes in the location of structures during early mitotic reorganization were accompanied by changes in their wiring.


Subject(s)
Induced Pluripotent Stem Cells , Intracellular Space , Humans , Induced Pluripotent Stem Cells/cytology , Single-Cell Analysis , Datasets as Topic , Interphase , Cell Shape , Mitosis , Cell Polarity , Cell Survival
15.
Nature ; 617(7962): 747-754, 2023 May.
Article in English | MEDLINE | ID: mdl-37165189

ABSTRACT

While early multicellular lineages necessarily started out as relatively simple groups of cells, little is known about how they became Darwinian entities capable of sustained multicellular evolution1-3. Here we investigate this with a multicellularity long-term evolution experiment, selecting for larger group size in the snowflake yeast (Saccharomyces cerevisiae) model system. Given the historical importance of oxygen limitation4, our ongoing experiment consists of three metabolic treatments5-anaerobic, obligately aerobic and mixotrophic yeast. After 600 rounds of selection, snowflake yeast in the anaerobic treatment group evolved to be macroscopic, becoming around 2 × 104 times larger (approximately mm scale) and about 104-fold more biophysically tough, while retaining a clonal multicellular life cycle. This occurred through biophysical adaptation-evolution of increasingly elongate cells that initially reduced the strain of cellular packing and then facilitated branch entanglements that enabled groups of cells to stay together even after many cellular bonds fracture. By contrast, snowflake yeast competing for low oxygen5 remained microscopic, evolving to be only around sixfold larger, underscoring the critical role of oxygen levels in the evolution of multicellular size. Together, this research provides unique insights into an ongoing evolutionary transition in individuality, showing how simple groups of cells overcome fundamental biophysical limitations through gradual, yet sustained, multicellular evolution.


Subject(s)
Acclimatization , Biological Evolution , Cell Aggregation , Saccharomyces cerevisiae , Models, Biological , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Anaerobiosis , Aerobiosis , Oxygen/analysis , Oxygen/metabolism , Cell Shape , Cell Aggregation/physiology
16.
Nature ; 615(7952): 517-525, 2023 03.
Article in English | MEDLINE | ID: mdl-36859545

ABSTRACT

Most human cells require anchorage for survival. Cell-substrate adhesion activates diverse signalling pathways, without which cells undergo anoikis-a form of programmed cell death1. Acquisition of anoikis resistance is a pivotal step in cancer disease progression, as metastasizing cells often lose firm attachment to surrounding tissue2,3. In these poorly attached states, cells adopt rounded morphologies and form small hemispherical plasma membrane protrusions called blebs4-11. Bleb function has been thoroughly investigated in the context of amoeboid migration, but it has been examined far less in other scenarios12. Here we show by three-dimensional imaging and manipulation of cell morphological states that blebbing triggers the formation of plasma membrane-proximal signalling hubs that confer anoikis resistance. Specifically, in melanoma cells, blebbing generates plasma membrane contours that recruit curvature-sensing septin proteins as scaffolds for constitutively active mutant NRAS and effectors. These signalling hubs activate ERK and PI3K-well-established promoters of pro-survival pathways. Inhibition of blebs or septins has little effect on the survival of well-adhered cells, but in detached cells it causes NRAS mislocalization, reduced MAPK and PI3K activity, and ultimately, death. This unveils a morphological requirement for mutant NRAS to operate as an effective oncoprotein. Furthermore, whereas some BRAF-mutated melanoma cells do not rely on this survival pathway in a basal state, inhibition of BRAF and MEK strongly sensitizes them to both bleb and septin inhibition. Moreover, fibroblasts engineered to sustain blebbing acquire the same anoikis resistance as cancer cells even without harbouring oncogenic mutations. Thus, blebs are potent signalling organelles capable of integrating myriad cellular information flows into concerted cellular responses, in this case granting robust anoikis resistance.


Subject(s)
Anoikis , Carcinogenesis , Cell Surface Extensions , Cell Survival , Melanoma , Signal Transduction , Humans , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Phosphatidylinositol 3-Kinases/metabolism , Septins/metabolism , Cell Surface Extensions/chemistry , Cell Surface Extensions/metabolism , Carcinogenesis/genetics , Cell Adhesion , Extracellular Signal-Regulated MAP Kinases , Fibroblasts , Mutation , Cell Shape , Imaging, Three-Dimensional , Mitogen-Activated Protein Kinase Kinases
17.
Nature ; 617(7960): 369-376, 2023 May.
Article in English | MEDLINE | ID: mdl-37100909

ABSTRACT

Communication between neurons and glia has an important role in establishing and maintaining higher-order brain function1. Astrocytes are endowed with complex morphologies, placing their peripheral processes in close proximity to neuronal synapses and directly contributing to their regulation of brain circuits2-4. Recent studies have shown that excitatory neuronal activity promotes oligodendrocyte differentiation5-7; whether inhibitory neurotransmission regulates astrocyte morphogenesis during development is unclear. Here we show that inhibitory neuron activity is necessary and sufficient for astrocyte morphogenesis. We found that input from inhibitory neurons functions through astrocytic GABAB receptor (GABABR) and that its deletion in astrocytes results in a loss of morphological complexity across a host of brain regions and disruption of circuit function. Expression of GABABR in developing astrocytes is regulated in a region-specific manner by SOX9 or NFIA and deletion of these transcription factors results in region-specific defects in astrocyte morphogenesis, which is conferred by interactions with transcription factors exhibiting region-restricted patterns of expression. Together, our studies identify input from inhibitory neurons and astrocytic GABABR as universal regulators of morphogenesis, while further revealing a combinatorial code of region-specific transcriptional dependencies for astrocyte development that is intertwined with activity-dependent processes.


Subject(s)
Astrocytes , Cell Shape , Neural Inhibition , Neurons , Receptors, GABA-B , Astrocytes/cytology , Astrocytes/metabolism , gamma-Aminobutyric Acid/metabolism , Neurons/metabolism , Synapses/metabolism , Receptors, GABA-B/metabolism , SOX9 Transcription Factor/metabolism , NFI Transcription Factors/metabolism , Gene Expression Regulation
18.
Nat Rev Mol Cell Biol ; 22(5): 304-305, 2021 05.
Article in English | MEDLINE | ID: mdl-33782586
19.
Nat Rev Mol Cell Biol ; 17(8): 511-21, 2016 08.
Article in English | MEDLINE | ID: mdl-27353479

ABSTRACT

Animal cells undergo dramatic changes in shape, mechanics and polarity as they progress through the different stages of cell division. These changes begin at mitotic entry, with cell-substrate adhesion remodelling, assembly of a cortical actomyosin network and osmotic swelling, which together enable cells to adopt a near spherical form even when growing in a crowded tissue environment. These shape changes, which probably aid spindle assembly and positioning, are then reversed at mitotic exit to restore the interphase cell morphology. Here, we discuss the dynamics, regulation and function of these processes, and how cell shape changes and sister chromatid segregation are coupled to ensure that the daughter cells generated through division receive their fair inheritance.


Subject(s)
Cell Shape , Chromosome Segregation , Animals , Humans , Mitosis
20.
Cell ; 153(5): 948-62, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23706734

ABSTRACT

During development, mechanical forces cause changes in size, shape, number, position, and gene expression of cells. They are therefore integral to any morphogenetic processes. Force generation by actin-myosin networks and force transmission through adhesive complexes are two self-organizing phenomena driving tissue morphogenesis. Coordination and integration of forces by long-range force transmission and mechanosensing of cells within tissues produce large-scale tissue shape changes. Extrinsic mechanical forces also control tissue patterning by modulating cell fate specification and differentiation. Thus, the interplay between tissue mechanics and biochemical signaling orchestrates tissue morphogenesis and patterning in development.


Subject(s)
Biomechanical Phenomena , Morphogenesis , Actins/metabolism , Animals , Cell Shape , Myosins/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL