Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
Add more filters

Publication year range
1.
BMC Microbiol ; 24(1): 294, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107680

ABSTRACT

The colonization of alien plants in new habitats is typically facilitated by microorganisms present in the soil environment. However, the diversity and structure of the archaeal, bacterial, and fungal communities in the latitudinal spread of alien plants remain unclear. In this study, the rhizosphere and bulk soil of Chromolaena odorata were collected from five latitudes in Pu' er city, Yunnan Province, followed by amplicon sequencing of the soil archaeal, bacterial, and fungal communities. Alpha and beta diversity results revealed that the richness indices and the structures of the archaeal, bacterial, and fungal communities significantly differed along the latitudinal gradient. Additionally, significant differences were observed in the bacterial Shannon index, as well as in the structures of the bacterial and fungal communities between the rhizosphere and bulk soils. Due to the small spatial scale, trends of latitudinal variation in the archaeal, bacterial, and fungal communities were not pronounced. Total potassium, total phosphorus, available nitrogen, available potassium and total nitrogen were the important driving factors affecting the soil microbial community structure. Compared with those in bulk soil, co-occurrence networks in rhizosphere microbial networks presented lower complexity but greater modularity and positive connections. Among the main functional fungi, arbuscular mycorrhizae and soil saprotrophs were more abundant in the bulk soil. The significant differences in the soil microbes between rhizosphere and bulk soils further underscore the impact of C. odorata invasion on soil environments. The significant differences in the soil microbiota along latitudinal gradients, along with specific driving factors, demonstrate distinct nutrient preferences among archaea, bacteria, and fungi and indicate complex microbial responses to soil nutrient elements following the invasion of C. odorata.


Subject(s)
Archaea , Bacteria , Chromolaena , Fungi , Microbiota , Rhizosphere , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Chromolaena/microbiology , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , China , Introduced Species , Biodiversity , Soil/chemistry , Plant Roots/microbiology , Phylogeny
2.
Mycorrhiza ; 33(4): 257-275, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37289330

ABSTRACT

Substantial areas of agricultural lands in Sub-Saharan Africa have been invaded by Chromolaena odorata (Asteraceae), but the consequences for arbuscular mycorrhiza fungi (AMF) remains poorly understood. This study explores changes in diverse AMF community attributes and soil available phosphorus following C. odorata invasion in forest and savanna fragments in Côte d'Ivoire (West Africa). Invaded-forest (COF) and savanna (COS) sites were compared to adjacent natural forest (FOR) and savanna (SAV) fragments, respectively. Physico-chemical variables and AMF spore density parameters were determined for soil samples from 0-20 cm depth. An 18S ribosomal RNA metabarcoding analysis of AMF communities was conducted. In addition, cowpea (Vigna unguiculata) was grown on soils collected from these sites under greenhouse conditions for determination of soil mycorrhizal infectivity. Noticeable changes in the composition of AMF communities in C. odorata relative to nearby forest and savanna non-invaded sites were observed. AMF-specific richness in COS (47 species) was lower than that in SAV (57 species) while it was higher in COF (68 species) than in FOR (63 species). COF and COS differed in AMF specific composition (Dissimilarity index = 50.6%). Chromolaena odorata invasions resulted in increased relative abundances of the genera Claroideoglomus and Glomus in COF, a decreased relative abundance of Paraglomus in COS and decreased relative abundances of Ambispora in both COF and COS. Total and healthy spore densities, cowpea root colonization intensity and soil available P were all higher in invaded sites than in natural ecosystems. Remarkably, although these values were different in FOR and SAV, they turned out to be similar in COF and COS (4.6 and 4.2 total spores g-1 soil, 2.3 and 2.0 healthy spores g-1 soil, and 52.6 and 51.6% root colonization, respectively) suggesting a C. odorata-specific effect. These findings indicate that soil mycorrhizal potential and phosphorus availability have improved following C. odorata invasion.


Subject(s)
Asteraceae , Chromolaena , Glomeromycota , Mycobiome , Mycorrhizae , Ecosystem , Soil/chemistry , Phosphorus , Grassland , Spores, Fungal , Forests , Soil Microbiology , Plant Roots/microbiology
3.
ScientificWorldJournal ; 2023: 6689271, 2023.
Article in English | MEDLINE | ID: mdl-37849963

ABSTRACT

The medicinal plant Chromolaena odorata is traditionally used by people living in different communities of Nepal and the globe against diabetes, soft tissue wounds, skin infections, diarrhea, malaria, and several other infectious diseases. The present study focuses on the qualitative and quantitative phytochemical analyses and antioxidant, antidiabetic, antibacterial, and toxicity of the plant for assessing its pharmacological potential. The extracts of flowers, leaves, and stems were prepared using methanol and distilled water as the extracting solvents. Total phenolic content (TPC) and total flavonoid content (TFC) were estimated by using the Folin-Ciocalteu phenol reagent method and the aluminum chloride colorimetric method. Antioxidant and antidiabetic activities were assessed using the DPPH assay and α-glucosidase inhibition assay. A brine shrimp assay was performed to study the toxicity, and the antibacterial activity test was performed by the agar well diffusion method. Phytochemical analysis revealed the presence of phenols, flavonoids, quinones, terpenoids, and coumarins as secondary metabolites. The methanol extract of leaves and flowers displayed the highest phenolic and flavonoid content with 182.26 ± 1.99 mg GAE/g, 128.57 ± 7.62 mg QE/g and 172.65 ± 0.48 mg GAE/g, 121.74 ± 7.06 mg QE/g, respectively. The crude extracts showed the highest DPPH free radical scavenging activity with half maximal inhibitory concentration (IC50) of 32.81 ± 5.26 µg/mL and 41.00 ± 1.10 µg/mL, respectively. The methanol extract of the leaves was found to be effective against bacterial strains such as K. pneumoniae (ZOI = 9.67 ± 0.32 mm), B. subtilis (ZOI = 15.00 ± 0 mm), and E. coli (7.3 ± 0.32 mm). The methanol extract of the flowers showed the most α-glucosidase inhibitory activity (IC50 227.63 ± 11.38 µg/mL), followed by the methanol extract of leaves (IC50 249.50 ± 0.97 µg/mL). The aqueous extract of the flowers showed the toxic effect with LC50 107.31 ± 49.04 µg/mL against the brine shrimp nauplii. In conclusion, C. odorata was found to be a rich source of plant secondary metabolites such as phenolics and flavonoids with potential effects against bacterial infection, diabetes, and oxidative stress in humans. The toxicity study showed that the aqueous extract of flowers possesses pharmacological activities. This study supports the traditional use of the plant against infectious diseases and diabetes and provides some scientific validation.


Subject(s)
Chromolaena , Communicable Diseases , Diabetes Mellitus , Humans , Antioxidants/chemistry , Methanol , Escherichia coli , alpha-Glucosidases , Plant Extracts/toxicity , Plant Extracts/chemistry , Phenols/analysis , Flavonoids/analysis , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/analysis , Phytochemicals/pharmacology , Water , Hypoglycemic Agents
4.
Int J Mol Sci ; 24(20)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37894866

ABSTRACT

Chromolaena tacotana (Klatt) R. M. King and H. Rob (Ch. tacotana) contains bioactive flavonoids that may have antioxidant and/or anti-cancer properties. This study investigated the potential anti-cancer properties of a newly identified chalcone isolated from the inflorescences of the plant Chromolaena tacotana (Klatt) R. M. King and H. Rob (Ch. tacotana). The chalcone structure was determined using HPLC/MS (QTOF), UV, and NMR spectroscopy. The compound cytotoxicity and selectivity were evaluated on prostate, cervical, and breast cancer cell lines using the MTT assay. Apoptosis and autophagy induction were assessed through flow cytometry by detecting annexin V/7-AAD, active Casp3/7, and LC3B proteins. These results were supported by Western blot analysis. Mitochondrial effects on membrane potential, as well as levels of pro- and anti-apoptotic proteins were analyzed using flow cytometry, fluorescent microscopy, and Western blot analysis specifically on a triple-negative breast cancer (TNBC) cell line. Furthermore, molecular docking (MD) and molecular dynamics (MD) simulations were performed to evaluate the interaction between the compounds and pro-survival proteins. The compound identified as 2',3,4-trihydroxy-4',6'-dimethoxy chalcone inhibited the cancer cell line proliferation and induced apoptosis and autophagy. MDA-MB-231, a TNBC cell line, exhibited the highest sensitivity to the compound with good selectivity. This activity was associated with the regulation of mitochondrial membrane potential, activation of the pro-apoptotic proteins, and reduction of anti-apoptotic proteins, thereby triggering the intrinsic apoptotic pathway. The chalcone consistently interacted with anti-apoptotic proteins, particularly the Bcl-2 protein, throughout the simulation period. However, there was a noticeable conformational shift observed with the negative autophagy regulator mTOR protein. Future studies should focus on the molecular mechanisms underlying the anti-cancer potential of the new chalcone and other flavonoids from Ch. tacotana, particularly against predominant cancer cell types.


Subject(s)
Chalcone , Chalcones , Chromolaena , Triple Negative Breast Neoplasms , Humans , Chalcone/pharmacology , Chalcones/pharmacology , Cell Line, Tumor , Molecular Docking Simulation , Triple Negative Breast Neoplasms/metabolism , Cell Proliferation , Apoptosis
5.
Molecules ; 28(9)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37175132

ABSTRACT

The flavonoid izalpinin was isolated from the aerial parts of Chromolaena leivensis. Its structural determination was carried out using MS and NMR spectroscopic techniques (1H, 13C). This compound was evaluated for its anti-inflammatory effect in a rat model on λ-carrageenan-induced plantar edema. Paw inflammation was measured at one-hour intervals for seven hours following the administration of λ-carrageenan. Serum creatine kinase (CK) levels were evaluated, obtaining statistically significant results with the treatments at doses of 10 mg/kg (* p < 0.01) and 20 mg/kg (** p < 0.005). The anti-inflammatory effect of the compound was evaluated by using plethysmography, and the results showed significant differences at the three concentrations (10 mg/kg, 20 mg/kg, 40 mg/kg) in the first and third hours after treatment. * p < 0.05; ** p < 0.001; **** p < 0.0001 vs. the negative control group treated with vehicle (DMSO). Lastly, molecular docking analyses reveal that izalpinin has a strong binding affinity with five target proteins involved in the inflammatory process. The analysis using molecular dynamics allowed demonstrating that the ligand-protein complexes present acceptable stability, with RMSD values within the allowed range.


Subject(s)
Anti-Inflammatory Agents , Chromolaena , Rats , Animals , Carrageenan/adverse effects , Anti-Inflammatory Agents/therapeutic use , Molecular Docking Simulation , Plant Extracts/therapeutic use , Edema/chemically induced , Edema/drug therapy , Edema/metabolism
6.
Molecules ; 28(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36615253

ABSTRACT

Chromolaena tacotana is a source of flavonoids with antiproliferative properties in human breast cancer cells, the most common neoplasm diagnosed in patients worldwide. Until now, the mechanisms of cell death related to the antiproliferative activity of its flavonoids have not been elucidated. In this study, a novel flavanone (3',4'-dihydroxy-5,7-dimethoxy-flavanone) was isolated from the plant leaves and identified by nuclear magnetic resonance (NMR) and mass spectrometry (MS). This molecule selectively inhibited cell proliferation of triple-negative human breast cancer cell lines MDA-MB-231 and MCF-7 whit IC50 values of 25.3 µg/mL and 20.8 µg/mL, respectively, determined by MTT assays with a selectivity index greater than 3. Early and late pro-apoptotic characteristics were observed by annexin-V/7-AAD detection, accompanied by a high percentage of the Bcl-2 anti-apoptotic protein inactivated and the activation of effector Caspase-3 and/or 7 in breast cancer cells. It was verified the decreasing of XIAP more than Bcl-2 anti-apoptotic proteins expression, as well as the XIAP/Caspase-7 and Bcl-2/Bax complexes dissociation after flavanone treatment. Docking and molecular modeling analysis between the flavanone and the antiapoptotic protein XIAP suggests that the natural compound inhibits XIAP by binding to the BIR3 domain of XIAP. In this case, we demonstrate that the new flavanone isolated from leaves of Chomolaena tacotana has a promising and selective anti-breast cancer potential that includes the induction of intrinsic apoptosis by downregulation of the anti-apoptotic proteins XIAP and Bcl-2. New studies should deepen these findings to demonstrate its potential as an anticancer agent.


Subject(s)
Apoptosis Regulatory Proteins , Apoptosis , Breast Neoplasms , Chromolaena , Flavanones , Female , Humans , Apoptosis/drug effects , Apoptosis Regulatory Proteins/antagonists & inhibitors , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Chromolaena/chemistry , Flavanones/chemistry , Flavanones/isolation & purification , Flavanones/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism
7.
Bull Environ Contam Toxicol ; 108(4): 762-767, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34997262

ABSTRACT

This study aimed to investigate the effects of drought stress on cadmium (Cd) and zinc (Zn) accumulation in Chromolaena odorata grown in an artificially contaminated nutrient solution for 15 days. Polyethylene glycol (5% PEG) was used as a drought stressor. The presence of PEG did not affect the chlorophyll content and photochemical efficiency, while drought stress induced by PEG caused a decrease in water content in the plant tissues. The bioaccumulation factor (BAF) of Cd were higher than the BAF of Zn and accumulated mainly in the roots of C. odorata. The highest concentrations (4273.7 mg/kg Cd, 2135.4 mg/kg Zn) were found in the 20 mg/L treatment. The results suggested that Cd and Zn accumulation in C. odorata was not affected by PEG, while a translocation factor (TF) value < 1 was caused by either PEG or contaminants. Based on the hydroponic BAF criterion, the study confirmed that C. odorata was useful for phytoremediation of Cd with low drought stress.


Subject(s)
Chromolaena , Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Cadmium/analysis , Cadmium/toxicity , Droughts , Hydroponics , Metals, Heavy/analysis , Metals, Heavy/toxicity , Plant Roots/chemistry , Soil Pollutants/analysis , Soil Pollutants/toxicity
8.
Physiol Plant ; 173(4): 2068-2080, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34516676

ABSTRACT

Invasive plants rapidly spread in habitats with low soil phosphorus (P) availability and have triggered a sharp decline in the diversity of native species. However, no studies have explored how widespread invasive species acclimate to low soil P availability via changing foliar P fractions, especially under elevated atmospheric CO2 concentrations ([CO2 ]) and nitrogen (N) deposition. Here, an open-top chamber experiment was conducted to explore the effect of nutrient addition and elevated [CO2 ] on leaf traits and foliar functional P fractions (i.e., Pi, metabolite P, lipid P, nucleic acid P, and residual P) of two aggressive invasive species (Mikania micranatha and Chromolaena odorata). We found that foliar N/P ratios were more than 20, and P addition significantly increased plant biomass. Both results indicated P-limited plant growth at our studied site. Elevated [CO2 ], N and N + P addition greatly increased plant biomass, photosynthetic rates, and photosynthetic P-use efficiency (PPUE) in invasive species, but PPUE decreased with increasing P addition. Nitrogen addition slightly decreased the concentration of leaf total P, decreased foliar residual P, but increased metabolite P concentrations in invasive species. Similar changes in foliar P fractions were found under N + P addition. Phosphorus addition increased foliar P concentrations, which was strongly correlated with an increase in metabolite P concentrations in invasive species. Elevated [CO2 ] alleviated these effects and increased PPUE. The present results suggest that future elevated [CO2 ] and N deposition allow the invasive species to acclimate to low soil P availability and support their successful invasion by greatly reducing P allocation to non-metabolite foliar P fractions (i.e., nucleic acid P and residual P) to meet their demand of metabolite P for photosynthesis and exhibit a high PPUE.


Subject(s)
Chromolaena , Mikania , Carbon Dioxide , Nitrogen , Phosphorus
9.
Int J Phytoremediation ; 23(6): 597-608, 2021.
Article in English | MEDLINE | ID: mdl-33556260

ABSTRACT

Greenhouse assessment of the effect of oil on Chromolaena odorata ability to remove PCB from soil treated with transformer oil co-contaminated with Aroclor 1260 was done. Plants were transplanted into one kilogram of soil contained in 1 L pots differently containing 100, 200, and 500 ml of transformer oil (T/O), co-contaminated with 100 ppm of Aroclor. Treatments were done in two microcosms; direct contamination and soil cultured method. Measured plant growth parameters showed that C. odorata growth was affected by the different concentrations of oil. Inhibition of plant growth by oil increased with concentrations. At the end of six weeks, plant growth was affected in T/O amended soil. Plants size was increased by 1.4, 0.46 and -1.0% in direct treatment and 17.01, 6.09 and 1.08% in soil culture at the 100, 200 and 500 ppm respectively. Untreated control showed a 43.07% increase. Slight PCB recovery was observed in root tissues of C. odorata but soil PCB was reduced by 66.6, 53.2, 41.5% and 77.3, 74.7, 58.8% at both treatments in their respective concentrations of oil. However, unplanted control was reduced by 21.4 and 16.7% in the two treatments at 66,000 ppm of oil. This study has shown that with improved agronomic practices, there is a possibility of phytoremediation of soil PCB from PCB contained transformer oil contaminated soil using Chromolaena odorata, hence it should be optimized in the field.


Subject(s)
Chromolaena , Soil Pollutants , Biodegradation, Environmental , Soil , Soil Microbiology
10.
Int J Phytoremediation ; 23(10): 1061-1066, 2021.
Article in English | MEDLINE | ID: mdl-33501846

ABSTRACT

To assess the cadmium (Cd) phytoremediation of three native plant species from Padeang zinc (Zn) mine area (Chromolaena odorata, Impatiens patula, and Gynura pseudochina), a hydroponic experiment was performed in nutrient solutions containing various concentrations of Cd (0, 5, 10, 20, and 50 mg L-1) for 15 days. In the hydroponic experiment, C. odorata showed significantly higher total Cd content than those grown in 50 mg L-1 Cd solutions. Only C. odorata and I. patula were chosen for the pot experiment. The plants were grown in spiked Cd-contaminated soils for 90 days, with different concentrations of Cd (0, 20, 40, 60, and 80 mg kg-1). The results from the pot experiment revealed that both species accumulated more Cd in their root parts, with translocation factor values < 1. C. odorata exhibited the highest biomass production, relative growth rate, and Cd uptake or removal. The findings of the study clearly demonstrate the best uptake of C. odorata in Cd phytoremediation. Novelty statementEven though Chromolaena odorata, Impatiens patula, and Gynura pseudochina have been reported as a Cd accumulator but the assessment of these species by nutrient medium and the soil was not undertaken so far. The discovery of new Cd-accumulator plants has been hindered by the lack of efficient assessing. To assess the suitability of specific species of tropical plants that are able to uptake high amounts of Cd without risk of toxicity under conditions similar to the actual field study, is a novelty.


Subject(s)
Asteraceae , Chromolaena , Impatiens , Soil Pollutants , Biodegradation, Environmental , Cadmium , Soil
11.
Bioorg Chem ; 99: 103869, 2020 06.
Article in English | MEDLINE | ID: mdl-32335358

ABSTRACT

Investigation of components of the chloroform-soluble and ethyl acetate-soluble extracts of the aerial parts of Chromolaena odorata L. selected by PCSK9 mRNA expression monitoring assay in HepG2 cells led to the isolation of a new stilbene dimer, (+)-8b-epi-ampelopsin A (1), and 30 known compounds (2-31). The structures of the isolates were established by interpretation of NMR spectroscopic data and the stereochemistry of the new stilbene (1) was proposed based on ECD and NMR calculations. Among the isolates, 1, 5,6,7,4'-tetramethoxyflavanone (6), 5,6,7,3',4'-pentamethoxyflavanone (7), acacetin (18), and uridine (21) were found to inhibit PCSK9 mRNA expression with IC50 values of 20.6, 21.4, 31.7, 15.0, and 13.7 µM, respectively. Furthermore, the most abundant isolate among the selected compounds, 6, suppressed PCSK9 and low-density lipoprotein receptor protein expression in addition to downregulating the mRNA expression of HNF-1α.


Subject(s)
Chromolaena/chemistry , Flavonoids/pharmacology , PCSK9 Inhibitors , Serine Proteinase Inhibitors/pharmacology , Dose-Response Relationship, Drug , Flavonoids/chemistry , Flavonoids/isolation & purification , Hep G2 Cells , Humans , Molecular Structure , Plant Components, Aerial/chemistry , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Messenger/metabolism , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/isolation & purification , Structure-Activity Relationship , Tumor Cells, Cultured
12.
Int J Phytoremediation ; 22(3): 322-333, 2020.
Article in English | MEDLINE | ID: mdl-31505941

ABSTRACT

Bioremediation of lead-petroleum co-contaminated soil under salt-stressed condition has been investigated. In this study, the co-contaminated soil (780 mg kg-1 Pb and 27,000 mg kg-1 TPHs) under the high salinity (EC 7.79 ds m-1) was used as a model soil to be remediated by Chromolaena odorata inoculated with Micrococcus luteus. The results showed that salt stress caused a marked reduction in dry biomass and stem height, and high accumulation of proline. The presence of salt did not affect the total amount of chlorophyll in plant tissues. No toxicity symptoms were evident from plant morphology after three months of exposure. Drastic differences in the accumulation patterns of Pb in C. odorata grown on saline and non-saline soils were observed and indicated that salinity negatively affected Pb uptake and accumulation. A high rate of degradation of TPHs was observed in non-saline soils with or without bacterial inoculation. Salinity stress showed no significant different in the proportion of TPH degradation with added or non-added M. luteus. The tolerance of C. odorata and M. luteus to moderate concentrations of Pb and fuel oil made them very good candidates for the use in bacteria-assisted phytoremediation of lead-fuel oil co-contaminated soils under the mild saline soils.


Subject(s)
Chromolaena , Fuel Oils , Soil Pollutants , Bacteria , Biodegradation, Environmental , Lead , Micrococcus luteus , Salt Stress , Soil
13.
Ecol Lett ; 21(8): 1211-1220, 2018 08.
Article in English | MEDLINE | ID: mdl-29808558

ABSTRACT

Biotic resistance may influence invasion success; however, the relative roles of species richness, functional or phylogenetic distance in predicting invasion success are not fully understood. We used biomass fraction of Chromolaena odorata, an invasive species in tropical and subtropical areas, as a measure of 'invasion success' in a series of artificial communities varying in species richness. Communities were constructed using species from Mexico (native range) or China (non-native range). We found strong evidence of biotic resistance: species richness and community biomass were negatively related with invasion success; invader biomass was greater in plant communities from China than from Mexico. Harvesting time had a greater effect on invasion success in plant communities from China than on those from Mexico. Functional and phylogenetic distances both correlated with invasion success and more functionally distant communities were more easily invaded. The effects of plant-soil fungi and plant allelochemical interactions on invasion success were species-specific.


Subject(s)
Chromolaena , Phylogeny , Biomass , China , Introduced Species
14.
Immunopharmacol Immunotoxicol ; 40(1): 43-51, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29199487

ABSTRACT

CONTEXT: Immune dysregulation has been implicated in the pathogenesis of many diseases. Macrophages play a crucial role contributing to the onset, progression, and resolution of inflammation. Macrophage inflammatory mediators are of considerable interest as potential targets to treat inflammatory diseases. OBJECTIVE: The present study was conducted to elucidate the anti-inflammatory mechanism of 2',4-dihydroxy-3',4',6'-trimethoxychalcone (1), the major chalcone isolated from Chromolaena odorata (L.) R.M.King & H.Rob, against lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages. MATERIALS AND METHODS: Cell viability, nitric oxide (NO), and proinflammatory cytokines of LPS-activated RAW 264.7 cells were measured by MTT, Griess, and ELISA assays, respectively. Cell lysates were subjected to Western blotting for investigation of protein expression. RESULTS AND DISCUSSION: Treatment with the major chalcone 1 significantly attenuated the production of NO and proinflammatory cytokines, tumor necrosis factor-α, interleukin-1ß, and interleukin-6 in a dose-dependent manner. The chalcone suppressed nuclear factor-κB (NF-κB) stimulation by preventing activation of inhibitor κB kinase (IKK) α/ß, degradation of inhibitor κB (IκB) α, and translocation of p65 NF-κB into the nucleus. Additionally, the chalcone markedly repressed the phosphorylation of p38 mitogen-activated protein kinase (MAPK), but no further inhibition was detected for c-Jun N-terminal activated kinases or extracellular regulated kinases. Thus, suppression of NF-κB and p38 MAPK activation may be the core mechanism underlying the anti-inflammatory activity of 2',4-dihydroxy-3',4',6'-trimethoxychalcone (1). CONCLUSION: These findings provide evidence that 2',4-dihydroxy-3',4',6'-trimethoxychalcone (1) possesses anti-inflammatory activity via targeting proinflammatory macrophages. This anti-inflammatory chalcone is a promising compound for reducing inflammation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Chalcones/pharmacology , Chromolaena/chemistry , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System/drug effects , Macrophage Activation/drug effects , Macrophages/metabolism , NF-kappa B/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Chalcones/chemistry , Cytokines/metabolism , Macrophages/pathology , Mice , Nitric Oxide/metabolism , RAW 264.7 Cells
15.
Int J Phytoremediation ; 20(11): 1096-1105, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30156919

ABSTRACT

Phytoextraction is a technique using a hyperaccumulator to remove heavy metals from soil. The efficiency of heavy metal uptake can be enhanced by the inoculation of endophytes. In this study, we isolated and identified 23 endophytes from Chromolaena odorata, a cadmium (Cd) hyperaccumulator that consisted of 19 bacteria, 2 actinomycetes and 2 fungi. All bacteria and fungi could produce at least 1 plant growth promoting factors. However, only 4 bacterial isolates; Paenibacillus sp. SB12, Bacillus sp. SB31, Bacillus sp. LB51, and Alcaligenes sp. RB54 showed the highest minimum inhibitory concentration (MIC) value (2.9 mM), followed by Exiguobacterium sp.RB51 (1.7 mM). Then, these 5 high-MIC bacteria and 1 low-MIC bacterium, Bacillus sp. LB15 were inoculated onto sunflower grown in soil supplemented with 250 mg/kg of Cd. After 60 days, all inoculated plants accumulated significantly higher Cd concentration than the non-inoculated counterparts, and those inoculated with strain LB51 showed the highest Cd accumulation and growth. Interestingly, strain LB15 with low MIC also enhanced Cd accumulation in plants. The results suggest that these bacteria, particularly strain LB51, could be applied to improve Cd accumulation in plants, and that bacteria with low MIC also have the potential to enhance the efficiency of phytoextraction.


Subject(s)
Chromolaena , Soil Pollutants , Bacteria/isolation & purification , Biodegradation, Environmental , Cadmium , Endophytes
16.
Trop Anim Health Prod ; 50(6): 1305-1311, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29511904

ABSTRACT

A 49-day feeding trial was conducted to determine the effect of Siam weed leaf meal (SWLM)-based diets on growth, organ, and carcass weight characteristics and economics of production of broilers. Proximate biochemical composition of SWLM and the appropriate inclusion level of SWLM for optimum productivity were also determined. Ninety-six-day-old Chi broiler chicks were randomly divided into 4 groups of 24 birds, and each group replicated three times. Each group was assigned to one experimental diet in a completely randomized design marked T1 (0%), T2 (4%), T3 (8%), and T4 (12%). Proximate biochemical results revealed that SWLM is rich in protein (20.52%) and minerals (9.29%). Birds on diets T1 and T2 had similar (p > 0.05) final live weights (FLW), which were higher (p < 0.05) than those on diets T3 and T4. Birds on diet T2 had the highest (p < 0.05) daily feed intake (DFI) and daily weight gain (DWG), while birds on diet T1 had the best feed conversion ratio (FCR) followed by birds on diet T2. The result of quadratic model regression analyses showed that SWLM levels of 1.48, 1.50, 1.47, and 1.56% supported optimum final live weight, DFI, DWG, and FCR. There were no significant (p > 0.05) differences in the dressing percentage, but there were significant differences in the carcass weight between birds on diet T4 and the other three diets. Similarly, pancreas and spleen had similar (p > 0.05) weights across the treatments. There was significant difference (p < 0.05) between birds on diets T1 and T4 in gizzard weight. Cost-benefit ratio was influenced (p < 0.05) with T4 birds having better income of US$1 per US$10.18 invested. It is concluded that SWLM is rich in essential nutrients and therefore suitable for inclusion in broiler diets at level not beyond 2% for best final live weight, daily weight gain, and thigh weight.


Subject(s)
Agriculture/economics , Animal Feed/economics , Chickens/growth & development , Chromolaena , Diet/veterinary , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Nigeria , Nutritive Value , Weight Gain
17.
Biochim Biophys Acta Gen Subj ; 1861(3): 541-550, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27916676

ABSTRACT

BACKGROUND: Chromolaena odorata, has been traditionally known for its insect repellent property. Aim of this study was to determine larvicidal tendency of C. odorata on Culex quinquefasciatus and isolate compounds responsible for this activity and to determine the mechanism of action of these compounds. METHODS: C. odorata plant extract was screened for mosquito larvicidal activity. The extract was fractionated using chromatography and the bioactive fraction showing larvicidal activity was identified. The chemical nature of the compounds in the bioactive fraction was determined using NMR and Mass spectrometry. RESULTS: We identified phytosterols and alkanols to be the compounds regulating larvicidal activity in the bioactive fraction of the plant extract. Stigmasterol and 1-hexacosanol were identified to be the chief orchestrators of larvicidal activity and their mode of action has been observed to be neurotoxicity. At a molecular level both stigmasterol and 1-hexacosanol were found to be inhibiting acetylcholinesterase activity in C. quinquefasciatus & A. aegypti. The acetylcholinesterase inhibitory effect was validated in vitro using recombinant acetylcholinesterase and ex vivo in larval homogenates of Culex and Aedes. Electrophysiological studies using electroantennography have shown enhanced neural response to these compounds. CONCLUSIONS: Neurotoxic effect of C. odorata derived stigmasterol and 1-hexacosanol, exerted through acetylcholinesterase inhibition was responsible for the mortality of C. quinquefasciatus, A. aegypti &Chironomus riparius. EAG studies pointed out hyper-excitability of the olfactory system by these compounds. GENERAL SIGNIFICANCE: These compounds are natural agents for mosquito control that can be used in vector control as larvicidal compounds, pending further investigations.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Chromolaena/chemistry , Fatty Alcohols/pharmacology , Insecticides/pharmacology , Larva/drug effects , Stigmasterol/pharmacology , Aedes/drug effects , Aedes/metabolism , Animals , Neurotoxins/pharmacology , Phytosterols/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry
19.
Molecules ; 22(5)2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28452944

ABSTRACT

The health challenges associated with pathogens and ectoparasites highlight the need for effective control approaches. Metal nanoparticles have been proposed as highly effective tools towards combatting different microbial organisms and parasites. The present work reports the antimicrobial and larvicidal potential of biosynthesized Ag/Ag2O nanoparticles using aqueous leaf extract of Eupatorium odoratum (EO). The constituents of the leaf extract act as both reducing and stabilizing agents. The UV-VIS spectra of the nanoparticles showed surface plasmon resonance. The particle size and shape of the nanoparticles was analysed by transmission electron microscopy (TEM). The larvicidal study was carried out using third and fourth instar Culex quinquefasciatus larvae. The mosquito larvae were exposed to varying concentrations of plant extract (EO) and the synthesized nanoparticles, and their percentage of mortality was accounted for at different time intervals of 12 h and 24 h periods of exposure. The nanoparticles were more lethal against third and fourth instars of Culex quinquefasciatus larvae at the 24 h period of exposure with lower lethal concentration values (LC50 = 95.9 ppm; LC90 = 337.5 ppm) and (LC50 = 166.4 ppm; LC90 = 438.7 ppm) compared to the plant extract (LC50 = 396.8 ppm; LC90 = 716.8 ppm and LC50 = 448.3 ppm; LC90 = 803.9 ppm, respectively). The antimicrobial properties of the nanoparticles were established against different clinically-isolated microbial strains and compared to that of the plant extract (EO) and standard antimicrobial drugs. The nanoparticles were generally more active than the plant extract against the selected microbial organisms. The Gram-negative bacterial strains Escheerichua coli and Salmonella typhi were more susceptible towards the nanoparticles compared to the Gram-positive strains and the fungal organism.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Antifungal Agents/chemical synthesis , Insecticides/chemical synthesis , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Chromolaena/chemistry , Culex/drug effects , Green Chemistry Technology , Inhibitory Concentration 50 , Insecticides/pharmacology , Larva/drug effects , Microbial Sensitivity Tests , Oxides/chemistry , Plant Leaves/chemistry , Silver/chemistry , Silver Compounds/chemistry
20.
Chemistry ; 22(37): 13236-50, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-27492719

ABSTRACT

The identification of inhibitors of Hsp90 is currently a primary goal in the development of more effective drugs for the treatment of various types of multidrug resistant malignancies. In an attempt to identify new small molecules modulating the activity of Hsp90, we screened a small library of tetranortriterpenes. A high-affinity interaction with Hsp90 inducible form was uncovered for eight of these compounds, five of which are described here for the first time. By monitoring the ATPase activity and the citrate synthase thermal induced aggregation, compound 1 (cedrelosin A), 3 (7α-limonylacetate), and 5 (cedrelosin B), containing a limonol moiety, were found to be the most effective in compromising the Hsp90α chaperone activity. Consistent with these findings, the three compounds caused a depletion of c-Raf and pAkt Hsp90 client proteins in HeLa and MCF/7 cell lines. Induced fit docking protocol and molecular dynamics were used to rationalize the structural basis of the biological activity of the limonol derivatives. Taken together, these results point to limonol-derivatives as promising scaffolds for the design of novel Hsp90α inhibitors.


Subject(s)
Antineoplastic Agents/chemistry , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Plant Extracts/chemistry , Triterpenes/chemistry , Adenosine Triphosphatases/metabolism , Antineoplastic Agents/pharmacology , Binding Sites , Cell Survival , Chromolaena/chemistry , Citrate (si)-Synthase/metabolism , Drug Screening Assays, Antitumor/methods , HeLa Cells , Humans , MCF-7 Cells , Molecular Docking Simulation , Plant Leaves/chemistry , Protein Binding , Protein Conformation , Protein Folding , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Triterpenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL