Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 284
Filter
Add more filters

Publication year range
1.
Bioorg Med Chem Lett ; 107: 129795, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38750906

ABSTRACT

Chalcones are chemical scaffolds found in natural products, particularly in plants, and are considered for structural diversity in medicinal chemistry for drug development. Herein, we designed and synthesised novel acetamide derivatives of chalcone, characterizing them using 1H NMR, 13C NMR, HRMS, and IR spectroscopic methods. These derivatives were then screened against human cancer cells for cytotoxicity using the SRB assay. Among the tested derivatives, 7g, with a pyrrolidine group, exhibited better cell growth inhibition activity against triple-negative breast cancer (TNBC) cells. Further assays, including SRB, colony formation, and fluorescent dye-based microscopic analysis, confirmed that 7g significantly inhibited MDA-MB-231 cell proliferation. Furthermore, 7g promoted apoptosis by upregulating cellular reactive oxygen species (ROS) levels and disrupting mitochondrial membrane potential (MMP). Elevated expression of pro-apoptotic proteins (Bax and caspase-3) and a higher Bax/Bcl-2 ratio with downregulation of anti-apoptotic (Bcl-2) protein levels were observed in TNBC cells. The above results suggest that 7g can promote cellular death through apoptotic mechanisms in TNBC cells.


Subject(s)
Acetamides , Antineoplastic Agents , Apoptosis , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Cell Proliferation/drug effects , Acetamides/pharmacology , Acetamides/chemical synthesis , Acetamides/chemistry , Apoptosis/drug effects , Molecular Structure , Cell Line, Tumor , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/chemical synthesis , Dose-Response Relationship, Drug , Chalcone/pharmacology , Chalcone/chemistry , Chalcone/chemical synthesis , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects
2.
Bioorg Chem ; 149: 107498, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38805911

ABSTRACT

Chemotherapy toxicity and tumor multidrug resistance remain the main reasons for clinical treatment failure in cervical cancer. In this study, 79 novel chalcone derivatives were designed and synthesized using the principle of active substructure splicing with the parent nucleus of licorice chalcone as the lead compound and VEGFR-2 and P-gp as the target of action and their potentials for anticervical cancer activity were preliminarily evaluated. The results showed that the IC50 values of candidate compound B20 against HeLa and HeLa/DDP cells were 3.66 ± 0.10 and 4.35 ± 0.21 µΜ, respectively, with a resistance index (RI) of 1.18, which was significantly higher than that of the positive drug cisplatin (IC50:13.60 ± 1.63, 100.03 ± 7.94 µΜ, RI:7.36). In addition, B20 showed significant inhibitory activity against VEGFR-2 kinase and P-gp-mediated rhodamine 123 efflux, as well as the ability to inhibit the phosphorylation of VEGFR-2 and downstream PI3K/AKT signaling pathway proteins, inducing apoptosis, blocking cells in the S-phase, and inhibiting invasive migration and tubule generation by HUVEC cells. Acceptable safety was demonstrated in acute toxicity tests when B20 was at 200 mg/kg. In the nude mouse HeLa/DDP cell xenograft tumor model, the inhibition rate of transplanted tumors was 39.2 % and 79.2 % when B20 was at 10 and 20 mg/kg, respectively. These results suggest that B20 is a potent VEGFR-2 and P-gp inhibitor with active potential for treating cisplatin-resistant cervical cancer.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Uterine Cervical Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Female , Drug Resistance, Neoplasm/drug effects , Structure-Activity Relationship , Molecular Structure , Cell Proliferation/drug effects , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/chemical synthesis , Animals , Chalcone/chemistry , Chalcone/pharmacology , Chalcone/chemical synthesis , HeLa Cells , Apoptosis/drug effects , Mice
3.
Bioorg Chem ; 147: 107310, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583249

ABSTRACT

Using the licochalcone moiety as a lead compound scaffold, 16 novel imidazole-chalcone derivatives were designed and synthesized as microtubule protein polymerization inhibitors. The proliferation inhibitory activities of the derivatives against SiHa (human cervical squamous cell carcinoma), C-33A (human cervical cancer), HeLa (human cervical cancer), HeLa/DDP (cisplatin-resistant human cervical cancer), and H8 (human cervical epithelial immortalized) cells were evaluated. Compound 5a exhibited significant anticancer activity with IC50 values ranging from 2.28 to 7.77 µM and a resistance index (RI) of 1.63, while showing minimal toxicity to normal H8 cells. When compound 5a was coadministered with cisplatin, the RI of cisplatin to HeLa/DDP cells decreased from 6.04 to 2.01, while compound 5a enhanced the fluorescence intensity of rhodamine 123 in HeLa/DDP cells. Further studies demonstrated that compound 5a arrested cells at the G2/M phase, induced apoptosis, reduced colony formation, inhibited cell migration, and inhibited cell invasion. Preliminary mechanistic studies revealed that compound 5a decreased the immunofluorescence intensity of α-/ß-tubulin in cancer cells, reduced the expression of polymerized α-/ß-tubulin, and increased the expression of depolymerized α-/ß-tubulin. Additionally, the molecular docking results demonstrate that compound 5a can interact with the tubulin colchicine binding site and generate multiple types of interactions. These results suggested that compound 5a has anticancer effects and significantly reverses cervical cancer resistance to cisplatin, which may be related to its inhibition of microtubule and P-glycoprotein (P-gp) activity.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Cisplatin , Dose-Response Relationship, Drug , Drug Design , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Imidazoles , Uterine Cervical Neoplasms , Humans , Cisplatin/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Structure-Activity Relationship , Cell Proliferation/drug effects , Imidazoles/pharmacology , Imidazoles/chemistry , Imidazoles/chemical synthesis , Drug Resistance, Neoplasm/drug effects , Female , Molecular Structure , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/chemical synthesis , Polymerization/drug effects , Apoptosis/drug effects , Tubulin Modulators/pharmacology , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Chalcone/chemistry , Chalcone/pharmacology , Chalcone/chemical synthesis , Molecular Docking Simulation , Tubulin/metabolism , Cell Line, Tumor , Microtubules/drug effects , Microtubules/metabolism
4.
Chem Biodivers ; 21(8): e202401031, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38769733

ABSTRACT

24 chalcone derivatives containing 1,3,4-thiadiazole were synthesized. The results of bioactivity tests indicated that some of the target compounds exhibited superior antifungal activities in vitro. Notably, the EC50 value of D4 was 14.4 µg/mL against Phomopsis sp, which was significantly better than that of azoxystrobin (32.2 µg/mL) and fluopyram (54.2 µg/mL). The in vivo protective activity of D4 against Phomopsis sp on kiwifruit (71.2 %) was significantly superior to azoxystrobin (62.8 %) at 200 µg/mL. The in vivo protective activities of D4 were 74.4 and 57.6 % against Rhizoctonia solani on rice leaf sheaths and rice leaves, respectively, which were slightly better than those of azoxystrobin (72.1 and 49.2 %) at 200 µg/mL. Scanning electron microscopy (SEM) results showed that the mycelial surface collapsed, contracted and grew abnormally after D4 treatment. Finally, the results were further verified by in vivo antifungal assay, fluorescence microscopy (FM) observation, determination of relative conductivity, membrane lipid peroxidation degree assay, and determination of cytoplasmic content leakage. Molecular docking results suggested that D4 could be a potential SDHI.


Subject(s)
Antifungal Agents , Microbial Sensitivity Tests , Molecular Docking Simulation , Rhizoctonia , Thiadiazoles , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Thiadiazoles/chemical synthesis , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Rhizoctonia/drug effects , Structure-Activity Relationship , Molecular Structure , Ascomycota/drug effects , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/chemical synthesis , Chalcone/pharmacology , Chalcone/chemistry , Chalcone/chemical synthesis , Oryza/microbiology , Dose-Response Relationship, Drug
5.
Chem Biodivers ; 21(5): e202301659, 2024 May.
Article in English | MEDLINE | ID: mdl-38407541

ABSTRACT

Sortase A (SrtA) is an attractive target for developing new anti-infective drugs that aim to interfere with essential virulence mechanisms, such as adhesion to host cells and biofilm formation. Herein, twenty hydroxy, nitro, bromo, fluoro, and methoxy substituted chalcone compounds were synthesized, antimicrobial activities and molecular modeling strategies against the SrtA enzyme were investigated. The most active compounds were found to be T2, T4, and T19 against Streptococcus mutans (S. mutans) with MIC values of 1.93, 3.8, 3.94 µg/mL, and docking scores of -6.46, -6.63, -6.73 kcal/mol, respectively. Also, these three active compounds showed better activity than the chlorohexidine (CHX) (MIC value: 4.88 µg/mL, docking score: -6.29 kcal/mol) in both in vitro and in silico. Structural stability and binding free energy analysis of S.mutans SrtA with active compounds were measured by molecular dynamic (MD) simulations throughout 100 nanoseconds (ns) time. It was observed that the stability of the critical interactions between these compounds and the target enzyme was preserved. To prove further, in vivo biological evaluation studies could be conducted for the most promising precursor compounds T2, T4, and T19, and it might open new avenues to the discovery of more potent SrtA inhibitors.


Subject(s)
Aminoacyltransferases , Bacterial Proteins , Cysteine Endopeptidases , Microbial Sensitivity Tests , Streptococcus mutans , Aminoacyltransferases/antagonists & inhibitors , Aminoacyltransferases/metabolism , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Streptococcus mutans/drug effects , Streptococcus mutans/enzymology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Structure-Activity Relationship , Molecular Dynamics Simulation , Molecular Docking Simulation , Molecular Structure , Models, Molecular , Chalcone/chemistry , Chalcone/pharmacology , Chalcone/chemical synthesis , Dose-Response Relationship, Drug
6.
Chem Biodivers ; 21(5): e202400389, 2024 May.
Article in English | MEDLINE | ID: mdl-38457745

ABSTRACT

A very interesting foundation for this study is the creation of new methods for modifying compounds with a 1,2,3-triazole and chalcone scaffolds, as these compounds are significant in organic synthesis, particularly in the synthesis of bioactive organic compounds. To contribute to the development of an efficient method for the conversion of antimicrobial and antituberculosis heterocyclics, a novel series of cyclohepta pyridinone fused 1,2,3-triazolyl chalcones were designed and synthesized. All the newly prepared scaffolds were characterized by FT-IR, NMR (1H & 13C) and mass spectrometry. Among the tested compounds, hybrids 8b, 8d, and 8f exhibited exceptional antibacterial susceptibilities with zone of inhibition 27.84±0.04, 32.27±0.02, and 38.26±0.01 mm against the tested E. faecalis bacteria, whereas 8d had better antitubercular potency against M. tuberculosis H37Rv strain with MIC value 5.25 µg/mL, compared to Streptomycin [MIC=5.01 µg/mL]. All the synthesized compounds were initially assessed in silico against the targeted protein i. e., DprE1 that indicated compound 8d, 8f and 8h along with several other 1,2,3-triazole compounds as possible inhibitors. Based on docking results, 8d showed that the amino acids His74(A), Lys76(A), Cys332(A), Asp331(A), Val307(A), Tyr357(A), Met226(A), Gln276(A), Gly75(A), Peo58(A), Leu259(A), and Lys309(A) exhibited highly stable binding to DprE1 receptor of Mycobacterium tuberculosis (PDB: 4G3 U). Moreover, these scaffolds physicochemical characteristics, filtration molecular properties, assessment of toxicity, and bioactivity scores were assessed in relation to ADME (absorption, distribution, metabolism, and excretion).


Subject(s)
Antitubercular Agents , Drug Design , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis , Triazoles , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Mycobacterium tuberculosis/drug effects , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Structure-Activity Relationship , Enterococcus faecalis/drug effects , Molecular Structure , Chalcone/chemistry , Chalcone/pharmacology , Chalcone/chemical synthesis , Chalcones/chemistry , Chalcones/pharmacology , Chalcones/chemical synthesis
7.
Arch Pharm (Weinheim) ; 357(7): e2300627, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593298

ABSTRACT

Novel triazoloquinazolines carrying the 2-[thio]acetamide entity (4 and 5a-d) and triazoloquinazoline/chalcone hybrids incorporating the 2-[thio]acetamide linker (8a-b and 9a-f) were developed as anticancer candidates. NCI screening of the synthesized compounds at 10 µM concentration displayed growth inhibition not only up to 99.74% as observed for 9a but also a lethal effect could be achieved as stated for compounds 9c (RPMI-8226 and HCT-116) and 8b, 9a, and 9e on the HCT-116 cell line. The antiproliferative activity was determined for the chalcone series on three cell lines: RPMI-8226, HCT-116, and MCF-7. Compounds 8b, 9a, 9b, and 9f were the most active ones. To understand the mechanistic study, the inhibitory effect on the epidermal growth factor receptor (EGFR) kinase was evaluated. The results stated that the activity of compound 8b (IC50 = 0.07 µM) was near that of the reference drug erlotinib (IC50 = 0.052 µM) whereas compound 9b (IC50 = 0.045 µM) was found to be more potent than erlotinib. Both compounds 8b and 9b were selected for cell cycle analysis and apoptotic assays. Moreover, molecular docking results of the selected chalcone hybrids showed high binding scores and good binding affinities especially for 8b and 9b, which were consistent with the biological activity (EGFR).


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , ErbB Receptors , Molecular Docking Simulation , Protein Kinase Inhibitors , Quinazolines , Triazoles , Humans , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Triazoles/pharmacology , Triazoles/chemistry , Triazoles/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Cell Line, Tumor , Molecular Structure , Dose-Response Relationship, Drug , Chalcones/pharmacology , Chalcones/chemical synthesis , Chalcones/chemistry , HCT116 Cells , Acetamides/pharmacology , Acetamides/chemistry , Acetamides/chemical synthesis , MCF-7 Cells , Chalcone/pharmacology , Chalcone/chemistry , Chalcone/chemical synthesis
8.
Bioorg Med Chem ; 29: 115853, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33214035

ABSTRACT

Pancreatic lipase (PL), a crucial enzyme responsible for hydrolysis of dietary lipids, has been validated as a key therapeutic target to prevent and treat obesity-associated metabolic disorders. Herein, we report the design, synthesis and biological evaluation of a series of chalcone-like compounds as potent and reversible PL inhibitors. Following two rounds of structural modifications at both A and B rings of a chalcone-like skeleton, structure-PL inhibition relationships of the chalcone-like compounds were studied, while the key substituents that would be beneficial for PL inhibition were revealed. Among all tested chalcone-like compounds, compound B13 (a novel chalcone-like compound bearing two long carbon chains) displayed the most potent PL inhibition activity, with an IC50 value of 0.33 µM. Inhibition kinetic analyses demonstrated that B13 could potently inhibit PL-mediated 4-MUO hydrolysis in a mixed inhibition manner, with the Ki value of 0.12 µM. Molecular docking simulations suggested that B13 could tightly bind on PL at both the catalytic site and a non-catalytic site that was located on the surface of PL, which was consistent with the mixed inhibition mode of this agent. In addition, B13 displayed excellent stability in artificial gastrointestinal fluids and good metabolic stability in human liver preparations. Collectively, our findings suggested that chalcone-like compounds were good choices for design and development of orally administrated PL inhibitors, while B13 could be served as a promising lead compound to develop novel anti-obesity agents via targeting on PL.


Subject(s)
Chalcone/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Lipase/antagonists & inhibitors , Animals , Chalcone/chemical synthesis , Chalcone/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Lipase/metabolism , Molecular Docking Simulation , Molecular Structure , Pancreas/enzymology , Structure-Activity Relationship , Swine
9.
J Fluoresc ; 31(6): 1823-1831, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34519931

ABSTRACT

Novel alkylated heterocyclic chalcone (E)-1-(2-(allyloxy)phenyl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-en-1-one (AECO) with extended π-bond was prepared by the multi-steps synthesis. The structure of the AECO was established by the spectroscopic technics and purity of the compound was confirmed by the elemental analysis. Physicochemical parameters of the AECO such as molar absorption coefficient, transition dipole moments, stokes shift, oscillator strength and fluorescence quantum yield were calculated in ten various solvents on the basis of polarity of the solvents to see the effect of the solvent with AECO. Interaction of the AECO chromophore with cationic CTAB and anionic SDS surfactants were determined by using the fluorescence spectroscopy techniques. The intensity of the florescence spectrum increase with increasing the concentrations of surfactants. This suggests that strong interaction occurs between AECO with surfactants and this interaction arise from electrostatic forces. So, AECO chromophore could be used as analysis to define the Critical Micelle Concentration (CMC) of the surfactants. In addition the in-vitro antibacterial active of novel heterocyclic chalcone agents four bacteria's strain were evaluated and result showed AECO is beater antibacterial agent against Gram-Negative Bacteria (E. coli and S. flexneri) as compare to the Gram Negative Bacteria with respected to the standard drug Tetracycline.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chalcone/pharmacology , Escherichia coli/drug effects , Heterocyclic Compounds/pharmacology , Shigella flexneri/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Chalcone/chemical synthesis , Chalcone/chemistry , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Microbial Sensitivity Tests , Photochemical Processes , Spectrometry, Fluorescence , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology
10.
Bioorg Chem ; 117: 105348, 2021 12.
Article in English | MEDLINE | ID: mdl-34736139

ABSTRACT

A series of new hydroxylated chalcone derivatives with different substitution patterns on a phenyl ring A and B, were prepared by Claisen-Schmidt condensation in an aqueous alkaline base. The antiproliferative activity of the studied compounds was evaluated against the human leukaemia cell line U-937. The structure-activity relationship of these naphthylchalcones was investigated by the introduction of one methoxy or two methyl groups on the A ring, the introduction of a methoxy group on the naphthyl ring or by varying the position of the methoxy group on the A ring. The results revealed that the naphthylchalcone containing a methoxy group in position 6́ of the A ring was the most cytotoxic compound, with an IC50 value of 4.7 ± 0.5 µM against U-937 cells. This synthetic chalcone induced S and G2-M cell cycle arrest, a time-dependent increase in sub-G1 ratio and annexin-V positive cells, caspase activation and poly(ADP-ribose) polymerase cleavage. Apoptosis induction was blocked by a pan-caspase inhibitor and by the selective caspase-3/7 inhibitor and attenuated by the inhibition of c-jun N-terminal kinases / stress-activated protein kinases (JNK/SAPK) and phosphoinositide 3-kinase. The structure-activity relationship of naphthylchalcones against human leukaemia cells reveals that the major determining in cytotoxicity is the presence of a methoxy group in position 6́ of the A ring that suggest the potential of this compound or derivatives in the development of new anti-leukaemia drugs.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Chalcone/analogs & derivatives , Chalcone/pharmacology , Leukemia/drug therapy , Antineoplastic Agents/chemical synthesis , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Chalcone/chemical synthesis , Drug Design , Drug Screening Assays, Antitumor , Humans
11.
J Enzyme Inhib Med Chem ; 36(1): 1067-1078, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34027787

ABSTRACT

Two series of chalcone/aryl carboximidamide hybrids 4a-f and 6a-f were synthesised and evaluated for their inhibitory activity against iNOS and PGE2. The most potent derivatives were further checked for their in vivo anti-inflammatory activity utilising carrageenan-induced rat paw oedema model. Compounds 4c, 4d, 6c and 6d were proved to be the most effective inhibitors of PGE2, LPS-induced NO production, iNOS activity. Moreover, 4c, 4d, 6c and 6d showed significant oedema inhibition ranging from 62.21% to 78.51%, compared to indomethacin (56.27 ± 2.14%) and celecoxib (12.32%). Additionally, 4c, 6a and 6e displayed good COX2 inhibitory activity while 4c, 6a and 6c exhibited the highest 5LOX inhibitory activity. Compounds 4c, 4d, 6c and 6d fit nicely into the pocket of iNOS protein (PDB ID: 1r35) via the important amino acid residues. Prediction of physicochemical parameters exhibited that 4c, 4d, 6c and 6d had acceptable physicochemical parameters and drug-likeness. The results indicated that chalcone/aryl carboximidamides 4c, 4d, 6c and 6d, in particular 4d and 6d, could be used as promising lead candidates as potent anti-inflammatory agents.


Subject(s)
Amides/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Chalcone/pharmacology , Dinoprostone/antagonists & inhibitors , Drug Design , Edema/drug therapy , Enzyme Inhibitors/pharmacology , Molecular Docking Simulation , Nitric Oxide Synthase Type II/antagonists & inhibitors , Amides/chemical synthesis , Amides/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Carrageenan , Cells, Cultured , Chalcone/chemical synthesis , Chalcone/chemistry , Dinoprostone/metabolism , Dose-Response Relationship, Drug , Edema/chemically induced , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Mice , Molecular Structure , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , Structure-Activity Relationship
12.
Chem Biodivers ; 18(1): e2000786, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33188577

ABSTRACT

An increasing lack of available therapeutic options against Acinetobacter baumannii urged researchers to seek alternative ways to fight this extremely resistant nosocomial pathogen. Targeting its virulence appears to be a promising strategy, as it offers considerably reduced selection of resistant mutants. In this study, we tested antibiofilm potential of four synthetic chalcone derivatives against A. baumannii. Compound that showed the greatest activity was selected for further evaluation of its antivirulence properties. Real-time PCR was used to evaluate mRNA expression of biofilm-associated virulence factor genes (ompA, bap, abaI) in treated A. baumannii strains. Also, we examined virulence properties related to the expression of these genes, such as fibronectin- and collagen-mediated adhesion, surface motility, and quorum-sensing activity. The results revealed that the expression of all tested genes is downregulated together with the reduction of adhesion and motility. The conclusion is that 2'-hydroxy-2-methoxychalcone exhibits antivirulence activity against A. baumannii by inhibiting the expression of ompA and bap genes, which is reflected in reduced biofilm formation, adhesion, and surface motility.


Subject(s)
Acinetobacter baumannii/physiology , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/genetics , Biofilms/drug effects , Chalcone/chemistry , Gene Expression/drug effects , Acyl-Butyrolactones/metabolism , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Bacterial Adhesion/drug effects , Bacterial Outer Membrane Proteins/metabolism , Chalcone/chemical synthesis , Chalcone/pharmacology , RNA, Messenger/metabolism
13.
Molecules ; 26(10)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067859

ABSTRACT

A chalcone series (3a-f) with electron push-pull effect was synthesized via a one-pot Claisen-Schmidt reaction with a simple purification step. The compounds exhibited strong emission, peaking around 512-567 nm with mega-stokes shift (∆λ = 93-139 nm) in polar solvents (DMSO, MeOH, and PBS) and showed good photo-stability. Therefore, 3a-f were applied in cellular imaging. After 3 h of incubation, green fluorescence was clearly brighter in cancer cells (HepG2) compared to normal cells (HEK-293), suggesting preferential accumulation in cancer cells. Moreover, all compounds exhibited higher cytotoxicity within 24 h toward cancer cells (IC50 values ranging from 45 to 100 µM) than normal cells (IC50 value >100 µM). Furthermore, the antimicrobial properties of chalcones 3a-f were investigated. Interestingly, 3a-f exhibited antibacterial activities against Escherichia coli and Staphylococcus aureus, with minimum bactericidal concentrations (MBC) of 0.10-0.60 mg/mL (375-1000 µM), suggesting their potential antibacterial activity against both Gram-negative and Gram-positive bacteria. Thus, this series of chalcone-derived fluorescent dyes with facile synthesis shows great potential for the development of antibiotics and cancer cell staining agents.


Subject(s)
Chalcone/chemistry , Chalcone/chemical synthesis , Fluorescent Dyes/chemical synthesis , Anti-Bacterial Agents/pharmacology , Chalcone/isolation & purification , Chalcones/chemistry , Chalcones/isolation & purification , Chalcones/pharmacology , Escherichia coli/drug effects , Fluorescence , Fluorescent Dyes/chemistry , Fluorescent Dyes/therapeutic use , Gram-Positive Bacteria/drug effects , HEK293 Cells , Hep G2 Cells , Humans , Staphylococcus aureus/drug effects , Structure-Activity Relationship
14.
Bioorg Med Chem Lett ; 30(16): 127350, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32631548

ABSTRACT

Identification of allosteric inhibitors of PTPs has attracted great interest as a new strategy to overcome the challenge of discover potent and selective molecules for therapeutic intervention. YopH is a virulence factor of the genus Yersinia, validated as an antimicrobial target. The finding of a second substrate binding site in YopH has revealed a putative allosteric site that could be further exploited. Novel chalcone compounds that inhibit PTPs activity were designed and synthesized. Compound 3j was the most potent inhibitor, interestingly, with different mechanisms of inhibition for the panel of enzymes evaluated. Further, our results showed that compound 3j is an irreversible non-competitive inhibitor of YopH that binds to a site different than the catalytic site, but close to the well-known second binding site of YopH.


Subject(s)
Bacterial Outer Membrane Proteins/antagonists & inhibitors , Chalcone/pharmacology , Enzyme Inhibitors/pharmacology , Protein Tyrosine Phosphatases/antagonists & inhibitors , Virulence Factors/antagonists & inhibitors , Allosteric Site/drug effects , Bacterial Outer Membrane Proteins/metabolism , Chalcone/chemical synthesis , Chalcone/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Molecular Structure , Protein Tyrosine Phosphatases/metabolism , Structure-Activity Relationship , Virulence Factors/metabolism
15.
Bioorg Med Chem Lett ; 30(22): 127597, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33022369

ABSTRACT

Seventeen chalcone analogues were synthesized from 7-methoxy-3,4-dihydronaphthalen1(2H)-one and various aromatic aldehydes under basic conditions and their therapeutic properties were studied in mouse hippocampal cell line HT-22 against neuronal cell death induced by glutamate. From this study, we selected an analogue C01 as a active compound which showed significantly high neuroprotection. This compound inhibited Ca2+ influx and reactive oxygen species (ROS) accumulation inside cells. The glutamate-induced cell death was analyzed by flow cytometry and it showed that C01 significantly reduced apoptotic or dead cell induced by 5 mM glutamate. Western blot analysis indicates that glutamate-mediated activation of MAPKs were inhibited by compound C01 treatment. In addition, the C01enhanced Bcl-2 and decreased Bax, the anti and pro apoptotic proteins respectively. Further analysis showed that, C01 prevented the nuclear translocation of AIF (apoptosis inducing factor) and inhibited neuronal cell death. Taken together, compound C01 treatment resulted in decreased neurotoxicity induced by 5 mM of glutamate. Our finding confirmed that compound C01 has neuro-therapeutic potential against glutamate-mediated neurotoxicity.


Subject(s)
Chalcone/pharmacology , Hippocampus/drug effects , Neurons/drug effects , Neuroprotective Agents/pharmacology , Animals , Cell Death/drug effects , Cell Line , Chalcone/chemical synthesis , Chalcone/chemistry , Dose-Response Relationship, Drug , Glutamic Acid/pharmacology , Hippocampus/cytology , Mice , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 30(16): 127304, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32631524

ABSTRACT

A new series of 1,2,3-triazole tethered chalcone acetamide derivatives (7a-c &8a-r) have been synthesized in excellent yields and their structures were determined by analytical and spectral (FT-IR, 1H NMR, 13C NMR & HRMS) studies. The newly synthesized derivatives were evaluated for their cytotoxic activity against four human cancer cell lines, such as HeLa (Human cervical cancer), A549 (Human alveolar adenocarcinoma), MCF-7 (Human breast adenocarcinoma) and SKNSH (Human brain cancer). Among them, compound 7c exhibited good anti-proliferation activity with HeLa (IC50 7.41 + 0.8 µM), SKNSH (IC50 8.68 + 1.1 µM), MCF-7 (IC50 9.76 + 1.3 µM) and MDA-MB-231, while compounds 7a and 7b showed promising anti-proliferation against above four human cancer cell lines with IC50 7.95-11.62 µM, respectively, compared with the standard drug Doxorubicin. We explored the probable key active site and binding mode interactions in HDAC8 (PDB ID:3SFH) and EHMT2 (PDB ID:3K5K) proteins. The docking results are complementary to the experimental observations.


Subject(s)
Acetamides/pharmacology , Antineoplastic Agents/pharmacology , Chalcone/pharmacology , Triazoles/pharmacology , Acetamides/chemical synthesis , Acetamides/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Chalcone/chemical synthesis , Chalcone/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
17.
Bioorg Chem ; 98: 103748, 2020 05.
Article in English | MEDLINE | ID: mdl-32179281

ABSTRACT

In this work, a series of novel chalcone derivatives bearing bispiperazine linker have been synthesized and in vitro anti-inflammatory, cytotoxic activity and anti-inflammatory mechanism have been screened. The results indicated that most bispiperazinochalcone derivatives displayed good inhibition of NO (IC50 < 20 µM) and low cytotoxicity (CC50 > 40 µM), and selectively inhibited the production of IL-1ß via inhibiting NLRP3 inflammasome activation, as promising candidate compounds for the treatment of NLRP3 inflammasome-driven diseases.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Chalcone/pharmacology , Interleukin-1beta/antagonists & inhibitors , Piperazine/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Chalcone/chemical synthesis , Chalcone/chemistry , Dose-Response Relationship, Drug , Interleukin-1beta/biosynthesis , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred DBA , Molecular Structure , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Piperazine/chemistry , RAW 264.7 Cells , Structure-Activity Relationship
18.
Bioorg Chem ; 105: 104447, 2020 12.
Article in English | MEDLINE | ID: mdl-33207276

ABSTRACT

A library of new phenstatin based indole linked chalcone compounds (9a-z and 9aa-ad) were designed and synthesized. Of these, compound 9a with 1-methyl, 2- and 3-methoxy substituents in the aromatic ring was efficacious against the human oral cancer cell line SCC-29B, spheroids, and in a mouse xenograft model of oral cancer AW13516. Compound 9a exhibited anti-cancer activity through disrupting cellular integrity and affecting glucose metabolism-which is a hallmark of cancer. The cellular architecture was affected by inhibition of tubulin polymerization as observed by an immunofluorescence assay on 9a-treated SCC-29B cells. An in vitro tubulin polymerization kinetics assay provided evidence of direct interaction of 9a with tubulin. This physical interaction between tubulin and compound 9a was further confirmed by Surface Plasmon Resonance (SPR) analysis. Molecular docking experiments and validations revealed that compound 9a interacts and binds at the colchicine binding site of tubulin and at active sites of key enzymes in the glucose metabolism pathway. Based on in silico modeling, biophysical interactions, and pre-clinical observations, 9a consisting of phenstatin based indole-chalcone scaffolds, can be considered as an attractive tubulin polymerization inhibitor candidate for developing anti-cancer therapeutics.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzophenones/chemistry , Chalcone/chemical synthesis , Indoles/chemistry , Mouth Neoplasms/drug therapy , Tubulin Modulators/chemical synthesis , Animals , Antineoplastic Agents/pharmacology , Catalytic Domain , Cell Line, Tumor , Cell Proliferation/drug effects , Chalcone/pharmacology , Colchicine/chemistry , Drug Screening Assays, Antitumor , Humans , Male , Mice , Molecular Docking Simulation , Molecular Structure , Mouth Neoplasms/diagnostic imaging , Neoplasms, Experimental , Positron-Emission Tomography , Protein Binding , Tubulin/metabolism , Tubulin Modulators/pharmacology
19.
Arch Pharm (Weinheim) ; 353(4): e1900350, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32003489

ABSTRACT

Malaria, one of the most striking, re-emerging infectious diseases caused by the genus Plasmodium, places a huge burden on global healthcare systems. A major challenge in the control and eradication of malaria is the continuous emergence of increasingly widespread drug-resistant malaria, creating an urgent need to develop novel antimalarial agents. Chalcone derivatives are ubiquitous in nature and have become indispensable units in medicinal chemistry applications due to their diverse biological profiles. Many chalcone derivatives demonstrate potential in vitro and in vivo antimalarial activity, so chalcone could be a useful template for the development of novel antimalarial agents. This review covers the recent development of chalcone hybrids as antimalarial agents. The critical aspects of the design and structure-activity relationship of these compounds are also discussed.


Subject(s)
Antimalarials/pharmacology , Chalcone/pharmacology , Malaria/drug therapy , Plasmodium/drug effects , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Chalcone/chemical synthesis , Chalcone/chemistry , Chemistry, Pharmaceutical , Drug Resistance/drug effects , Humans , Parasitic Sensitivity Tests , Structure-Activity Relationship
20.
Molecules ; 25(23)2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33255804

ABSTRACT

Chalcone is a common scaffold found in many biologically active compounds. The chalcone scaffold was also frequently utilized to design novel anticancer agents with potent biological efficacy. Aiming to continue the research of effective chalcone derivatives to treat cancers with potent anticancer activity, fourteen amino chalcone derivatives were designed and synthesized. The antiproliferative activity of amino chalcone derivatives was studied in vitro and 5-Fu as a control group. Some of the compounds showed moderate to good activity against three human cancer cells (MGC-803, HCT-116 and MCF-7 cells) and compound 13e displayed the best antiproliferative activity against MGC-803 cells, HCT-116 cells and MCF-7 cells with IC50 values of 1.52 µM (MGC-803), 1.83 µM (HCT-116) and 2.54 µM (MCF-7), respectively which was more potent than the positive control (5-Fu). Further mechanism studies were explored. The results of cell colony formatting assay suggested compound 10e inhibited the colony formation of MGC-803 cells. DAPI fluorescent staining and flow cytometry assay showed compound 13e induced MGC-803 cells apoptosis. Western blotting experiment indicated compound 13e induced cell apoptosis via the extrinsic/intrinsic apoptosis pathway in MGC-803 cells. Therefore, compound 13e might be a valuable lead compound as antiproliferative agents and amino chalcone derivatives worth further effort to improve amino chalcone derivatives' potency.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Chalcone/chemical synthesis , Chalcone/pharmacology , Chemistry Techniques, Synthetic , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chalcone/analogs & derivatives , Drug Screening Assays, Antitumor , Humans , Inhibitory Concentration 50 , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL