Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
J Neurosci ; 44(23)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38697841

ABSTRACT

Interneurons in the medial prefrontal cortex (PFC) regulate local neural activity to influence cognitive, motivated, and emotional behaviors. Parvalbumin-expressing (PV+) interneurons are the primary mediators of thalamus-evoked feed-forward inhibition across the mouse cortex, including the anterior cingulate cortex, where they are engaged by inputs from the mediodorsal (MD) thalamus. In contrast, in the adjacent prelimbic (PL) cortex, we find that PV+ interneurons are scarce in the principal thalamorecipient layer 3 (L3), suggesting distinct mechanisms of inhibition. To identify the interneurons that mediate MD-evoked inhibition in PL, we combine slice physiology, optogenetics, and intersectional genetic tools in mice of both sexes. We find interneurons expressing cholecystokinin (CCK+) are abundant in L3 of PL, with cells exhibiting fast-spiking (fs) or non-fast-spiking (nfs) properties. MD inputs make stronger connections onto fs-CCK+ interneurons, driving them to fire more readily than nearby L3 pyramidal cells and other interneurons. CCK+ interneurons in turn make inhibitory, perisomatic connections onto L3 pyramidal cells, where they exhibit cannabinoid 1 receptor (CB1R) mediated modulation. Moreover, MD-evoked feed-forward inhibition, but not direct excitation, is also sensitive to CB1R modulation. Our findings indicate that CCK+ interneurons contribute to MD-evoked inhibition in PL, revealing a mechanism by which cannabinoids can modulate MD-PFC communication.


Subject(s)
Cholecystokinin , Interneurons , Neural Inhibition , Prefrontal Cortex , Animals , Interneurons/physiology , Cholecystokinin/metabolism , Prefrontal Cortex/physiology , Mice , Male , Female , Neural Inhibition/physiology , Thalamus/physiology , Mice, Inbred C57BL , Parvalbumins/metabolism , Mice, Transgenic , Neural Pathways/physiology , Optogenetics
2.
J Neurosci ; 44(17)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38438258

ABSTRACT

Acetylcholine (ACh) is released from basal forebrain cholinergic neurons in response to salient stimuli and engages brain states supporting attention and memory. These high ACh states are associated with theta oscillations, which synchronize neuronal ensembles. Theta oscillations in the basolateral amygdala (BLA) in both humans and rodents have been shown to underlie emotional memory, yet their mechanism remains unclear. Here, using brain slice electrophysiology in male and female mice, we show large ACh stimuli evoke prolonged theta oscillations in BLA local field potentials that depend upon M3 muscarinic receptor activation of cholecystokinin (CCK) interneurons (INs) without the need for external glutamate signaling. Somatostatin (SOM) INs inhibit CCK INs and are themselves inhibited by ACh, providing a functional SOM→CCK IN circuit connection gating BLA theta. Parvalbumin (PV) INs, which can drive BLA oscillations in baseline states, are not involved in the generation of ACh-induced theta, highlighting that ACh induces a cellular switch in the control of BLA oscillatory activity and establishes an internally BLA-driven theta oscillation through CCK INs. Theta activity is more readily evoked in BLA over the cortex or hippocampus, suggesting preferential activation of the BLA during high ACh states. These data reveal a SOM→CCK IN circuit in the BLA that gates internal theta oscillations and suggest a mechanism by which salient stimuli acting through ACh switch the BLA into a network state enabling emotional memory.


Subject(s)
Acetylcholine , Cholecystokinin , Mice, Inbred C57BL , Theta Rhythm , Theta Rhythm/drug effects , Theta Rhythm/physiology , Animals , Male , Mice , Female , Acetylcholine/pharmacology , Acetylcholine/metabolism , Cholecystokinin/pharmacology , Cholecystokinin/metabolism , Interneurons/physiology , Interneurons/drug effects , Somatostatin/metabolism , Somatostatin/pharmacology , Amygdala/physiology , Amygdala/drug effects , Basolateral Nuclear Complex/physiology , Basolateral Nuclear Complex/drug effects , Nerve Net/physiology , Nerve Net/drug effects , Receptor, Muscarinic M3/physiology , Receptor, Muscarinic M3/metabolism , Parvalbumins/metabolism
3.
Front Neuroendocrinol ; 73: 101122, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38346453

ABSTRACT

Cholecystokinin (CCK) is a neuropeptide modulating digestion, glucose levels, neurotransmitters and memory. Recent studies suggest that CCK exhibits neuroprotective effects in Alzheimer's disease (AD) and Parkinson's disease (PD). Thus, we review the physiological function and therapeutic potential of CCK. The neuropeptide facilitates hippocampal glutamate release and gates GABAergic basket cell activity, which improves declarative memory acquisition, but inhibits consolidation. Cortical CCK alters recognition memory and enhances audio-visual processing. By stimulating CCK-1 receptors (CCK-1Rs), sulphated CCK-8 elicits dopamine release in the substantia nigra and striatum. In the mesolimbic pathway, CCK release is triggered by dopamine and terminates reward responses via CCK-2Rs. Importantly, activation of hippocampal and nigral CCK-2Rs is neuroprotective by evoking AMPK activation, expression of mitochondrial fusion modulators and autophagy. Other benefits include vagus nerve/CCK-1R-mediated expression of brain-derived neurotrophic factor, intestinal protection and suppression of inflammation. We also discuss caveats and the therapeutic combination of CCK with other peptide hormones.


Subject(s)
Alzheimer Disease , Cholecystokinin , Parkinson Disease , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Cholecystokinin/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Animals , Neurotransmitter Agents/metabolism , Neurotransmitter Agents/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
4.
J Physiol ; 602(14): 3519-3543, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38837412

ABSTRACT

In mammals, odour information within the olfactory bulb (OB) is processed by complex neural circuits before being ultimately represented in the action potential activity of mitral/tufted cells (M/Ts). Cholecystokinin-expressing (CCK+) superficial tufted cells (sTCs) are a subset of tufted cells that potentially contribute to olfactory processing in the OB by orchestrating M/T activity. However, the exact role of CCK+ sTCs in modulating odour processing and olfactory function in vivo is largely unknown. Here, we demonstrate that manipulating CCK+ sTCs can generate perception and induce place avoidance. Optogenetic activation/inactivation of CCK+ sTCs exerted strong but differing effects on spontaneous and odour-evoked M/T firing. Furthermore, inactivation of CCK+ sTCs disrupted M/T odour encoding and impaired olfactory detection and odour discrimination. These results establish the role of CCK+ sTCs in odour representation and olfactory behaviours. KEY POINTS: Mice could perceive the activity of CCK+ sTCs and show place avoidance to CCK+ sTC inactivation. Optical activation of CCK+ sTCs increased the percentage of cells with odour response but reduced the odour-evoked response in M/Ts in awake mice. Optical inactivation of CCK+ sTCs greatly decreased spontaneous firing and odour-evoked response in M/Ts. Inactivation of CCK+ sTCs impairs the odour decoding performance of M/Ts and disrupts odour detection and discrimination behaviours in mice. These results indicate that CCK+ sTCs participate in modulating the odour representation and maintaining normal olfactory-related behaviours.


Subject(s)
Cholecystokinin , Olfactory Bulb , Animals , Female , Male , Mice , Cholecystokinin/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Neurons/physiology , Odorants , Olfactory Bulb/physiology , Olfactory Perception/physiology , Optogenetics , Smell/physiology
5.
J Physiol ; 602(6): 1065-1083, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38389307

ABSTRACT

Type 1 diabetes is a disease of the endocrine pancreas; however, it also affects exocrine function. Although most studies have examined the effects of diabetes on acinar cells, much less is known regarding ductal cells, despite their important protective function in the pancreas. Therefore, we investigated the effect of diabetes on ductal function. Diabetes was induced in wild-type and cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice following an i.p. administration of streptozotocin. Pancreatic ductal fluid and HCO3 - secretion were determined using fluid secretion measurements and fluorescence microscopy, respectively. The expression of ion transporters was measured by real-time PCR and immunohistochemistry. Transmission electron microscopy was used for the morphological characterization of the pancreas. Serum secretin and cholecystokinin levels were measured by an enzyme-linked immunosorbent assay. Ductal fluid and HCO3 - secretion, CFTR activity, and the expression of CFTR, Na+ /H+ exchanger-1, anoctamine-1 and aquaporin-1 were significantly elevated in diabetic mice. Acute or chronic glucose treatment did not affect HCO3 - secretion, but increased alkalizing transporter activity. Inhibition of CFTR significantly reduced HCO3 - secretion in both normal and diabetic mice. Serum levels of secretin and cholecystokinin were unchanged, but the expression of secretin receptors significantly increased in diabetic mice. Diabetes increases fluid and HCO3 - secretion in pancreatic ductal cells, which is associated with the increased function of ion and water transporters, particularly CFTR. KEY POINTS: There is a lively interaction between the exocrine and endocrine pancreas not only under physiological conditions, but also under pathophysiological conditions The most common disease affecting the endocrine part is type-1 diabetes mellitus (T1DM), which is often associated with pancreatic exocrine insufficiency Compared with acinar cells, there is considerably less information regarding the effect of diabetes on pancreatic ductal epithelial cells, despite the fact that the large amount of fluid and HCO3 - produced by ductal cells is essential for maintaining normal pancreatic functions Ductal fluid and HCO3 - secretion increase in T1DM, in which increased cystic fibrosis transmembrane conductance regulator activation plays a central role. We have identified a novel interaction between T1DM and ductal cells. Presumably, the increased ductal secretion represents a defence mechanism in the prevention of diabetes, but further studies are needed to clarify this issue.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Animals , Mice , Bicarbonates/metabolism , Cholecystokinin/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Pancreatic Ducts/metabolism , Secretin/metabolism
6.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G291-G309, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38252699

ABSTRACT

Hepatocellular carcinoma (HCC) is the fastest-growing cause of cancer-related deaths worldwide. Chronic inflammation and fibrosis are the greatest risk factors for the development of HCC. Although the cell of origin for HCC is uncertain, many theories believe this cancer may arise from liver progenitor cells or stem cells. Here, we describe the activation of hepatic stem cells that overexpress the cholecystokinin-B receptor (CCK-BR) after liver injury with either a DDC diet (0.1% 3, 5-diethoxy-carbonyl 1,4-dihydrocollidine) or a NASH-inducing CDE diet (choline-deficient ethionine) in murine models. Pharmacologic blockade of the CCK-BR with a receptor antagonist proglumide or knockout of the CCK-BR in genetically engineered mice during the injury diet reduces the expression of hepatic stem cells and prevents the formation of three-dimensional tumorspheres in culture. RNA sequencing of livers from DDC-fed mice treated with proglumide or DDC-fed CCK-BR knockout mice showed downregulation of differentially expressed genes involved in cell proliferation and oncogenesis and upregulation of tumor suppressor genes compared with controls. Inhibition of the CCK-BR decreases hepatic transaminases, fibrosis, cytokine expression, and alters the hepatic immune cell signature rendering the liver microenvironment less oncogenic. Furthermore, proglumide hastened recovery after liver injury by reversing fibrosis and improving markers of synthetic function. Proglumide is an older drug that is orally bioavailable and being repurposed for liver conditions. These findings support a promising therapeutic intervention applicable to patients to prevent the development of HCC and decrease hepatic fibrosis.NEW & NOTEWORTHY This investigation identified a novel pathway involving the activation of hepatic stem cells and liver oncogenesis. Receptor blockade or genetic disruption of the cholecystokinin-B receptor (CCK-BR) signaling pathway decreased the activation and proliferation of hepatic stem cells after liver injury without eliminating the regenerative capacity of healthy hepatocytes.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Mice , Animals , Receptor, Cholecystokinin B/genetics , Receptor, Cholecystokinin B/metabolism , Carcinoma, Hepatocellular/pathology , Proglumide/pharmacology , Liver Neoplasms/metabolism , Liver/metabolism , Fibrosis , Stem Cells/metabolism , Carcinogenesis/metabolism , Cell Transformation, Neoplastic/metabolism , Cholecystokinin/metabolism , Tumor Microenvironment
7.
J Nat Prod ; 87(8): 2021-2033, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39126694

ABSTRACT

Bitter taste receptors, also known as taste 2 receptors (T2R), are expressed throughout the body and are involved in regulating different physiological processes. T2R expression in the intestinal tract regulates orexigenic and anorexigenic peptide secretion, thus becoming potential a potential target for controlling food intake and the prevalence of obesity and overweight. The present study aims to investigate the implication of hop bitter compounds such as α-acids, ß-acids, and xanthohumol in the secretion of anorexigenic hormones and T2R expression in intestinal STC-1 cells. The tested bitter compounds induced the secretion of the anorexigenic hormones glucagon-like peptide 1 and cholecystokinin concurrently with a selective increase of murine Tas2r expression. Xanthohumol and α-acids selectively increase Tas2r138 and Tas2r130-Tas2r138 expression, respectively, in STC-1 cells, while ß-acids increased the expression of all bitter receptors studied, including Tas2r119, Tas2r105, Tas2r138, Tas2r120, and Tas2r130. Increased intracellular calcium levels confirmed this activity. As all investigated bitter molecules increased Tas2r138 expression, computational studies were performed on Tas2r138 and its human orthologue T2R38 for the first time. Molecular docking experiments showed that all molecules might be able to bind both bitter receptors, providing an excellent basis for applying hop bitter molecules as lead compounds to further design gastrointestinal-permeable T2R agonists.


Subject(s)
Humulus , Molecular Docking Simulation , Receptors, G-Protein-Coupled , Humulus/chemistry , Receptors, G-Protein-Coupled/metabolism , Animals , Mice , Humans , Propiophenones/pharmacology , Propiophenones/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry , Glucagon-Like Peptide 1/metabolism , Cholecystokinin/metabolism , Cholecystokinin/chemistry , Cell Line , Gastrointestinal Tract/metabolism , Molecular Structure
8.
Acta Pharmacol Sin ; 45(9): 1821-1831, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38702501

ABSTRACT

Enteroendocrine cells (EECs) and vagal afferent neurons constitute functional sensory units of the gut, which have been implicated in bottom-up modulation of brain functions. Sodium oligomannate (GV-971) has been shown to improve cognitive functions in murine models of Alzheimer's disease (AD) and recently approved for the treatment of AD patients in China. In this study, we explored whether activation of the EECs-vagal afferent pathways was involved in the therapeutic effects of GV-971. We found that an enteroendocrine cell line RIN-14B displayed spontaneous calcium oscillations due to TRPA1-mediated calcium entry; perfusion of GV-971 (50, 100 mg/L) concentration-dependently enhanced the calcium oscillations in EECs. In ex vivo murine jejunum preparation, intraluminal infusion of GV-971 (500 mg/L) significantly increased the spontaneous and distension-induced discharge rate of the vagal afferent nerves. In wild-type mice, administration of GV-971 (100 mg· kg-1 ·d-1, i.g. for 7 days) significantly elevated serum serotonin and CCK levels and increased jejunal afferent nerve activity. In 7-month-old APP/PS1 mice, administration of GV-971 for 12 weeks significantly increased jejunal afferent nerve activity and improved the cognitive deficits in behavioral tests. Sweet taste receptor inhibitor Lactisole (0.5 mM) and the TRPA1 channel blocker HC-030031 (10 µM) negated the effects of GV-971 on calcium oscillations in RIN-14B cells as well as on jejunal afferent nerve activity. In APP/PS1 mice, co-administration of Lactisole (30 mg ·kg-1 ·d-1, i.g. for 12 weeks) attenuated the effects of GV-971 on serum serotonin and CCK levels, vagal afferent firing, and cognitive behaviors. We conclude that GV-971 activates sweet taste receptors and TRPA1, either directly or indirectly, to enhance calcium entry in enteroendocrine cells, resulting in increased CCK and 5-HT release and consequent increase of vagal afferent activity. GV-971 might activate the EECs-vagal afferent pathways to modulate cognitive functions.


Subject(s)
Enteroendocrine Cells , Jejunum , TRPA1 Cation Channel , Vagus Nerve , Animals , Male , Mice , Afferent Pathways/drug effects , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Calcium Signaling/drug effects , Cell Line , Cholecystokinin/metabolism , Disease Models, Animal , Enteroendocrine Cells/metabolism , Enteroendocrine Cells/drug effects , Jejunum/drug effects , Jejunum/metabolism , Jejunum/innervation , Mice, Inbred C57BL , Mice, Transgenic , Presenilin-1/genetics , Serotonin/metabolism , TRPA1 Cation Channel/metabolism , Vagus Nerve/drug effects , Vagus Nerve/metabolism
9.
Article in English | MEDLINE | ID: mdl-38703991

ABSTRACT

The pond loach (Misgurnus anguillicaudatus) is an important aquaculture freshwater species, used as an ornamental fish, food source for humans and angling bait. Pond loaches are resistant to fasting and extreme environmental conditions, including temperature and low oxygen levels. Little is known about how these factors affect the feeding physiology and the endocrine regulation of feeding of loaches. In this study, we examined the effects of fasting, as well as increased temperature and decreased oxygen levels on food intake and transcript levels of appetite regulators. Fasted fish had lower blood glucose levels, and lower expression levels of intestine CCK and PYY, and brain CART1, but had higher levels of brain orexin and ghrelin than fed fish. Fish held at 30 °C had higher food intake, glucose levels, and mRNA levels of intestine CCK and PYY, and brain CART2, but lower brain orexin levels than fish at 20 °C. Fish held at low oxygen levels had a lower food intake, higher intestine CCKa and ghrelin, and brain orexin, CART2 and ghrelin mRNA expression levels than fish held at high O2 levels. Our results suggest that fasting and high temperatures increase the expression of orexigenic and anorexigenic factors respectively, whereas the increase in expression of both orexigenic and anorexigenic factors in low O2 environments might not be related to their role in feeding, but possibly to protection from tissue damage. The results of our study might shed new light on how pond loaches are able to cope with extreme environmental conditions such as low food availability, extreme temperatures and hypoxia.


Subject(s)
Cypriniformes , Fasting , Ghrelin , Animals , Fasting/physiology , Cypriniformes/physiology , Cypriniformes/genetics , Cypriniformes/metabolism , Ghrelin/metabolism , Orexins/metabolism , Brain/metabolism , Brain/physiology , Cholecystokinin/metabolism , Appetite Regulation/physiology , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Blood Glucose/metabolism , Oxygen/metabolism , Peptide YY/metabolism , Peptide YY/blood , Eating/physiology , Temperature , Feeding Behavior/physiology
10.
Reprod Domest Anim ; 59(5): e14586, 2024 May.
Article in English | MEDLINE | ID: mdl-38757644

ABSTRACT

The current study aimed to explore the molecular mechanism by which the cholecystokinin (CCK)-mediated CCKAR and CCKBR, as well as the molecular mechanisms of CCK-mediated insulin signalling pathway, regulate oestrogen in the granulosa cells. Also, the expression of CCK in ovaries, uterus, hypothalamus and pituitary gland was investigated in Camelus bactrianus. Ovaries, uterus, hypothalamus and pituitary gland were collected from six, three before ovulation (control) and three after ovulation, slaughtered Camelus bactrianus. Ovulation was induced by IM injection of seminal plasma before slaughtering in the ovulated group. The results showed that there were differences in the transcription and protein levels of CCK in various tissues before and after ovulation (p < .05, p < .01). After transfection with p-IRES2-EGFP-CCK, the mRNA and protein levels of CCK, CCKAR, CCKBR and ER in follicular granulosa cells were significantly upregulated (p < .05, p < .01), and the content of E2 was significantly upregulated (p < .01); On the contrary, after transfection with si-CCK, the mRNA and protein levels of CCK, CCKAR, CCKBR and ER in follicular granulosa cells were significantly downregulated (p < .05, p < .01), and the content of E2 was significantly downregulated (p < .01). Regulating CCK can affect the mRNA levels of INS, INSR, IGF and IGF-R. In summary, regulating the expression level of CCK can activate insulin-related signalling pathways by CCKR, thereby regulating the steroidogenic activity of granulosa cells.


Subject(s)
Cholecystokinin , Granulosa Cells , Insulin , Signal Transduction , Animals , Female , Granulosa Cells/metabolism , Cholecystokinin/metabolism , Cholecystokinin/genetics , Insulin/metabolism , Ovulation , Uterus/metabolism , Ovary/metabolism , Pituitary Gland/metabolism , Hypothalamus/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics
11.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928178

ABSTRACT

Physiology and behavior are structured temporally to anticipate daily cycles of light and dark, ensuring fitness and survival. Neuromodulatory systems in the brain-including those involving serotonin and dopamine-exhibit daily oscillations in neural activity and help shape circadian rhythms. Disrupted neuromodulation can cause circadian abnormalities that are thought to underlie several neuropsychiatric disorders, including bipolar mania and schizophrenia, for which a mechanistic understanding is still lacking. Here, we show that genetically depleting serotonin in Tph2 knockout mice promotes manic-like behaviors and disrupts daily oscillations of the dopamine biosynthetic enzyme tyrosine hydroxylase (TH) in midbrain dopaminergic nuclei. Specifically, while TH mRNA and protein levels in the Substantia Nigra (SN) and Ventral Tegmental Area (VTA) of wild-type mice doubled between the light and dark phase, TH levels were high throughout the day in Tph2 knockout mice, suggesting a hyperdopaminergic state. Analysis of TH expression in striatal terminal fields also showed blunted rhythms. Additionally, we found low abundance and blunted rhythmicity of the neuropeptide cholecystokinin (Cck) in the VTA of knockout mice, a neuropeptide whose downregulation has been implicated in manic-like states in both rodents and humans. Altogether, our results point to a previously unappreciated serotonergic control of circadian dopamine signaling and propose serotonergic dysfunction as an upstream mechanism underlying dopaminergic deregulation and ultimately maladaptive behaviors.


Subject(s)
Circadian Rhythm , Dopamine , Mice, Knockout , Serotonin , Tryptophan Hydroxylase , Tyrosine 3-Monooxygenase , Ventral Tegmental Area , Animals , Serotonin/metabolism , Mice , Circadian Rhythm/physiology , Dopamine/metabolism , Tyrosine 3-Monooxygenase/metabolism , Tyrosine 3-Monooxygenase/genetics , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism , Tryptophan Hydroxylase/deficiency , Ventral Tegmental Area/metabolism , Cholecystokinin/metabolism , Cholecystokinin/genetics , Dopaminergic Neurons/metabolism , Male , Substantia Nigra/metabolism , Mice, Inbred C57BL , Bipolar Disorder/metabolism , Bipolar Disorder/genetics
12.
J Sci Food Agric ; 104(1): 295-302, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37563097

ABSTRACT

BACKGROUND: Wheat protein intake leads to improved appetite control. However, the active components causing appetite in wheat have not been fully clarified. Gut cholecystokinin (CCK) plays a vital role in appetite control. This study aimed to investigate the ability of wheat protein digest (WPD) to stimulate CCK secretion and clarify the active components and target of action. RESULTS: WPD was prepared by a simulated gastrointestinal digestion model. WPD treatment with a concentration of 5 mg mL-1 significantly stimulated CCK secretion in enteroendocrine STC-1 cells (P < 0.05). Furthermore, oral gavage with WPD in mice significantly increased plasma CCK level at 60 min (P < 0.01). Preparative C18 column separation was used to isolate peptide fractions associated with CCK secretion and peptide sequences were identified by liquid chromatography-tandem mass spectrometry. A new CCK-releasing peptide, RYIVPL, that potently stimulated CCK secretion was successfully identified. After pretreatment with a specific calcium-sensing receptor (CaSR) antagonist, NPS 2143, CCK secretion induced by WPD or RYIVPL was greatly suppressed, suggesting that CaSR was involved in WPD- or RYIVPL-induced CCK secretion. CONCLUSION: The present study demonstrated that WPD has an ability to stimulate CCK secretion in vitro and in vivo, and determined that peptide RYIVPL in WPD could stimulate CCK secretion through CaSR. © 2023 Society of Chemical Industry.


Subject(s)
Cholecystokinin , Triticum , Mice , Animals , Cholecystokinin/metabolism , Triticum/metabolism , Cell Line , Peptides/pharmacology , Receptors, Calcium-Sensing/metabolism , Digestion
13.
J Physiol Sci ; 74(1): 11, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368346

ABSTRACT

Many hormones act on the hypothalamus to control hunger and satiety through various pathways closely associated with several factors. When food is present in the gastro intestinal (GI) tract, enteroendocrine cells (EECs) emit satiety signals such as cholecystokinin (CCK), glucagon like peptide-1 (GLP-1) and peptide YY (PYY), which can then communicate with the vagus nerve to control food intake. More specifically, satiety has been shown to be particularly affected by the GLP-1 hormone and its receptor agonists that have lately been acknowledged as a promising way to reduce weight. In addition, there is increasing evidence that normal flora is also involved in the peripheral, central, and reward system that impact satiety. Moreover, neurologic pathways control satiety through neurotransmitters. In this review, we discuss the different roles of each of the GLP-1 hormone and its agonist, gut microbiomes, as well as neurotransmitters and their interconnected relation in the regulation of body's satiety homeostasis.


Subject(s)
Cholecystokinin , Glucagon-Like Peptide 1 , Cholecystokinin/metabolism , Peptide YY/metabolism , Brain/metabolism , Neurotransmitter Agents
14.
Elife ; 132024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436304

ABSTRACT

The entorhinal cortex is involved in establishing enduring visuo-auditory associative memory in the neocortex. Here we explored the mechanisms underlying this synaptic plasticity related to projections from the visual and entorhinal cortices to the auditory cortex in mice using optogenetics of dual pathways. High-frequency laser stimulation (HFS laser) of the visuo-auditory projection did not induce long-term potentiation. However, after pairing with sound stimulus, the visuo-auditory inputs were potentiated following either infusion of cholecystokinin (CCK) or HFS laser of the entorhino-auditory CCK-expressing projection. Combining retrograde tracing and RNAscope in situ hybridization, we show that Cck expression is higher in entorhinal cortex neurons projecting to the auditory cortex than in those originating from the visual cortex. In the presence of CCK, potentiation in the neocortex occurred when the presynaptic input arrived 200 ms before postsynaptic firing, even after just five trials of pairing. Behaviorally, inactivation of the CCK+ projection from the entorhinal cortex to the auditory cortex blocked the formation of visuo-auditory associative memory. Our results indicate that neocortical visuo-auditory association is formed through heterosynaptic plasticity, which depends on release of CCK in the neocortex mostly from entorhinal afferents.


Subject(s)
Cholecystokinin , Entorhinal Cortex , Mice , Animals , Entorhinal Cortex/physiology , Cholecystokinin/metabolism , Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Neurons/metabolism
15.
Sci Rep ; 14(1): 6277, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38491056

ABSTRACT

The cholecystokinin (CCK)/gastrin family peptides are involved in regulation of feeding and digestion in vertebrates. In the ascidian Ciona intestinalis type A (Ciona robusta), cionin, a CCK/gastrin family peptide, has been identified. Cionin is expressed exclusively in the central nervous system (CNS). In contrast, cionin receptor expression has been detected in the CNS, digestive tract, and ovary. Although cionin has been reported to be involved in ovulation, its physiological function in the CNS remains to be investigated. To elucidate its neural function, in the present study, we analyzed the expression of cionin and cionin receptors in the CNS. Cionin was expressed mainly in neurons residing in the anterior region of the cerebral ganglion. In contrast, the gene expressin of the cionin receptor gene CioR1, was detected in the middle part of the cerebral ganglion and showed a similar expression pattern to that of VACHT, a cholinergic neuron marker gene. Moreover, CioR1 was found to be expressed in cholinergic neurons. Consequently, these results suggest that cionin interacts with cholinergic neurons as a neurotransmitter or neuromodulator via CioR1. This study provides insights into a biological role of a CCK/gastrin family peptide in the CNS of ascidians.


Subject(s)
Cholecystokinin , Ciona intestinalis , Neuropeptides , Animals , Female , Cholecystokinin/genetics , Cholecystokinin/metabolism , Gastrins , Ciona intestinalis/genetics , Ciona intestinalis/metabolism , Amino Acid Sequence , Central Nervous System
16.
Biol Sex Differ ; 15(1): 58, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044232

ABSTRACT

BACKGROUND: Sexual differentiation of the brain occurs in all major vertebrate lineages but is not well understood at a molecular and cellular level. Unlike most vertebrates, sex-changing fishes have the remarkable ability to change reproductive sex during adulthood in response to social stimuli, offering a unique opportunity to understand mechanisms by which the nervous system can initiate and coordinate sexual differentiation. METHODS: This study explores sexual differentiation of the forebrain using single nucleus RNA-sequencing in the anemonefish Amphiprion ocellaris, producing the first cellular atlas of a sex-changing brain. RESULTS: We uncover extensive sex differences in cell type-specific gene expression, relative proportions of cells, baseline neuronal excitation, and predicted inter-neuronal communication. Additionally, we identify the cholecystokinin, galanin, and estrogen systems as central molecular axes of sexual differentiation. Supported by these findings, we propose a model of sexual differentiation in the conserved vertebrate social decision-making network spanning multiple subtypes of neurons and glia, including neuronal subpopulations within the preoptic area that are positioned to regulate gonadal differentiation. CONCLUSIONS: This work deepens our understanding of sexual differentiation in the vertebrate brain and defines a rich suite of molecular and cellular pathways that differentiate during adult sex change in anemonefish.


This study provides key insights into brain sex differences in sex-changing anemonefish (Amphiprion ocellaris), a species that changes sex in adulthood in response to the social environment. Using single nucleus RNA-sequencing, the study provides the first brain cellular atlas showing sex differences in two crucial reproductive areas: the preoptic area and telencephalon. The research identifies notable sex-differences in cell-type proportions and gene expression, particularly in radial glia and glutamatergic neurons that co-express the neuropeptide cholecystokinin. It also highlights differences in preoptic area neurons likely involved in gonadal regulation. This work deepens our understanding of sexual differentiation of the brain in vertebrates, especially those capable of adult sex change, and illuminates key molecular and cellular beginning and endpoints of the process.


Subject(s)
Prosencephalon , Sex Characteristics , Sex Differentiation , Animals , Prosencephalon/physiology , Prosencephalon/metabolism , Male , Female , Sex Differentiation/physiology , Neurons/physiology , Neurons/metabolism , Fishes/physiology , Perciformes/physiology , Galanin/metabolism , Galanin/genetics , Cholecystokinin/metabolism
17.
Science ; 385(6710): 738-743, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39146421

ABSTRACT

Memory consolidation involves the synchronous reactivation of hippocampal cells active during recent experience in sleep sharp-wave ripples (SWRs). How this increase in firing rates and synchrony after learning is counterbalanced to preserve network stability is not understood. We discovered a network event generated by an intrahippocampal circuit formed by a subset of CA2 pyramidal cells to cholecystokinin-expressing (CCK+) basket cells, which fire a barrage of action potentials ("BARR") during non-rapid eye movement sleep. CA1 neurons and assemblies that increased their activity during learning were reactivated during SWRs but inhibited during BARRs. The initial increase in reactivation during SWRs returned to baseline through sleep. This trend was abolished by silencing CCK+ basket cells during BARRs, resulting in higher synchrony of CA1 assemblies and impaired memory consolidation.


Subject(s)
Action Potentials , CA1 Region, Hippocampal , Cholecystokinin , Memory Consolidation , Pyramidal Cells , Sleep , Animals , Memory Consolidation/physiology , CA1 Region, Hippocampal/physiology , Cholecystokinin/metabolism , Pyramidal Cells/physiology , Mice , Sleep/physiology , Male , CA2 Region, Hippocampal/physiology , Hippocampus/physiology , Learning/physiology , Interneurons/physiology
18.
Food Chem ; 452: 139466, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38735106

ABSTRACT

γ-Glutamylation of beef protein hydrolysate (BPH) by L-glutaminase was carried out to improve the taste, as well as enhance the stimulating effect of gastrointestinal hormone (CCK and GLP-1) secretion and the anti-inflammatory property. Results of sensory evaluation showed that the kokumi taste, umaminess, saltiness of the γ-glutamylated product (γ-GBPH) were significantly higher (p < 0.05), whilst the bitterness was remarkably decreased (p < 0.05) than that of BPH. γ-GBPH had a better promoting effect (p < 0.05) on CCK and GLP-1 secretion and a higher inhibition (p < 0.05) on TNF-α and IL-8 production than BPH in vitro cell experiments. In γ-GBPH, 15 γ-Glutamylated amino acids (γ-[Glu](n =1/2)-AAs) and 10 γ-Glutamyl-tripeptide (γ-Glu-AA-AAs) were synthesized from the bitter amino acids and bitter peptides, respectively, and their total production yield was 140.01-170.46 mg/g and 149.06 mg/g, respectively. The synthesized γ-Glu-AA-AAs entered the binding pocket of the calcium-sensitive receptor (CaSR), and they all interacted with three reported amino acid residues (Ser147, Ala168, and Ser170) of CaSR.


Subject(s)
Anti-Inflammatory Agents , Glucagon-Like Peptide 1 , Protein Hydrolysates , Taste , Protein Hydrolysates/chemistry , Protein Hydrolysates/metabolism , Protein Hydrolysates/pharmacology , Animals , Humans , Cattle , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Cholecystokinin/metabolism , Cholecystokinin/chemistry
19.
Nutr Res ; 127: 27-39, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843565

ABSTRACT

Gut peptides play a role in signaling appetite control in the hypothalamus. Limited knowledge exists regarding the release of these peptides in individuals with obesity before and during external stimuli. We hypothesize that the expression of gut peptides is different in the fasting and postprandial states in the scenario of obesity. PubMed/MEDLINE, Scopus, and Science Direct electronic databases were searched. The meta-analysis was performed using Review Manager Software. Randomized controlled trials that measured gut peptides in both obese and lean subjects were included in the analysis. A total of 552 subjects with obesity were enrolled in 25 trials. The gut peptide profile did not show any significant difference between obese and lean subjects for glucagon-like peptide 1 (95% confidence interval [CI], -1.21 to 0.38; P = .30), peptide YY (95% CI, -1.47 to 0.18; P = .13), and cholecystokinin (95% CI, -1.25 to 1.28; P = .98). Gut peptides are decreased by an increased high-fat, high-carbohydrate diet and by decreased chewing. There is no statistically significant difference in gut peptides between individuals with obesity and leanness in a fasting state. However, the release of gut peptides is affected in individuals with obesity following external stimuli, such as dietary interventions and chewing. Further studies are necessary to investigate the relationship between various stimuli and the release of gut peptides, as well as their impact on appetite regulation in subjects with obesity.


Subject(s)
Cholecystokinin , Fasting , Glucagon-Like Peptide 1 , Obesity , Peptide YY , Postprandial Period , Humans , Obesity/metabolism , Peptide YY/blood , Peptide YY/metabolism , Glucagon-Like Peptide 1/blood , Glucagon-Like Peptide 1/metabolism , Cholecystokinin/metabolism , Cholecystokinin/blood , Gastrointestinal Hormones/metabolism , Gastrointestinal Hormones/blood , Adult , Randomized Controlled Trials as Topic
20.
Pharmacol Res Perspect ; 12(4): e1243, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39016695

ABSTRACT

Obesity, a global health challenge, necessitates innovative approaches for effective management. Targeting gut peptides in the development of anti-obesity pharmaceuticals has already demonstrated significant efficacy. Ghrelin, peptide YY (PYY), cholecystokinin (CCK), and amylin are crucial in appetite regulation offering promising targets for pharmacological interventions in obesity treatment using both peptide-based and small molecule-based pharmaceuticals. Ghrelin, a sole orexigenic gut peptide, has a potential for anti-obesity therapies through various approaches, including endogenous ghrelin neutralization, ghrelin receptor antagonists, ghrelin O-acyltransferase, and functional inhibitors. Anorexigenic gut peptides, peptide YY, cholecystokinin, and amylin, have exhibited appetite-reducing effects in animal models and humans. Overcoming substantial obstacles is imperative for translating these findings into clinically effective pharmaceuticals. Peptide YY and cholecystokinin analogues, characterized by prolonged half-life and resistance to proteolytic enzymes, present viable options. Positive allosteric modulators emerge as a novel approach for modulating the cholecystokinin pathway. Amylin is currently the most promising, with both amylin analogues and dual amylin and calcitonin receptor agonists (DACRAs) progressing to advanced stages of clinical trials. Despite persistent challenges, innovative pharmaceutical strategies provide a glimpse into the future of anti-obesity therapies.


Subject(s)
Anti-Obesity Agents , Appetite Regulation , Cholecystokinin , Obesity , Humans , Animals , Obesity/drug therapy , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Cholecystokinin/metabolism , Cholecystokinin/pharmacology , Appetite Regulation/drug effects , Ghrelin/pharmacology , Ghrelin/therapeutic use , Islet Amyloid Polypeptide/metabolism , Islet Amyloid Polypeptide/pharmacology , Peptide YY/pharmacology , Peptide YY/therapeutic use , Appetite Depressants/pharmacology , Appetite Depressants/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL