Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.105
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(4): e2214657120, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36649407

ABSTRACT

For almost 200 y, the dominant approach to understand oil-on-water droplet shape and stability has been the thermodynamic expectation of minimized energy, yet parallel literature shows the prominence of Marangoni flow, an adaptive gradient of interfacial tension that produces convection rolls in the water. Our experiments, scaling arguments, and linear stability analysis show that the resulting Marangoni-driven high-Reynolds-number flow in shallow water overcomes radial symmetry of droplet shape otherwise enforced by the Laplace pressure. As a consequence, oil-on-water droplets are sheared to become polygons with distinct edges and corners. Moreover, subphase flows beneath individual droplets can inhibit the coalescence of adjacent droplets, leading to rich many-body dynamics that makes them look alive. The phenomenon of a "vortex halo" in the liquid subphase emerges as a hidden variable.


Subject(s)
Convection , Water , Surface Tension , Thermodynamics
2.
Proc Natl Acad Sci U S A ; 120(3): e2217068120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36634140

ABSTRACT

Thermal metamaterials provide rich control of heat transport which is becoming the foundation of cutting-edge applications ranging from chip cooling to biomedical. However, due to the fundamental laws of physics, the manipulation of heat is much more constrained in conventional thermal metamaterials where effective heat conduction with Onsager reciprocity dominates. Here, through the inclusion of thermal convection and breaking the Onsager reciprocity, we unveil a regime in thermal metamaterials and transformation thermotics that goes beyond effective heat conduction. By designing a liquid-solid hybrid thermal metamaterial, we demonstrate a continuous switch from thermal cloaking to thermal concentration in one device with external tuning. Underlying such a switch is a topology transition in the virtual space of the thermotic transformation which is achieved by tuning the liquid flow via external control. These findings illustrate the extraordinary heat transport in complex multicomponent thermal metamaterials and pave the way toward an unprecedented regime of heat manipulation.


Subject(s)
Cold Temperature , Convection , Hot Temperature , Phase Transition , Physics
3.
Nature ; 573(7772): 55-60, 2019 09.
Article in English | MEDLINE | ID: mdl-31485056

ABSTRACT

Urban heat islands (UHIs) exacerbate the risk of heat-related mortality associated with global climate change. The intensity of UHIs varies with population size and mean annual precipitation, but a unifying explanation for this variation is lacking, and there are no geographically targeted guidelines for heat mitigation. Here we analyse summertime differences between urban and rural surface temperatures (ΔTs) worldwide and find a nonlinear increase in ΔTs with precipitation that is controlled by water or energy limitations on evapotranspiration and that modulates the scaling of ΔTs with city size. We introduce a coarse-grained model that links population, background climate, and UHI intensity, and show that urban-rural differences in evapotranspiration and convection efficiency are the main determinants of warming. The direct implication of these nonlinearities is that mitigation strategies aimed at increasing green cover and albedo are more efficient in dry regions, whereas the challenge of cooling tropical cities will require innovative solutions.


Subject(s)
Climate , Global Warming/statistics & numerical data , Hot Temperature , Urban Population/statistics & numerical data , Cities/statistics & numerical data , City Planning , Convection , Desert Climate , Europe , Asia, Eastern , Geographic Mapping , Humans , Internationality , Plant Transpiration , Rain , Rural Population/statistics & numerical data , Seasons , Tropical Climate , Volatilization
4.
Electrophoresis ; 45(13-14): 1155-1170, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38115169

ABSTRACT

Drug delivery systems, where the nanofluid flow with electroosmosis and mixed convection can help in efficient and targeted drug delivery to specific cells or organs, could benefit from understanding the behavior of nanofluids in biological systems. In current work, authors have studied the theoretical model of two-dimensional ciliary flow of blood-based (Eyring-Powell) nanofluid model with the insertion of ternary hybrid nanoparticles along with the effects of electroosmosis, magnetohydrodynamics, thermal radiations, and mixed convection. Moreover, the features of entropy generation are also taken into consideration. The system is modeled in a wave frame with the approximations of large wave number and neglecting turbulence effects. The problem is solved numerically by using the shooting method with the assistance of computational software "Mathematica" for solving the governing equation. According to the temperature curves, the temperature will increase as the Hartman number, fluid factor, ohmic heating, and cilia length increase. It is also disclosed that ternary hybrid nanoparticles result in a change in flow rate when other problem parameters are varied, and the same is true for temperature graphs. Engineers and scientists can make better use of nanofluid-based cooling systems in electronics, automobiles, and industrial processes with the aid of the study's findings.


Subject(s)
Convection , Electroosmosis , Entropy , Electroosmosis/methods , Nanoparticles/chemistry , Models, Theoretical , Nanotechnology/instrumentation , Nanotechnology/methods , Hydrodynamics , Drug Delivery Systems/instrumentation
5.
J Neurooncol ; 166(2): 243-255, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38261143

ABSTRACT

BACKGROUND: Malignant gliomas are a therapeutic challenge and remain nearly uniformly fatal. While new targeted chemotherapeutic agentsagainst malignant glioma have been developed in vitro, these putative therapeutics have not been translated into successful clinical treatments. The lack of clinical effectiveness can be the result of ineffective biologic strategies, heterogeneous tumor targets and/or the result of poortherapeutic distribution to malignant glioma cells using conventional nervous system delivery modalities (intravascular, cerebrospinal fluid and/orpolymer implantation), and/or ineffective biologic strategies. METHODS: The authors performed a review of the literature for the terms "convection enhanced delivery", "glioblastoma", and "glioma". Selectclinical trials were summarized based on their various biological mechanisms and technological innovation, focusing on more recently publisheddata when possible. RESULTS: We describe the properties, features and landmark clinical trials associated with convection-enhanced delivery for malignant gliomas.We also discuss future trends that will be vital to CED innovation and improvement. CONCLUSION: Efficacy of CED for malignant glioma to date has been mixed, but improvements in technology and therapeutic agents arepromising.


Subject(s)
Antineoplastic Agents , Biological Products , Brain Neoplasms , Glioma , Humans , Convection , Drug Delivery Systems , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Glioma/drug therapy , Glioma/pathology , Biological Products/therapeutic use , Antineoplastic Agents/therapeutic use
6.
Virus Genes ; 60(2): 126-133, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38289523

ABSTRACT

Newcastle disease virus (NDV) belongs to the Avulavirus genus and Paramyxoviridae family virus that causes acute, highly infectious Newcastle disease in poultry. The two proteins of haemagglutinin neuraminidase (HN) and fusion (F) are key virulence factors with an important role in its immunogenicity. Genotype VII NDV is still among the most serious viral hazards to the poultry industry worldwide. In this study, a commercial vector vaccine (HVT-NDV) was evaluated compared to the conventional vaccination strategy against Iranian genotype VII. This experiment showed that the group receiving the conventional vaccination strategy had higher antibodies, fewer clinical signs, and lower viral loads in tracheal swabs and feces. Also, two vaccine groups showed significant difference, which could have resulted from two extra vaccine doses in the conventional group. However, except for antibody levels in commercial chickens in the Iran new-generation vaccine, this difference was minor. Further, both groups showed 100% protection in the challenge study. Despite the phylogenetic gap between the NDV-F gene placed in the vector vaccine and the challenge virus (genotypes I and VII, respectively), the rHVT-NDV vaccine offered strong clinical protection and decreased challenge virus shedding considerably.


Subject(s)
Newcastle Disease , Poultry Diseases , Viral Vaccines , Animals , Newcastle disease virus , Chickens , Phylogeny , Convection , Iran , Vaccines, Synthetic/genetics , Vaccination/veterinary , Genotype , Antibodies, Viral
7.
Nature ; 556(7700): 227-230, 2018 04.
Article in English | MEDLINE | ID: mdl-29643484

ABSTRACT

The Atlantic meridional overturning circulation (AMOC) is a system of ocean currents that has an essential role in Earth's climate, redistributing heat and influencing the carbon cycle1, 2. The AMOC has been shown to be weakening in recent years 1 ; this decline may reflect decadal-scale variability in convection in the Labrador Sea, but short observational datasets preclude a longer-term perspective on the modern state and variability of Labrador Sea convection and the AMOC1, 3-5. Here we provide several lines of palaeo-oceanographic evidence that Labrador Sea deep convection and the AMOC have been anomalously weak over the past 150 years or so (since the end of the Little Ice Age, LIA, approximately AD 1850) compared with the preceding 1,500 years. Our palaeoclimate reconstructions indicate that the transition occurred either as a predominantly abrupt shift towards the end of the LIA, or as a more gradual, continued decline over the past 150 years; this ambiguity probably arises from non-AMOC influences on the various proxies or from the different sensitivities of these proxies to individual components of the AMOC. We suggest that enhanced freshwater fluxes from the Arctic and Nordic seas towards the end of the LIA-sourced from melting glaciers and thickened sea ice that developed earlier in the LIA-weakened Labrador Sea convection and the AMOC. The lack of a subsequent recovery may have resulted from hysteresis or from twentieth-century melting of the Greenland Ice Sheet 6 . Our results suggest that recent decadal variability in Labrador Sea convection and the AMOC has occurred during an atypical, weak background state. Future work should aim to constrain the roles of internal climate variability and early anthropogenic forcing in the AMOC weakening described here.


Subject(s)
Convection , Oceans and Seas , Seawater/analysis , Water Movements , Arctic Regions , Atlantic Ocean , Climate Change/statistics & numerical data , Fresh Water/analysis , Greenland , History, 15th Century , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , History, Medieval , Ice Cover/chemistry , Newfoundland and Labrador , Reproducibility of Results , Time Factors
8.
Eur Spine J ; 33(5): 1728-1736, 2024 May.
Article in English | MEDLINE | ID: mdl-38662214

ABSTRACT

PURPOSE: The intervertebral disc being avascular depends on diffusion and load-based convection for essential nutrient supply and waste removal. There are no reliable methods to simultaneously investigate them in humans under natural loads. For the first time, present study aims to investigate this by strategically employing positional MRI and post-contrast studies in three physiological positions: supine, standing and post-standing recovery. METHODS: A total of 100 healthy intervertebral discs from 20 volunteers were subjected to a serial post-contrast MR study after injecting 0.3 mmol/kg gadodiamide and T1-weighted MR images were obtained at 0, 2, 6, 12 and 24 h. At each time interval, images were obtained in three positions, i.e. supine, standing and post-standing recovery supine. The signal intensity values at endplate zone and nucleus pulposus were measured. Enhancement percentages were calculated and analysed comparing three positions. RESULTS: During unloaded supine position, there was slow gradual increase in enhancement reaching peak at 6 h. When the subjects assumed standing position, there was immediate loss of enhancement at nucleus pulposus which resulted in reciprocal increase in enhancement at endplate zone (washout phenomenon). Interestingly, when subjects assumed the post-standing recovery position, the nucleus pulposus regained the enhancement and endplate zone showed reciprocal loss (pumping-in phenomenon). CONCLUSIONS: For the first time, present study documented acute effects of physiological loading and unloading on nutrition of human discs in vivo. While during rest, solutes diffused gradually into disc, the diurnal short loading and unloading redistribute small solutes by convection. Standing caused rapid solute depletion but promptly regained by assuming resting supine position.


Subject(s)
Intervertebral Disc , Lumbar Vertebrae , Magnetic Resonance Imaging , Standing Position , Humans , Intervertebral Disc/diagnostic imaging , Intervertebral Disc/physiology , Adult , Male , Magnetic Resonance Imaging/methods , Lumbar Vertebrae/diagnostic imaging , Female , Supine Position/physiology , Diffusion , Convection , Young Adult , Contrast Media/pharmacokinetics , Gadolinium DTPA/pharmacokinetics , Gadolinium DTPA/administration & dosage , Nutrients
9.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article in English | MEDLINE | ID: mdl-34504013

ABSTRACT

Islet transplantation for type 1 diabetes treatment has been limited by the need for lifelong immunosuppression regimens. This challenge has prompted the development of macroencapsulation devices (MEDs) to immunoprotect the transplanted islets. While promising, conventional MEDs are faced with insufficient transport of oxygen, glucose, and insulin because of the reliance on passive diffusion. Hence, these devices are constrained to two-dimensional, wafer-like geometries with limited loading capacity to maintain cells within a distance of passive diffusion. We hypothesized that convective nutrient transport could extend the loading capacity while also promoting cell viability, rapid glucose equilibration, and the physiological levels of insulin secretion. Here, we showed that convective transport improves nutrient delivery throughout the device and affords a three-dimensional capsule geometry that encapsulates 9.7-fold-more cells than conventional MEDs. Transplantation of a convection-enhanced MED (ceMED) containing insulin-secreting ß cells into immunocompetent, hyperglycemic rats demonstrated a rapid, vascular-independent, and glucose-stimulated insulin response, resulting in early amelioration of hyperglycemia, improved glucose tolerance, and reduced fibrosis. Finally, to address potential translational barriers, we outlined future steps necessary to optimize the ceMED design for long-term efficacy and clinical utility.


Subject(s)
Cell Encapsulation/methods , Drug Delivery Systems/methods , Insulin-Secreting Cells/metabolism , Animals , Cell Survival/drug effects , Convection , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Drug Delivery Systems/instrumentation , Insulin/metabolism , Insulin Secretion/drug effects , Insulin Secretion/physiology , Insulin-Secreting Cells/drug effects , Islets of Langerhans/metabolism , Islets of Langerhans Transplantation/methods , Male , Rats
10.
Neurobiol Dis ; 187: 106321, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37832796

ABSTRACT

Intracerebral drug delivery is an experimental approach for the treatment of drug-resistant epilepsies that allows for pharmacological intervention in targeted brain regions. Previous studies have shown that targeted pharmacological inhibition of the subthalamic nucleus (STN) via modulators of the GABAergic system produces antiseizure effects. However, with chronic treatment, antiseizure effects are lost as tolerance develops. Here, we report that chronic intrasubthalamic microinfusion of valproate (VPA), an antiseizure medication known for its wide range of mechanisms of action, can produce long-lasting antiseizure effects over three weeks in rats. In the intravenous pentylenetetrazole seizure-threshold test, seizure thresholds were determined before and during chronic VPA application (480 µg/d, 720 µg/d, 960 µg/d) to the bilateral STN. Results indicate a dose-dependent variation in VPA-induced antiseizure effects with mean increases in seizure threshold of up to 33%, and individual increases of up to 150%. The lowest VPA dose showed a complete lack of tolerance development with long-lasting antiseizure effects. Behavioral testing with all doses revealed few, acceptable adverse effects. VPA concentrations were high in STN and low in plasma and liver. In vitro electrophysiology with bath applied VPA revealed a reduction in spontaneous firing rate, increased background membrane potential, decreased input resistance and a significant reduction in peak NMDA, but not AMPA, receptor currents in STN neurons. Our results suggest an advantage of VPA over purely GABAergic modulators in preventing tolerance development with chronic intrasubthalamic drug delivery and provide first mechanistic insights in intracerebral pharmacotherapy targeting the STN.


Subject(s)
Convection , Valproic Acid , Rats , Animals , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Rats, Wistar , Membrane Potentials , Seizures/drug therapy
11.
Microvasc Res ; 145: 104447, 2023 01.
Article in English | MEDLINE | ID: mdl-36270419

ABSTRACT

Gas, especially oxygen, transport in the microcirculation is a complex phenomenon, however, of critical importance for maintaining normal biological functions, and the cytoplasm fluid in red blood cells (RBCs) is the major vehicle for transporting oxygen from lungs to tissues via the circulatory system. Existing theoretical and numerical studies have neglected the cytoplasm convection effect by treating RBCs as rigid particles undergoing a constant translation velocity. As a consequence, the influence and mechanism of the cytoplasm flow on oxygen transport are still not clear in microcirculation research. In this study, we consider a tank-treading capsule in shear flow, which is generated with two parallel plates moving in opposite directions: the top plate of a higher oxygen pressure (PO2) representing the RBC core in the central region of a microvessel and the bottom plate of a lower PO2 representing the microvessel wall. Numerical simulations are conducted to investigate the individual and combined effects of cytoplasm convection and oxygen-hemoglobin (O2-Hb) reaction on the oxygen transport efficiency across the tank-treading capsule, and different PO2 situations and shear rates are also tested. Due to the lower oxygen diffusivity in cytoplasm, the presence of the capsule reduces the oxygen transfer flux across the gap by 7.34 % in the pure diffusion system where the flow convection and O2-Hb reaction are both neglected. Including the flow convection or the O2-Hb reaction has little influence on the oxygen flux; however, when they act together as in real microcirculation situations, the enhancement in oxygen transport could be significant, especially in the low PO2 and high shear rate situations. In particular, with the respective PO2 at 60 and 30 mmHg on the top and bottom plates and a 400 s-1 shear rate, the oxygen flux reduction is only 0.02 %, suggesting that the cytoplasm convection can improve the oxygen transport across RBCs considerably. The simulation results are scrutinized to explore the underlying mechanism for the enhancement, and a new nondimensional parameter is introduced to characterize the importance of cytoplasm convection in oxygen transport. These simulation results, discussion and analysis could be helpful for a better understanding of the complex oxygen transport process and therefor valuable for relevant studies.


Subject(s)
Convection , Oxygen , Erythrocytes/physiology , Hemoglobins , Computer Simulation
12.
Chemphyschem ; 24(1): e202200471, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36125421

ABSTRACT

We numerically investigated the dynamics of a mixture of finite-size active and passive disks in a linear array of two-dimensional convection rolls. The interplay of advection and steric interactions produces a number of interesting effects, like the stirring of a passive colloidal fluid by a small fraction of slow active particles, or the separation of the mixture active and passive colloidal fractions by increasing the motility of the active one, which eventually clusters in stagnation areas along the array walls. These mechanisms are quantitatively characterized by studying the dependence of the diffusion constants of the active and passive particles on the parameters of the active mixture fraction.


Subject(s)
Convection , Diffusion
13.
Mol Pharm ; 20(1): 582-592, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36516432

ABSTRACT

In this study, we investigated convection-enhanced delivery (CED) of 23 ± 3 nm gold nanoparticles (AuNPs) labeled with the ß-particle-emitting radionuclide 177Lu (177Lu-AuNPs) for treatment of orthotopic U251-Luc human glioblastoma multiforme (GBM) tumors in NRG mice. The cytotoxicity in vitro of 177Lu-AuNPs (0.0-2.0 MBq, 4 × 1011 AuNPs) on U251-Luc cells was also studied by a clonogenic survival assay, and DNA double-strand breaks (DSBs) caused by ß-particle emissions of 177Lu were measured by confocal immunofluorescence microscopy for γH2AX. NRG mice with U251-Luc tumors in the right cerebral hemisphere of the brain were treated by CED of 1.1 ± 0.2 MBq of 177Lu-AuNPs (4 × 1011 AuNPs). Control mice received unlabeled AuNPs or normal saline. Tumor retention of 177Lu-AuNPs was assessed by single-photon emission computed tomography/computed tomography (SPECT/CT) imaging and biodistribution studies. Radiation doses were estimated for the tumor, brain, and other organs. The effectiveness for treating GBM tumors was determined by bioluminescence imaging (BLI) and T2-weighted magnetic resonance imaging (MRI) and by Kaplan-Meier median survival. Normal tissue toxicity was assessed by monitoring body weight and hematology and blood biochemistry analyses at 14 d post-treatment. 177Lu-AuNPs (2.0 MBq, 4 × 1011 AuNPs) decreased the clonogenic survival of U251-Luc cells to 0.005 ± 0.002 and increased DNA DSBs by 14.3-fold compared to cells treated with unlabeled AuNPs or normal saline. A high proportion of 177Lu-AuNPs was retained in the U251-Luc tumor in NRG mice up to 21 d with minimal re-distribution to the brain or other organs. The radiation dose in the tumor was high (599 Gy). The dose in the normal right cerebral hemisphere of the brain excluding the tumor was 93-fold lower (6.4 Gy), and 2000-3000-fold lower doses were calculated for the contralateral left cerebral hemisphere (0.3 Gy) or cerebellum (0.2 Gy). The doses in peripheral organs were <0.1 Gy. BLI revealed almost complete tumor growth arrest in mice treated with 177Lu-AuNPs, while tumors grew rapidly in control mice. MRI at 28 d post-treatment and histological staining showed no visible tumor in mice treated with 177Lu-AuNPs but large GBM tumors in control mice. All control mice reached a humane endpoint requiring sacrifice within 39 d (normal saline) or 45 d post-treatment (unlabeled AuNPs), while 5/8 mice treated with 177Lu-AuNPs survived up to 150 d. No normal tissue toxicity was observed in mice treated with 177Lu-AuNPs. We conclude that CED of 177Lu-AuNPs was highly effective for treating U251-Luc human GBM tumors in the brain in NRG mice at amounts that were non-toxic to normal tissues. These 177Lu-AuNPs administered by CED hold promise for treating patients with GBM to prevent recurrence and improve long-term outcome.


Subject(s)
Glioblastoma , Metal Nanoparticles , Humans , Animals , Mice , Gold , Glioblastoma/drug therapy , Glioblastoma/radiotherapy , Tissue Distribution , Convection , Saline Solution , Radioisotopes/therapeutic use , Cell Line, Tumor , DNA
14.
Eur Phys J E Soft Matter ; 46(1): 1, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36637683

ABSTRACT

The current research numerically investigates the Marangoni convection in a cylindrical annulus filled with hybrid nanofluid saturated porous media. The interior and exterior walls are subjected to spatially varying sinusoidal thermal distributions with various amplitude ratios and phase deviations. The limits at the top and bottom are adiabatic. To solve the system of non-dimensional governing equations, the finite difference approach is applied. The main objective of the ongoing study is to investigate the impact of the Marangoni number, nanoparticle volume fraction and the radii ratio on the amplitude ratio and phase deviation. Also, the fluid flow, thermal characteristics, local and average Nusselt numbers are analysed in the hybrid nanofluid-filled vertical cylindrical annulus with magnetic effects. The findings indicate that the sinusoidal temperature promotes multicellular flow in the porous annular region. In the annulus with sinusoidal boundaries, the Marangoni number underperforms while the nanoparticle volume fraction outperforms.


Subject(s)
Convection , Nanoparticles , Temperature , Porosity
15.
Nature ; 544(7651): 475-478, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28447639

ABSTRACT

The hydrological cycle is expected to intensify under global warming, with studies reporting more frequent extreme rain events in many regions of the world, and predicting increases in future flood frequency. Such early, predominantly mid-latitude observations are essential because of shortcomings within climate models in their depiction of convective rainfall. A globally important group of intense storms-mesoscale convective systems (MCSs)-poses a particular challenge, because they organize dynamically on spatial scales that cannot be resolved by conventional climate models. Here, we use 35 years of satellite observations from the West African Sahel to reveal a persistent increase in the frequency of the most intense MCSs. Sahelian storms are some of the most powerful on the planet, and rain gauges in this region have recorded a rise in 'extreme' daily rainfall totals. We find that intense MCS frequency is only weakly related to the multidecadal recovery of Sahel annual rainfall, but is highly correlated with global land temperatures. Analysis of trends across Africa reveals that MCS intensification is limited to a narrow band south of the Sahara desert. During this period, wet-season Sahelian temperatures have not risen, ruling out the possibility that rainfall has intensified in response to locally warmer conditions. On the other hand, the meridional temperature gradient spanning the Sahel has increased in recent decades, consistent with anthropogenic forcing driving enhanced Saharan warming. We argue that Saharan warming intensifies convection within Sahelian MCSs through increased wind shear and changes to the Saharan air layer. The meridional gradient is projected to strengthen throughout the twenty-first century, suggesting that the Sahel will experience particularly marked increases in extreme rain. The remarkably rapid intensification of Sahelian MCSs since the 1980s sheds new light on the response of organized tropical convection to global warming, and challenges conventional projections made by general circulation models.


Subject(s)
Floods/statistics & numerical data , Rain , Satellite Imagery , Africa South of the Sahara , Africa, Northern , Convection , Global Warming/statistics & numerical data , Models, Theoretical , Seasons , Temperature , Water Cycle , Wind
16.
Nature ; 552(7685): 391-394, 2017 12 20.
Article in English | MEDLINE | ID: mdl-29293210

ABSTRACT

Despite active transport into Earth's mantle, water has been present on our planet's surface for most of geological time. Yet water disappeared from the Martian surface soon after its formation. Although some of the water on Mars was lost to space via photolysis following the collapse of the planet's magnetic field, the widespread serpentinization of Martian crust suggests that metamorphic hydration reactions played a critical part in the sequestration of the crust. Here we quantify the relative volumes of water that could be removed from each planet's surface via the burial and metamorphism of hydrated mafic crusts, and calculate mineral transition-induced bulk-density changes at conditions of elevated pressure and temperature for each. The metamorphic mineral assemblages in relatively FeO-rich Martian lavas can hold about 25 per cent more structurally bound water than those in metamorphosed terrestrial basalts, and can retain it at greater depths within Mars. Our calculations suggest that in excess of 9 per cent by volume of the Martian mantle may contain hydrous mineral species as a consequence of surface reactions, compared to about 4 per cent by volume of Earth's mantle. Furthermore, neither primitive nor evolved hydrated Martian crust show noticeably different bulk densities compared to their anhydrous equivalents, in contrast to hydrous mafic terrestrial crust, which transforms to denser eclogite upon dehydration. This would have allowed efficient overplating and burial of early Martian crust in a stagnant-lid tectonic regime, in which the lithosphere comprised a single tectonic plate, with only the warmer, lower crust involved in mantle convection. This provided an important sink for hydrospheric water and a mechanism for oxidizing the Martian mantle. Conversely, relatively buoyant mafic crust and hotter geothermal gradients on Earth reduced the potential for upper-mantle hydration early in its geological history, leading to water being retained close to its surface, and thus creating conditions conducive for the evolution of complex multicellular life.


Subject(s)
Earth, Planet , Extraterrestrial Environment/chemistry , Geologic Sediments/chemistry , Mars , Water/analysis , Water/chemistry , Convection , Ferrous Compounds/analysis , Ferrous Compounds/chemistry , Hot Temperature , Magnetic Fields , Origin of Life , Photolysis , Pressure , Silicates/analysis , Silicates/chemistry
17.
J Nanobiotechnology ; 21(1): 56, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36805678

ABSTRACT

Locoregional delivery of chimeric antigen receptor (CAR)-modified T (CAR-T) cells has emerged as a promising strategy for brain tumors. However, the complicated ex vivo cell manufacturing procedures and the rapid progression of the disease have limited its broader applications. Macrophages (MΦs) exhibit unique effector functions and a high degree of infiltration within the solid tumor microenvironment (TME), especially in the brain, where MΦs function as structural support, and the main immune effector cells of the CNS represent 5-12% of brain cells. Here, we report a synthetic universal DNA nanocarrier for in situ genetic editing of intratumoral MΦs with an ErbB2-specific CAR to direct their phagocytic activity towards tumors and subsequently initiate a locoregional antitumor immune response. Specifically, we demonstrated that when delivered locoregionally, the RP-182 peptide, located in the shell of a nanoparticle, targeted MΦs and reprogrammed M2-like tumor-associated macrophages (TAMs) to an antitumor M1-like phenotype. Subsequently, the CAR gene-laden DNA nanocomplex can be used to introduce ErbB2-targeted CAR, and the generated CAR-MΦs then act as "living" cures, thereby serially clearing the invasive tumor cells. Our work demonstrates a practical antitumor immunotherapy for brainstem gliomas (BSGs) that may be broadly applicable for patients suffering from other ErbB2-positive solid malignancies.


Subject(s)
Convection , Glioma , Humans , Glioma/therapy , Macrophages , Immunotherapy , Brain Stem , Tumor Microenvironment , Receptor, ErbB-2/genetics
18.
Stereotact Funct Neurosurg ; 101(2): 93-100, 2023.
Article in English | MEDLINE | ID: mdl-36724759

ABSTRACT

INTRODUCTION: The aim of this study was to determine the safety and feasibility of convection-enhanced delivery of autologous cerebrospinal fluid (CSF) for enhancing intraoperative magnetic resonance imaging (MRI) of the basal ganglia during stereotactic neurosurgery. METHODS: This pilot study was conducted in 4 patients with Parkinson's disease (PD) who underwent MRI-guided deep brain stimulation of the globus pallidus internus (GPi). CSF was obtained via lumbar puncture after general anesthesia and prior to incision. A frameless stereotaxy system was installed, and an infusion catheter was inserted to the GPi using intraoperative MRI. Infusion of autologous CSF was performed at a convective rate of 5 µL/min with a maximum volume of infusion (Vi) of 500 mL. T2-weighted MRI scans were obtained every 15 min up to a maximum of 105 min in order to calculate the volume of distribution (Vd). Safety was assessed with adverse event monitoring, and clinical outcomes were measured with changes in unmedicated UPDRS part III and PDQ-39 scores from baseline to 6 months postoperatively. RESULTS: All four infusions were safe and without adverse events. The mean unmedicated UPDRS part III and PDQ-39 scores improved by 24% and 26%, respectively. The Vd:Vi ratio ranged from 2.2 to 2.8 and peaked 45 min from the onset of infusion, which is when the borders of the GPi could generally be visualized based on T2-weighted MRI. Two patients underwent refinement of the stereotactic targeting based on infusion-enhanced images. CONCLUSIONS: The convective administration of autologous CSF to deep brain structures appears safe and feasible for enhancing intraoperative MRI during stereotactic procedures. Infusion-enhanced imaging with target-specific infusates could be developed to visualize neurochemical circuits or cellular regions that currently are not seen with anatomic/structural MRI.


Subject(s)
Deep Brain Stimulation , Neurosurgery , Humans , Deep Brain Stimulation/methods , Convection , Pilot Projects , Treatment Outcome , Basal Ganglia/diagnostic imaging , Basal Ganglia/surgery , Magnetic Resonance Imaging/methods , Globus Pallidus/diagnostic imaging , Globus Pallidus/surgery
19.
Int J Biometeorol ; 67(5): 865-873, 2023 May.
Article in English | MEDLINE | ID: mdl-37010575

ABSTRACT

Predicting human thermal comfort and safety requires quantitative knowledge of the convective heat transfer between the body and its surrounding. So far, convective heat transfer coefficient correlations have been based only upon measurements or simulations of the average body shape of an adult. To address this knowledge gap, here we quantify the impact of adult human body shape on forced convection. To do this, we generated fifty three-dimensional human body meshes covering 1st to 99th percentile variation in height and body mass index (BMI) of the USA adult population. We developed a coupled turbulent flow and convective heat transfer simulation and benchmarked it in the 0.5 to 2.5 m·s-1 air speed range against prior literature. We computed the overall heat transfer coefficients, hoverall, for the manikins for representative airflow with 2 m·s-1 uniform speed and 5% turbulence intensity. We found that hoverall varied only between 19.9 and 23.2 W·m-2 K-1. Within this small range, the height of the manikins had negligible impact while an increase in the BMI led to a nearly linear decrease of the hoverall. Evaluation of the local coefficients revealed that those also nearly linearly decreased with BMI, which correlated to an inversely proportional local area (i.e., cross-sectional dimension) increase. Since even the most considerable difference that exists between 1st and 99th percentile BMI manikins is less than 15% of hoverall of the average manikin, it can be concluded that the impact of the human body shape on the convective heat transfer is minor.


Subject(s)
Convection , Hot Temperature , Humans , Cross-Sectional Studies , Somatotypes , Computer Simulation , Manikins
20.
J Therm Biol ; 115: 103620, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37364442

ABSTRACT

Partial Body Cryostimulation (PBC) involves a very cold air flow directed to the body of subjects with minimal clothing. PBC is performed in a rapid timeframe, inside an on-purposed designed cryo-cabin. Recently, cryo-cabins have been built with different energy systems, however a validation study on relative thermal responses is missing. This study was aimed at comparing thermal responses following a PBC in an electrically powered cryo-cabin based on forced convection or into a standard nitrogen-fueled cryo-cabin. In a randomized crossover fashion, thirty-six subjects (F=20; M=16) underwent both cryo-exposures lasting 150 s each. Thermal responses were assessed before and immediately after completing each PBC session. Mixed model analysis of variance revealed a significantly colder temperature after electric PBC in all the body regions (except for the thighs) with respect to a standard nitrogen based PBC (F: 16.4 ± 1.4 vs 18 ± 5.8 °C; M: 16.4 ± 1.7 vs 20.9 ± 4 °C). Moreover, a significant lower thermal discomfort was perceived at the end of electric PBC as compared to that one felt following standard PBC. For the first time, the safety and thermo-effectiveness of an electric cryo-cabin based on forced convection was ensured. This methodology can be viable for practitioners of PBC and clinicians.


Subject(s)
Cold Temperature , Convection , Humans
SELECTION OF CITATIONS
SEARCH DETAIL