Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Bioessays ; 46(6): e2400008, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697917

ABSTRACT

Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.


Subject(s)
Neuronal Plasticity , Purkinje Cells , Purkinje Cells/metabolism , Purkinje Cells/physiology , Animals , Neuronal Plasticity/genetics , Humans , Action Potentials/physiology , Synapses/physiology , Synapses/metabolism , Synapses/genetics , Cerebellar Cortex/cytology , Cerebellar Cortex/metabolism , Cerebellar Cortex/physiology
2.
Eur J Histochem ; 68(2)2024 May 15.
Article in English | MEDLINE | ID: mdl-38766720

ABSTRACT

Previous studies on the granular layer of the cerebellar cortex have revealed a wide distribution of different subpopulations of less-known large neuron types, called "non-traditional large neurons", which are distributed in three different zones of the granular layer. These neuron types are mainly involved in the formation of intrinsiccircuits inside the cerebellar cortex. A subpopulation of these neuron types is represented by the synarmotic neuron, which could play a projective role within the cerebellar circuitry. The synarmotic neuron cell body map within the internal zone of the granular layer or in the subjacent white substance. Furthermore, the axon crosses the granular layer and runs in the subcortical white substance, to reenter in an adjacent granular layer, associating two cortico-cerebellar regions of the same folium or of different folia, or could project to the intrinsic cerebellar nuclei. Therefore, along with the Purkinje neuron, the traditional projective neuron type of the cerebellar cortex, the synarmotic neuron is candidate to represent the second projective neuron type of the cerebellar cortex. Studies of chemical neuroanatomy evidenced a predominant inhibitory GABAergic nature of the synarmotic neuron, suggesting that it may mediate an inhibitory GABAergic output of cerebellar cortex within cortico-cortical interconnections or in projections towards intrinsic cerebellar nuclei. On this basis, the present minireview mainly focuses on the morphofunctional and neurochemical data of the synarmotic neuron, and explores its potential involvement in some forms of cerebellar ataxias.


Subject(s)
Cerebellar Cortex , Neurons , Cerebellar Cortex/cytology , Animals , Humans , Neurons/cytology , Neurons/metabolism , GABAergic Neurons/metabolism , GABAergic Neurons/cytology
3.
Neuron ; 112(14): 2333-2348.e6, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38692278

ABSTRACT

Molecular layer interneurons (MLIs) account for approximately 80% of the inhibitory interneurons in the cerebellar cortex and are vital to cerebellar processing. MLIs are thought to primarily inhibit Purkinje cells (PCs) and suppress the plasticity of synapses onto PCs. MLIs also inhibit, and are electrically coupled to, other MLIs, but the functional significance of these connections is not known. Here, we find that two recently recognized MLI subtypes, MLI1 and MLI2, have a highly specialized connectivity that allows them to serve distinct functional roles. MLI1s primarily inhibit PCs, are electrically coupled to each other, fire synchronously with other MLI1s on the millisecond timescale in vivo, and synchronously pause PC firing. MLI2s are not electrically coupled, primarily inhibit MLI1s and disinhibit PCs, and are well suited to gating cerebellar-dependent behavior and learning. The synchronous firing of electrically coupled MLI1s and disinhibition provided by MLI2s require a major re-evaluation of cerebellar processing.


Subject(s)
Interneurons , Neural Inhibition , Purkinje Cells , Animals , Purkinje Cells/physiology , Interneurons/physiology , Neural Inhibition/physiology , Mice , Cerebellum/cytology , Cerebellum/physiology , Mice, Transgenic , Action Potentials/physiology , Mice, Inbred C57BL , Cerebellar Cortex/physiology , Cerebellar Cortex/cytology
4.
Nat Commun ; 15(1): 6648, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103318

ABSTRACT

Mapping neuronal networks is a central focus in neuroscience. While volume electron microscopy (vEM) can reveal the fine structure of neuronal networks (connectomics), it does not provide molecular information to identify cell types or functions. We developed an approach that uses fluorescent single-chain variable fragments (scFvs) to perform multiplexed detergent-free immunolabeling and volumetric-correlated-light-and-electron-microscopy on the same sample. We generated eight fluorescent scFvs targeting brain markers. Six fluorescent probes were imaged in the cerebellum of a female mouse, using confocal microscopy with spectral unmixing, followed by vEM of the same sample. The results provide excellent ultrastructure superimposed with multiple fluorescence channels. Using this approach, we documented a poorly described cell type, two types of mossy fiber terminals, and the subcellular localization of one type of ion channel. Because scFvs can be derived from existing monoclonal antibodies, hundreds of such probes can be generated to enable molecular overlays for connectomic studies.


Subject(s)
Cerebellar Cortex , Animals , Female , Mice , Cerebellar Cortex/metabolism , Cerebellar Cortex/cytology , Cerebellar Cortex/ultrastructure , Microscopy, Confocal/methods , Microscopy, Electron/methods , Connectome/methods , Neurons/metabolism , Neurons/ultrastructure , Fluorescent Dyes/chemistry , Mice, Inbred C57BL , Cytology
5.
Rev. bras. anestesiol ; 65(3): 213-217, May-Jun/2015. graf
Article in English | LILACS | ID: lil-748915

ABSTRACT

BACKGROUND AND OBJECTIVES: This study shows how the diffusion of the anesthetic into the sheath occurs through the axillary infraclavicular space and hence proves the efficacy of the anesthetic block of the brachial plexus, and may thereby allow a consolidation of this pathway, with fewer complications, previously attached to the anesthesia. MATERIALS AND METHODS: 33 armpits of adult cadavers were analyzed and unfixed. We injected a solution of neoprene with latex dye in the infraclavicular space, based on the technique advocated by Gusmão et al., and put the corpses in refrigerators for three weeks. Subsequently, the specimens were thawed and dissected, exposing the axillary sheath along its entire length. RESULTS AND DISCUSSION: Was demonstrated involvement of all fasciculus of the plexus in 51.46%. In partial involvement was 30.30%, 18.24% of cases the acrylic was located outside the auxiliary sheath involving no issue. CONCLUSIONS: The results allow us to establish the infraclavicular as an effective and easy way to access plexus brachial, because the solution involved the fascicles in 81.76% partially or totally, when it was injected inside the axillary sheath. We believe that only the use of this pathway access in practice it may demonstrate the efficiency. .


JUSTIFICATIVA E OBJETIVOS: Procuramos demonstrar como ocorre a difusão do anestésico no interior da bainha axilar, quando se utiliza o bloqueio por via infraclavicular, através da fossa infraclavicular e, consequentemente, provar a eficácia dessa via, podendo, com isso, permitir uma consolidação da utilização desse acesso, com redução das complicações. MATERIAS E MÉTODO: Foram utilizadas 33 axilas de cadáveres adultos não fixados. Injetamos uma solução de neoprene látex com corante na fossa infraclavicular, baseando-se na técnica preconizada por Gusmão e col, e colocamos os cadáveres em geladeiras por três semanas. Posteriormente, as peças foram descongeladas e dissecadas, expondo a bainha axilar em toda sua extensão. RESULTADOS E DISCUSSÃO: Foi demonstrado envolvimento de todos os fascículos do plexo em 51,46%. Em 30,30% houve envolvimento parcial, e em 18,24% dos casos o acrílico foi localizado fora da bainha axilar, não envolvendo nenhum fascículo. CONCLUSÕES: Os dados obtidos permitem estabelecer a via infraclavicular como uma via eficaz e de fácil acesso ao plexo braquial, visto que a solução injetada envolveu os fascículos em 81,76% parcialmente ou totalmente, quando era injetada dentro da bainha axilar. Acreditamos que apenas a utilização desta via de acesso na prática poderá demonstrar a eficiência da mesma. .


JUSTIFICACIÓN Y OBJETIVOS: Este estudio intenta demostrar cómo ocurre la difusión del anestésico en el interior de la vaina axilar, cuando se utiliza el bloqueo por vía infraclavicular a través de la fosa infraclavicular, y al mismo tiempo, probar la eficacia de esa vía, pudiendo así permitir una consolidación de la utilización de ese acceso con reducción de las complicaciones. MATERIALES Y MÉTODO: Fueron utilizadas 33 axilas de cadáveres adultos no fijadas. Inyectamos una solución de neopreno látex con colorante en la fosa infraclavicular, con la técnica preconizada por Gusmão et al., y colocamos los cadáveres en frigoríficos durante 3 semanas. Posteriormente, las piezas fueron descongeladas y disecadas, exponiendo la vaina axilar en toda su extensión. RESULTADOS Y DISCUSIÓN: Quedó demostrada la implicación de todos los fascículos del plexo en un 51,46%. En un 30,30% hubo una participación parcial, y en un 18,24% de los casos el acrílico fue ubicado fuera de la vaina axilar sin la participación de ningún fascículo. CONCLUSIONES: Los datos obtenidos permiten establecer la vía infraclavicular como una vía eficaz y de fácil acceso al plexo braquial, visto que la solución inyectada tuvo la participación de los fascículos en un 81,76% parcial o totalmente, cuando se inyectaba dentro de la vaina axilar. Creemos que solamente con la utilización de esta vía de acceso en la práctica podrá quedar demostrada su eficacia. .


Subject(s)
Animals , Male , Action Potentials/physiology , Cerebellar Cortex/physiology , Cerebellar Cortex/cytology , Nerve Tissue Proteins/metabolism , Purkinje Cells/physiology , Staining and Labeling , TRPC Cation Channels/metabolism
6.
Biocell ; 24(1): 13-30, Apr. 2000.
Article in English | LILACS | ID: lil-335917

ABSTRACT

The cerebellar Golgi cells of mouse, teleost fish, primate and human species have been studied by means of light and Golgi light microscopic techniques, confocal laser scanning microscopy, slicing technique, ethanol-cryofracturing and freeze-fracture methods for scanning electron microscopy and ultrathin sectioning and freeze-etching replicas for transmission electron microscopy. The Golgi cells appeared in the granular layer as polygonal, stellate, round or fusiform macroneurons surrounded by the granule cell groups. They exhibited ascending dendrites toward the molecular layer and horizontal dendrites and a short beaded axonal plexus confined to the granular layer. Scanning electron microscopy revealed their three-dimensional neuronal geometry and smooth outer surfaces. Freeze-fracture method for SEM showed the stereospatial cytoplasmic arrangement of endoplasmic reticulum, cell organelles and nuclear envelope. By means of transmission electron microscopy the asymmetric synaptic connections of Golgi cell horizontal dendrites--with mossy fiber rosettes at the cerebellar glomerulus--and of Golgi cell axons--with granule cell dendrites at the periphery of glomerular region--were identified. At the molecular layer, Golgi cell ascending dendrites exhibited short neckless spines establishing asymmetric contacts with granule cell axons or parallel fibers. Shaft asymmetric axodendritic and axospinodendritic contacts between Golgi cell dendrites and climbing fibers were also found in the molecular layer.


Subject(s)
Humans , Animals , Female , Cricetinae , Mice , Cerebellar Cortex/cytology , Neurons/ultrastructure , Catfishes , Cerebellar Cortex/ultrastructure , Macaca mulatta , Microscopy, Electron, Scanning/methods , Microscopy, Confocal , Trout
SELECTION OF CITATIONS
SEARCH DETAIL