Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
Add more filters

Publication year range
1.
Neurochem Res ; 49(9): 2573-2599, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38896196

ABSTRACT

Autism spectrum disorders (ASD) are neurodevelopmental disorders manifested mainly in children, with symptoms ranging from social/communication deficits and stereotypies to associated behavioral anomalies like anxiety, depression, and ADHD. While the patho-mechanism is not well understood, the role of neuroinflammation has been suggested. Nevertheless, the triggers giving rise to this neuroinflammation have not previously been explored in detail, so the present study was aimed at exploring the role of glutamate on these processes, potentially carried out through increased activity of inflammatory cells like astrocytes, and a decline in neuronal health. A novel chlorpyrifos-induced paradigm of ASD in rat pups was used for the present study. The animals were subjected to tests assessing their neonatal development and adolescent behaviors (social skills, stereotypies, sensorimotor deficits, anxiety, depression, olfactory, and pain perception). Markers for inflammation and the levels of molecules involved in glutamate excitotoxicity, and neuroinflammation were also measured. Additionally, the expression of reactive oxygen species and markers of neuronal inflammation (GFAP) and function (c-Fos) were evaluated, along with an assessment of histopathological alterations. Based on these evaluations, it was found that postnatal administration of CPF had a negative impact on neurobehavior during both the neonatal and adolescent phases, especially on developmental markers, and brought about the generation of ASD-like symptoms. This was further corroborated by elevations in the expression of glutamate and downstream calcium, as well as certain cytokines and neuroinflammatory markers, and validated through histopathological and immunohistochemical results showing a decline in neuronal health in an astrocyte-mediated cytokine-dependent fashion. Through our findings, conclusive evidence regarding the involvement of glutamate in neuroinflammatory pathways implicated in the development of ASD-like symptoms, as well as its ability to activate further downstream processes linked to neuronal damage has been obtained. The role of astrocytes and the detrimental effect on neuronal health are also concluded. The significance of our study and its findings lies in the evaluation of the involvement of chlorpyrifos-induced neurotoxicity in the development of ASD, particularly in relation to glutamatergic dysfunction and neuronal damage.


Subject(s)
Astrocytes , Autism Spectrum Disorder , Chlorpyrifos , Glutamic Acid , Neuroinflammatory Diseases , Astrocytes/metabolism , Astrocytes/drug effects , Animals , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/metabolism , Glutamic Acid/metabolism , Chlorpyrifos/toxicity , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Male , Rats, Wistar , Rats , Animals, Newborn , Female , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology
2.
Mol Biol Rep ; 51(1): 616, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722391

ABSTRACT

BACKGROUND: Chlorpyrifos (CPF) is a widely used pesticide in the production of plant crops. Despite rapid CPF biodegradation, fish were exposed to wastewater containing detectable residues. Recently, medicinal plants and algae were intensively used in aquaculture to replace antibiotics and ameliorate stress impacts. METHODS AND RESULTS: An indoor experiment was conducted to evaluate the deleterious impacts of CPF pollution on Nile tilapia health and the potential mitigation role of Chlorella vulgaris algae. Firstly, the median lethal concentration LC50 - 72 h of CPF was determined to be 85.8 µg /L in Nile tilapia (35.6 ± 0.5 g body weight) at a water temperature of 27.5 °C. Secondly, fish were exposed to 10% of LC50 - 72 h for six weeks, and tissue samples were collected and examined every two weeks. Also, Nile tilapia were experimentally infected with Streptococcus agalactiae. Exposed fish were immunosuppressed expressed with a decrease in gene expressions of interleukin (IL) 1ß, IL-10, and tumor necrosis factor (TNF)-α. Also, a decline was recorded in glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) gene expression in the head kidney tissue. A high mortality rate (MR) of 100% was recorded in fish exposed to CPF for six weeks and challenged with S. agalactiae. Fish that received dietary C. vulgaris could restore gene expression cytokines and antioxidants compared to the control. After six weeks of CPF exposure, fish suffered from anemia as red blood cell count (RBCs), hemoglobin (Hb), and packed cell volume (PCV) significantly declined along with downregulation of serum total protein (TP), globulin (GLO), and albumin (ALB). Liver enzymes were significantly upregulated in fish exposed to CPF pollution, alanine aminotransferase (ALT) (42.5, 53.3, and 61.7 IU/L) and aspartate aminotransferase (AST) (30.1, 31.2, and 22.8) after 2, 4, and 6 weeks, respectively. On S. agalactiae challenge, high MR was recorded in Nile tilapia exposed to CPF (G3) 60%, 60%, and 100% in week 2, week 4, and week 6, and C. vulgaris provided a relative protection level (RPL) of 0, 14.29, and 20%, respectively. CONCLUSIONS: It was concluded that CPF pollution induces immunosuppressed status, oxidative stress, and anemic signs in Nile tilapia. In contrast, C. vulgaris at a 50 g/kg fish feed dose could partially ameliorate such withdrawals, restoring normal physiological parameters.


Subject(s)
Antioxidants , Chlorella vulgaris , Chlorpyrifos , Cichlids , Fish Diseases , Streptococcus agalactiae , Animals , Streptococcus agalactiae/drug effects , Cichlids/metabolism , Cichlids/microbiology , Cichlids/genetics , Chlorpyrifos/toxicity , Antioxidants/metabolism , Fish Diseases/microbiology , Streptococcal Infections/veterinary , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Catalase/metabolism , Catalase/genetics , Water Pollutants, Chemical/toxicity , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Oxidative Stress/drug effects , Aquaculture/methods
3.
Environ Res ; 248: 118325, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38286251

ABSTRACT

Organophosphate (OP) insecticides are some of the most abundantly used insecticides, and prenatal exposures have been linked to adverse maternal and child health outcomes. Anogenital distance (AGD) has emerged as an early marker of androgen activity, and later reproductive outcomes, that is sensitive to alteration by environmental chemicals. Here, we examined associations between prenatal exposure to chlorpyrifos, an OP insecticide, with AGD. Pregnant farmworkers were enrolled in the Study of Asian Women and their Offspring's Development and Environmental Exposures (SAWASDEE; N = 104) between 2017 and 2019 in Northern Thailand. Concentrations of 3,5,6-trichloro-2-pyridinol (TCPy), a specific metabolite of chlorpyrifos, were measured in composited urine samples obtained from each trimester of pregnancy. AGD was measured at 12 months of age. Sex-specific adjusted linear regression models were used to examine associations between average and trimester-specific TCPy levels and AGD. In adjusted models for females and males, increasing TCPy was consistently associated with a modest, non-significant reduction in AGD. Across both strata of sex, associations were greatest in magnitude for trimester 3 (females: ß = -2.17, 95 % confidence interval (CI) = -4.99, 0.66; males: ß = -3.02, 95 % CI = -6.39, 0.35). In the SAWASDEE study, prenatal chlorpyrifos exposure was not strongly associated with AGD at 12 months of age.


Subject(s)
Chlorpyrifos , Insecticides , Male , Pregnancy , Child , Humans , Female , Chlorpyrifos/urine , Insecticides/urine , Thailand , Farmers , Environmental Exposure , Maternal Exposure
4.
Environ Res ; 248: 118212, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38272293

ABSTRACT

Chlorpyrifos (CPF) is a highly toxic phosphate-rich organic pesticide (OP), identified as an emerging contaminant and used extensively in agricultural production. CPF persistence in the environment and its potential health hazards has become increasingly concerning worldwide in recent years due to exponential rise in food demand. Biodegradation of chlorpyrifos by microbial cultures is a promising approach to reclaiming contaminated soil and aquatic environments. The purpose of this review is to summarize the current understanding of microbiological aspects of xenobiotic chlorpyrifos biodegradation, including microbial diversity, metabolic pathways, and factors that modulate it. In both aerobic and anaerobic environments, CPF is biochemically broken down by a broad spectrum of bacteria and fungi. Hydrolysis, dehalogenation, and oxidation of chlorpyrifos are all enzymatic reactions that lead to its degradation. Biodegradation rate and efficiency are strongly influenced by parametric variables such as co-substrates abundance, pH, temperature, and initial chlorpyrifos concentration. The review provides evidence that microbial biodegradation is a viable method for remediating chlorpyrifos-contaminated sites in a sustainable and safe manner.


Subject(s)
Chlorpyrifos , Insecticides , Chlorpyrifos/metabolism , Insecticides/toxicity , Agriculture , Bacteria/metabolism , Biodegradation, Environmental
5.
Environ Res ; 245: 118019, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38142730

ABSTRACT

In this study, a new core-shell Fe3O4@SiO2/PAEDTC@MIL-101 (Fe) photocatalyst was prepared by sol-gel method and used to degrade diazinon (DZN) and chlorpyrifos (CPS) from aqueous solutions. The characteristics analyzed by various techniques indicate that the core-shell photocatalyst with a specific surface area of 992 m2/g, pore size of 1.35 nm and saturation magnetization of nanocomposite was 12 emu/g has been successfully synthesized and can be separated from the reaction solution by a magnetic field. The maximum efficiencies of DZN (98.8%) and CPS (99.9%) were provided at pH of 5, photocatalyst dosage of 0.6 g/L, pollutant concentration of 25 mg/L, radiation intensity of 15 W, and time of 60 min. The presence of anions such as sulfate, nitrate, bicarbonate, phosphate, and chloride had a negative effect on the performance of the photocatalysis system. Compared to the adsorption and photolysis systems alone, the photocatalytic process based on Fe3O4@SiO2/PAEDTC@MIL-101 (Fe) under two UV and visible light sources showed a high efficiency of 90% in the reaction time of 60 min. The BOD5/COD ratio improved after 50 min to above 0.4 with TOC and COD removal rates >80%. Scavenging tests showed that •OH radical, hole (h+), electron (e-), and O2•- anion were produced in the reaction reactor, and the •OH radical was the dominant species in the degradation of DZN and CPS. The stability tests confirmed the recyclability of the photocatalyst in 360 min of reactions, with a minimum reduction of 7%. Energy consumption for the present system during different reactions was between 15.61 and 25.06 kWh/m3 for DZN degradation and 10-22.87 kWh/m3 for CPS degradation.


Subject(s)
Chlorpyrifos , Metal-Organic Frameworks , Pesticides , Pesticides/chemistry , Diazinon , Silicon Dioxide , Catalysis
6.
Environ Res ; 247: 118256, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38266900

ABSTRACT

Water pollution by dyes and pesticides poses significant threats to our ecosystem. In this research, a visible-light ternary composite photocatalytic system was fabricated using graphene oxide (GO) by reducing with N2H4, modifying with KOH, and decorating with Ag/V2O5. The fabricated photocatalysts were characterized through FTIR, SEM, XRD, BET, PL, EDX, ESR, UV-vis spectroscopy, TGA, ESI-MS, and Raman spectroscopy. The point zero charge of the reduced and modified GO (RMGO/Ag/V2O5) was measured to be 6.7 by the pH drift method. This ternary composite was able to achieve complete removal of methyl orange (MO) and chlorpyrifos (CP) in solutions in 80 min under the optimum operation conditions (e.g., in terms of pollutant/catalyst concentrations, pH effects, and contact time). The role of active species responsible for photocatalytic activity was confirmed by scavenger analysis and ESR investigations. The potential mechanism for photocatalytic activity was studied through a fragmentation process carried out by MS analysis. Through nonlinear fitting of the experimental data, MO and CP exhibited the best fit results with the pseudo 1st-order kinetics (quantum yields of 1.07 × 10-3 and 2.16 × 10-3 molecules photon-1 and space-time yields of 1.53 × 10-5 and 2.7 × 10-5 molecules photon-1 mg-1, respectively). The structure of the nanomaterials remained mostly intact to support increased stability and reusability of the prepared photocatalysts even after 10 successive regeneration cycles.


Subject(s)
Azo Compounds , Chlorpyrifos , Graphite , Pesticides , Coloring Agents/chemistry , Ecosystem , Light
7.
Environ Res ; 249: 118310, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38331154

ABSTRACT

Organophosphorus (OP) insecticides are widely used for on-field pest control, constituting about 38% of global pesticide consumption. Insecticide tolerance has been recorded in microorganisms isolated from the contaminated soil. However, the cross-tolerance of laboratory-enriched cultures remains poorly understood. A chlorpyrifos tolerant (T) strain of Anabaena sp. PCC 7119 was developed through continuous enrichment of the wild strain (W). The cross-tolerance of the T strain to the OP insecticide dimethoate was assessed by measuring photosynthetic performance, key enzyme activities and degradation potential. The presence of dimethoate led to a significant reduction in the growth and pigment content of the W strain. In contrast, the T strain demonstrated improved growth and metabolic performance. Chl a and carotenoids were degraded faster than phycobiliproteins in both strains. The T strain exhibited superior photosynthetic performance, metabolic efficiency and photosystem functions, than of W strain, at both the tested dimethoate concentrations (100 and 200 µM). The treated T strain had more or less a normal OJIP fluorescence transient and bioenergetic functions, while the W strain showed a greater fluorescence rise at ≤ 300 µs indicating the inhibition of electron donation to PS II, and at 2 ms due to reduced electron release beyond QA. The T strain had significantly higher levels of esterase and phosphatases, further enhanced by insecticide treatment. Dimethoate degradation efficiency of the T strain was significantly higher than of the W strain. T strain also removed chlorpyrifos more efficiently than W strain at both the tested concentrations. The BCFs of both chlorpyrifos and dimethoate were lower in the T strain compared to the W strain. These findings suggest that the enriched strain exhibits promising results in withstanding dimethoate toxicity and could be explored for its potential as a bioremediating organism for OP degradation.


Subject(s)
Anabaena , Chlorpyrifos , Dimethoate , Insecticides , Chlorpyrifos/toxicity , Dimethoate/toxicity , Anabaena/drug effects , Insecticides/toxicity , Photosynthesis/drug effects
8.
Environ Res ; 246: 118023, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38145733

ABSTRACT

Pesticides represent one of the largest intentional inputs of potentially hazardous compounds into agricultural soils. However, as an important vegetable producing country, surveys on pesticide residues in soils of vegetable production areas are scarce in China. This study presented the occurrence, spatial distribution, correlation between vegetable types and pesticides, and ecological risk evaluation of 94 current-use pesticides in 184 soil samples from vegetable production areas of Zhejiang province (China). The ecological risks of pesticides to soil biota were evaluated with toxicity exposure ratios (TERs) and risk quotient (RQ). The pesticide concentrations varied largely from below the limit of quantification to 20703.06 µg/kg (chlorpyrifos). The situation of pesticide residues in Jiaxing is more serious than in other cities. Soils in the vegetable areas are highly diverse in pesticide combinations. Eisenia fetida suffered exposure risk from multiple pesticides. The risk posed by chlorpyrifos, which exhibited the highest RQs at all scenarios, was worrisome. Only a few pesticides accounted for the overall risk of a city, while the other pesticides make little or zero contribution. This work will guide the appropriate use of pesticides and manage soil ecological risks, achieving green agricultural production.


Subject(s)
Chlorpyrifos , Pesticide Residues , Pesticides , Soil Pollutants , Pesticides/toxicity , Pesticides/analysis , Pesticide Residues/toxicity , Pesticide Residues/analysis , Soil/chemistry , Vegetables , Environmental Monitoring , Risk Assessment , Soil Pollutants/toxicity , Soil Pollutants/analysis
9.
Environ Res ; 249: 118306, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38307184

ABSTRACT

Argentina is a leading honey producer and honey bees are also critical for pollination services and wild plants. At the same time, it is a major crop producer with significant use of insecticides, posing risks to bees. Therefore, the presence of the highly toxic insecticide chlorpyrifos, and forbidden contaminants (organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs)) was investigated in honey bee, beebread, wax and honey samples in apiaries from three contrasting regions of Argentina. Chlorpyrifos was detected in all samples with higher levels during period 1 (spring) in contrast to period 2 (fall), agreeing with its season-wise use in different crops, reaching 3.05 ng/g in honey bees. A subsequent first-tier pesticide hazard analysis revealed that it was relevant to honey bee health, mainly due to the high concentrations found in wax samples from two sites, reaching 132.4 ng/g. In addition, wax was found to be the most contaminated matrix with a prevalence of OCPs (∑OCPs 58.23-172.99 ng/g). Beebread samples showed the highest concentrations and diversity of pesticide residues during period 1 (higher temperatures). A predominance of the endosulfan group was registered in most samples, consistent with its intensive past use, especially in Central Patagonia before its prohibition. Among the industrial compounds, lighter PCB congeners dominated, suggesting the importance of atmospheric transport. The spatio-temporal distribution of pesticides shows a congruence with the environmental characteristics of the areas where the fields are located (i.e., land use, type of productive activities and climatic conditions). Sustained monitoring of different pollutants in beekeeping matrices is recommended to characterize chemical risks, assess the health status of honey bee hives and the pollution levels of different agroecosystems. This knowledge will set a precedent for South America and be helpful for actions focused on the conservation of pollination services, apiculture and ecosystems in Argentina.


Subject(s)
Environmental Monitoring , Environmental Pollutants , Honey , Bees , Argentina , Animals , Honey/analysis , Environmental Pollutants/analysis , Polychlorinated Biphenyls/analysis , Waxes/analysis , Waxes/chemistry , Halogenated Diphenyl Ethers/analysis , Pesticides/analysis , Seasons , Chlorpyrifos/analysis
10.
Med Vet Entomol ; 38(3): 291-302, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38554285

ABSTRACT

Scorpionism is an increasing public health problem in the world. Although no specific methodology or product is currently available for the control of those arachnids, the use of insecticides could be an effective tool. Chlorpyrifos is one of the insecticides used, but to date, whether scorpions recognise surfaces with that insecticide and how it affects their physiology and/or biochemistry is unknown. In the present study, we observed that scorpions recognise surfaces with 0.51 and 8.59 µg/cm2 of chlorpyrifos and avoid those areas. The 0.51 µg/cm2 concentration produced a decrease in acetylcholinesterase and an increase in catalase, superoxide dismutase and glutathione S-transferase, whereas the 8.59 µg/cm2 concentration evoked a decrease in acetylcholinesterase and an increase in catalase and glutathione S-transferase. Using the comet assay, we observed that the insecticide at 0.17, 0.51 and 8.59 µg/cm2 caused DNA damage. Finally, we found that the insecticide does not generate significant variations in glutathione peroxidase, glutathione reductase, the amount of protein or lipid peroxidation. The present results offer a comprehensive understanding of how scorpions respond, both at the biochemical and behavioural levels, when exposed to insecticides.


Subject(s)
Chlorpyrifos , Insecticides , Scorpions , Animals , Scorpions/physiology , Insecticides/pharmacology , Chlorpyrifos/pharmacology , Behavior, Animal/drug effects
11.
BMC Public Health ; 24(1): 807, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38486191

ABSTRACT

BACKGROUND: The objective of this study was to detect the urinary levels of chlorpyrifos, paraquat, and cyproconazole in residents living in Fuyang City and to analyze the correlation between these urinary pesticides levels and the severity of fatty liver disease (FLD). METHODS: All participants' fat fraction (FF) values were recorded by MRI (Magnetic resonance imaging). First-morning urine samples were collected from 53 participants from Fuyang Peoples'Hospital. The levels of three urinary pesticides were measured using ß-glucuronidase hydrolysis followed by a. The results were analyzed by using Pearson correlation analysis and binary logistic regression analysis to reveal the correlation between three urinary pesticides and the severity of fatty liver. RESULTS: 53 individuals were divided into 3 groups based on the results from MRI, with 20 cases in the normal control group, 16 cases in the mild fatty liver group, and 17 cases in the moderate and severe fatty liver group. Urinary chlorpyrifos level was increased along with the increase of the severity of fatty liver. Urinary paraquat level was significantly higher both in the low-grade fatty liver group and moderate & serve grade fatty liver group compared with the control group. No significant differences in urinary cyproconazole levels were observed among the three groups. Furthermore, urinary chlorpyrifos and paraquat levels were positively correlated with FF value. And chlorpyrifos was the risk factor that may be involved in the development of FLD and Receiver Operating Characteristic curve (ROC curve) analysis showed that chlorpyrifos and paraquat may serve as potential predictors of FLD. CONCLUSION: The present findings indicate urinary chlorpyrifos and paraquat were positively correlated with the severity of fatty liver. Moreover, urinary chlorpyrifos and paraquat have the potential to be considered as the predictors for development of FLD. Thus, this study may provide a new perspective from the environmental factors for the diagnosis, prevention, and treatment of FLD.


Subject(s)
Chlorpyrifos , Non-alcoholic Fatty Liver Disease , Pesticides , Triazoles , Humans , Chlorpyrifos/urine , Paraquat , Magnetic Resonance Imaging
12.
Metab Brain Dis ; 39(4): 509-522, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38108941

ABSTRACT

Chlorpyrifos (CPF), considered one of the most potent organophosphates, causes a variety of human disorders including neurotoxicity. The current study was designed to evaluate the efficacy of hesperidin (HSP) in ameliorating CPF-induced neurotoxicity in rats. In the study, rats were treated with HSP (orally, 50 and 100 mg/kg) 30 min after giving CPF (orally, 6.75 mg/kg) for 28 consecutive days. Molecular, biochemical, and histological methods were used to investigate cholinergic enzymes, oxidative stress, inflammation, and apoptosis in the brain tissue. CPF intoxication resulted in inhibition of acetylcholinesterase (AChE) and butrylcholinesterase (BChE) enzymes, reduced antioxidant status [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione (GSH)], and elevation of malondialdehyde (MDA) levels and carbonic anhydrase (CA) activities. CPF increased histopathological changes and immunohistochemical expressions of 8-OHdG in brain tissue. CPF also increased levels of glial fibrillary acidic protein (GFAP) and nuclear factor kappa B (NF-κB) while decreased levels of nuclear factor erythroid 2-related factor 2 (Nrf-2), heme oxygenase-1 (HO-1) and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α). Furthermore, CPF increased mRNA transcript levels of caspase-3, Bax, PARP-1, and VEGF, which are associated with apoptosis and endothelial damage in rat brain tissues. HSP treatment was found to protect brain tissue by reducing CPF-induced neurotoxicity. Overall, this study supports that HSP can be used to reduce CPF-induced neurotoxicity.


Subject(s)
Apoptosis , Chlorpyrifos , Hesperidin , Neurotoxicity Syndromes , Oxidative Stress , Animals , Oxidative Stress/drug effects , Hesperidin/pharmacology , Hesperidin/therapeutic use , Chlorpyrifos/toxicity , Apoptosis/drug effects , Rats , Male , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/metabolism , Brain/drug effects , Brain/metabolism , Brain/pathology , Rats, Wistar , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/chemically induced , Insecticides/toxicity , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Cholinesterase Inhibitors/pharmacology
13.
Ecotoxicol Environ Saf ; 275: 116230, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38552389

ABSTRACT

Epidemiological evidence on the health effects of pesticide exposure among greenhouse workers is limited, and the mechanisms are lacking. Building upon our team's previous population study, we selected two pesticides, CPF and EB, with high detection rates, based on the theoretical foundation that the liver serves as a detoxifying organ, we constructed a toxicity model using HepG2 cells to investigate the impact of individual or combined pesticide exposure on the hepatic metabolism profile, attempting to identify targeted biomarkers. Our results showed that CPF and EB could significantly affect the survival rate of HepG2 cells and disrupt their metabolic profile. There were 117 metabolites interfered by CPF exposure, which mainly affected ABC transporter, biosynthesis of amino acids, center carbon metabolism in cancer, fatty acid biosynthesis and other pathways, 95 metabolites interfered by EB exposure, which mainly affected center carbon metabolism in cancer, HIF-1 signaling pathway, valine, leucine and isoleucine biosynthesis, fatty acid biosynthesis and other pathways. The cross analysis and further biological experiments confirmed that CPF and EB pesticide exposure may affect the HIF-1 signaling pathway and valine, leucine and isoleucine biosynthesis in HepG2 cells, providing reliable experimental evidence for the prevention and treatment of liver damage in greenhouse workers.


Subject(s)
Chlorpyrifos , Insecticides , Ivermectin/analogs & derivatives , Pesticides , Humans , Chlorpyrifos/toxicity , Chlorpyrifos/metabolism , Pesticides/toxicity , Hep G2 Cells , Leucine , Isoleucine , Carbon , Valine , Fatty Acids , Insecticides/toxicity , Insecticides/metabolism
14.
Ecotoxicol Environ Saf ; 282: 116751, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39024950

ABSTRACT

Most studies assessing the combined effects of chemical and non-chemical stressors on aquatic ecosystems have been based on synchronous stressor applications. However, asynchronous exposure scenarios may be more common in nature, particularly for pulsed stressors such as heatwaves and pesticide concentration peaks. In this study, we investigated the single and combined effects of the insecticide chlorpyrifos (CPF) and a heatwave (HW) on a zooplankton community representative of a Mediterranean coastal wetland using synchronous (CPF+HW) and asynchronous (HW→CPF and CPF→HW) exposure scenarios. CPF was applied at a concentration of 0.8 µg/L (single pulse), and the HW was simulated by a temperature increase of 8°C above the control temperature (20°C) for 7 days in freshwater microcosms. The interaction between stressors in synchrony resulted in synergistic effects at the population level (Daphnia magna) and additive at the community level. The partial reduction of sensitive species resulted in an abundance increase of competing species that were more tolerant to the evaluated stressors (e.g. Moina sp.). The asynchronous exposure scenarios resulted in a similar abundance decline of sensitive populations as compared to the synchronous one; however, the timing of stressor resulted in different responses in the long term. In the HW→CPF treatment, the D. magna population recovered at least one month faster than in the CPF+HW treatment, probably due to survival selection and cross-tolerance mechanisms. In the CPF→HW treatment, the effects lasted longer than in the CPF+HW, and the population did not recover within the experimental period, most likely due to the energetic costs of detoxification and effects on internal damage recovery. The different timing and magnitude of indirect effects among the tested asynchronous scenarios resulted in more severe effects on the structure of the zooplankton community in the CPF→HW treatment. Our study highlights the relevance of considering the order of stressors to predict the long-term effects of chemicals and heatwaves both at the population and community levels.


Subject(s)
Chlorpyrifos , Water Pollutants, Chemical , Zooplankton , Animals , Zooplankton/drug effects , Chlorpyrifos/toxicity , Water Pollutants, Chemical/toxicity , Wetlands , Daphnia/drug effects , Daphnia/physiology , Hot Temperature , Pesticides/toxicity , Insecticides/toxicity , Stress, Physiological/drug effects , Ecosystem , Environmental Monitoring/methods
15.
Ecotoxicol Environ Saf ; 277: 116378, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38663191

ABSTRACT

Pesticide residues and microplastics (MPs) in agricultural soils are two major concerns for soil health and food safety. The degradation of chlorpyrifos (CPF), an organophosphorus pesticide, releases phosphates. This process may be affected by the presence of MPs in the soil. The combination of CPF and MPs presence in the soil may thus produce interaction effects that alter the soil phosphorus (P) balance. This study explores the degradation pathways of CPF (6 mg kg-1, 12 mg kg-1 of CPF addition) in soils with different levels of polylactic acid MPs (PLA-MPs) (0.0 %, 0.1 %, 0.5 %, 1.0 % w/w), and analyzes soil P fractions and phosphatase enzyme activities to investigate soil P bioavailability under different treatments. Results show that the degradation of CPF fits to a first-order decay model, with half-lives (DT50) ranging from 11.0 to 14.8 d depending on PLA-MPs treatment. The concentration of its metabolite 3, 5, 6-trichloropyridine 2-phenol (TCP) reached a peak of 0.93-1.67 mg kg-1 within 7-14 days. Similarly, the degradation of CPF led to a significant transient increase in P bioavailability within 3-7 days (p < 0.05), with a peak range of 22.55-26.01 mg kg-1 for Olsen-P content and a peak range of 4.63-6.76 % for the proportions of available P fractions (H2O-P+NaHCO3-P+NaOH-P), before returning to prior levels (Olsen-P: 11.28-19.52 mg kg-1; available soil P fractions: 4.15-5.61 %). CPF degradation (6 mg kg-1) was significantly inhibited in soil with 1.0 % PLA-MPs addition. The effects of MPs and CPF on soil P fractions occur at different time frames, implying that their modes of action and interactions with soil microbes differ.


Subject(s)
Chlorpyrifos , Microplastics , Phosphorus , Soil Pollutants , Soil , Soil Pollutants/analysis , Soil Pollutants/metabolism , Phosphorus/analysis , Soil/chemistry , Biological Availability , Biodegradation, Environmental , Polyesters/chemistry , Polyesters/metabolism , Insecticides/analysis
16.
Ecotoxicol Environ Saf ; 277: 116374, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38677072

ABSTRACT

Farmland soil organisms frequently encounter pesticide mixtures presented in their living environment. However, the underlying toxic mechanisms employed by soil animals to cope with such combined pollution have yet to be explored. This investigation aimed to reveal the changes in cellular and mRNA levels under chlorpyrifos (CPF) and lambda-cyhalothrin (LCT) co-exposures in earthworms (Eisenia fetida). Results exhibited that the combination of CPF and LCT triggered an acute synergistic influence on the animals. Most exposures resulted in significant alterations in the activities of total superoxide dismutase (T-SOD), copper/zinc superoxide dismutase (Cu/Zn-SOD), caspase 3, and carboxylesterase (CarE) compared to the basal level. Moreover, when exposed to chemical mixtures, the transcription levels of four genes [heat shock protein 70 (hsp70), gst, sod, and calreticulin (crt)] also displayed more pronounced changes compared with their individual exposures. These changes in determined parameters indicated the occurrence of oxidative stress, cell death, detoxification dysfunction, and endoplasmic reticulum damage after co-exposure to CPF and LCT in E. fetida. The comprehensive examination of mixture toxicities of CPF and LCT at different endpoints would help to understand the overall toxicity they cause to soil invertebrates. The augmented deleterious effect of these pesticides in a mixture suggested that mixture toxicity assessment was necessary for the safety evaluation and application of pesticide mixtures.


Subject(s)
Chlorpyrifos , HSP70 Heat-Shock Proteins , Nitriles , Oligochaeta , Oxidative Stress , Pyrethrins , Soil Pollutants , Superoxide Dismutase , Animals , Oligochaeta/drug effects , Chlorpyrifos/toxicity , Pyrethrins/toxicity , Nitriles/toxicity , Superoxide Dismutase/metabolism , Soil Pollutants/toxicity , Oxidative Stress/drug effects , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Carboxylesterase/metabolism , Insecticides/toxicity , Caspase 3/metabolism , Caspase 3/genetics , Calreticulin/genetics , Calreticulin/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/genetics
17.
Ecotoxicology ; 33(6): 642-652, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38776006

ABSTRACT

The excessive use of pesticides in agriculture and the widespread use of metals in industrial activities and or technological applications has significantly increased the concentrations of these pollutants in both aquatic and terrestrial ecosystems worldwide, making aquatic biota increasingly vulnerable and putting many species at risk of extinction. Most aquatic habitats receive pollutants from various anthropogenic actions, leading to interactions between compounds that make them even more toxic. The aim of this study was to assess the effects of the compounds Chlorpyrifos (insecticide) and Cadmium (metal), both individually and in mixtures, on the cladocerans Ceriodaphnia rigaudi and Ceriodaphnia silvestrii. Acute toxicity tests were conducted for the compounds individually and in mixture, and an ecological risk assessment (ERA) was performed for both compounds. Acute toxicity tests with Cadmium resulted in EC50-48 h of 0.020 mg L-1 for C. rigaudi and 0.026 mg L-1 for C. silvestrii, while tests with Chlorpyrifos resulted in EC50-48 h of 0.047 µg L-1 and 0.062 µg L-1, respectively. The mixture test for C. rigaudi showed the occurrence of additive effects, while for C. silvestrii, antagonistic effects occurred depending on the dose level. The species sensitivity distribution curve for crustaceans, rotifers, amphibians, and fishes resulted in an HC5 of 3.13 and an HC50 of 124.7 mg L-1 for Cadmium; an HC5 of 9.96 and an HC50 of 5.71 µg L-1 for Chlorpyrifos. Regarding the ERA values, Cadmium represented a high risk, while Chlorpyrifos represented an insignificant to a high risk.


Subject(s)
Cadmium , Chlorpyrifos , Cladocera , Toxicity Tests, Acute , Water Pollutants, Chemical , Animals , Chlorpyrifos/toxicity , Water Pollutants, Chemical/toxicity , Cladocera/drug effects , Cadmium/toxicity , Insecticides/toxicity , Risk Assessment
18.
Luminescence ; 39(8): e4859, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39108165

ABSTRACT

Chlorpyrifos (CPS) is widely found in food and water sources due to agricultural use, posing health and environmental risks. Therefore, this work introduces a fluorescent sensor design of silver nanoparticle-embedded nano zirconium-based metal-organic frameworks (UiO-66-NH2@AgNPs) for accurate examination of CPS. Briefly, UiO-66-NH2 was synthesized hydrothermally, exhibiting weak luminescence owed to ligand-to-metal charge transfer (LMCT). Here, it limits its direct utility in fluorescence-based detection. To address this limitation, silver nanoparticles (AgNPs) were introduced into UiO-66-NH2, enhancing fluorescence via the metal-enhanced fluorescence (MEF) effect. Briefly, a comprehensive spectral analysis such as XPS, SEM, TEM, PXRD, etc., was performed to validate the synthesis of UiO-66-NH2@AgNPs. Subsequent evaluation revealed that CPS effectively quenched the luminescence intensity of UiO-66-NH2@AgNPs through a static quenching mechanism. The fluorescence intensity exhibited good linearity with CPS concentration in the span of 10 to 1,000 ng/mL, with a recognition limit of 191.5 ng/mL(S/N = 3). The interaction involved Ag-S bond formation and electrostatic interactions, reducing fluorescence intensity. The method was confirmed through successful CPS detection in fruit samples. The UiO-66-NH2@AgNPs nanoprobe offers a simple, sensitive, and accurate platform for CPS sensing, with potential for future use in detecting CPS in fruits and vegetables.


Subject(s)
Chlorpyrifos , Metal Nanoparticles , Metal-Organic Frameworks , Silver , Zirconium , Chlorpyrifos/analysis , Silver/chemistry , Zirconium/chemistry , Metal-Organic Frameworks/chemistry , Metal Nanoparticles/chemistry , Spectrometry, Fluorescence , Limit of Detection , Insecticides/analysis
19.
Pestic Biochem Physiol ; 198: 105717, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225064

ABSTRACT

The intranasal (IN) administration route represents a pathway for xenobiotics to reach the brain. The present study aimed to address the long-term consequences of IN administration of a chlorpyrifos (CPF) commercial formulation (fCPF) in mice. For this purpose, adult male CF-1 mice were intranasally administered with fCPF (10 mg/kg/day) three days a week, for 2 and 4 weeks, respectively. Behavioral and biochemical analyses were conducted 3-7, and 7.5 months after the last IN fCPF administration, respectively. Following a 6-month fCPF-free washout period, fur appearance and body injuries scores improved in the fCPF-treated groups. Notably, spatial learning and memory enhancement was observed 4 and 7 months after the last IN fCPF administration. Changes in oxidative stress markers and the activities of enzymes involved in cholinergic and glutamatergic pathways were observed in different brain areas from fCPF-treated mice, still after 7.5 months from fCPF application. Altogether, these neurochemical disturbances could be responsible for the described behavioral observations.


Subject(s)
Chlorpyrifos , Insecticides , Mice , Animals , Chlorpyrifos/toxicity , Brain/metabolism , Behavior, Animal , Oxidative Stress , Insecticides/toxicity , Insecticides/metabolism
20.
Pestic Biochem Physiol ; 198: 105713, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225071

ABSTRACT

The application of different types of pesticides can result in the coexistence of multiple pesticide residues in our food and the environment. This can have detrimental effects on the health of offspring across generations when parents are exposed to these pesticides. Therefore, it is imperative to understand the long-term effects that can be inherited by future generations when assessing the risks associated with pesticides. To study the genotoxic effects of commonly used pesticides, prochloraz (PRO) and chlorpyrifos (CHL), and assess whether their combined exposures have a different toxic effect, we modeled the transgenerational effects of parental (F0-generation) and/or offspring (F1-generation) exposures on zebrafish embryos in the F1-generation. Following the exposures, we proceeded to assess the impacts of these exposures on a range of biological processes in F1-generation zebrafish. Our results revealed that exposure to PRO and CHL altered multiple biological processes, such as inflammation, apoptosis, oxidative stress, and thyroid hormone synthesis, and detoxification system, providing molecular targets for subsequent studies on toxicity mechanisms. Notably, our study also found that the biological processes of F1-generation zebrafish embryos were altered even though they were not exposed to any pesticide when F0-generation zebrafish were exposed to PRO or CHL, suggesting potential genotoxicity. In conclusion, we provided in-vivo evidence that parental exposure to PRO and/or CHL can induce genotoxicity in the offspring. Moreover, we observed that the toxic effects resulting from the combined exposure were interactive, suggesting a potential synergistic impact on the offspring.


Subject(s)
Chlorpyrifos , Endocrine Disruptors , Imidazoles , Pesticides , Water Pollutants, Chemical , Animals , Chlorpyrifos/toxicity , Zebrafish , Endocrine Disruptors/toxicity , Water Pollutants, Chemical/toxicity , Pesticides/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL