Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
FASEB J ; 38(2): e23401, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38236196

ABSTRACT

Ferroptosis, a type of iron-catalyzed necrosis, is responsible for vascular smooth muscle cell (VSMC) death and serves as a potential therapeutic target for alleviating aortic aneurysm. Here, our study explored the underlying mechanism of ferroptosis affecting VSMC functions and the resultant formation of AAA using its inhibitor Ferrostatin-1 (Fer-1). Microarray-based gene expression profiling was employed to identify differentially expressed genes related to AAA and ferroptosis. An AAA model was established by angiotensin II (Ang II) induction in apolipoprotein E-knockout (ApoE-/- ) mice, followed by injection of Fer-1 and RSL-3 (ferroptosis inducer). Then, the role of Fer-1 and RSL-3 in the ferroptosis of VSMCs and AAA formation was analyzed in Ang II-induced mice. Primary mouse VSMCs were cultured in vitro and treated with Ang II, Fer-1, sh-SLC7A11, or sh-GPX4 to assess the effect of Fer-1 via the SLC7A11/GPX axis. Bioinformatics analysis revealed that GPX4 was involved in the fibrosis formation of AAA, and there was an interaction between SLC7A11 and GPX4. In vitro assays showed that Fer-1 alleviated Ang II-induced ferroptosis of VSMCs and retard the consequent AAA formation. The mechanism was associated with activation of the SLC7A11/GPX4 pathway. Silencing of SLC7A11 or GPX4 could inhibit the ameliorating effect of Fer-1 on the ferroptosis of VSMCs. In vivo animal studies further demonstrated that Fer-1 inhibited Ang II-induced ferroptosis and vessel wall structural abnormalities in AAA mouse through activation of the SLC7A11/GPX4 pathway. Fer-1 may prevent AAA formation through activation of the SLC7A11/GPX4 pathway.


Subject(s)
Aortic Aneurysm, Abdominal , Ferroptosis , Peptide Hormones , Phenylenediamines , Animals , Mice , Muscle, Smooth, Vascular , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/prevention & control , Cyclohexylamines/pharmacology , Angiotensin II/pharmacology
2.
FASEB J ; 38(7): e23592, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38581243

ABSTRACT

Vascular calcification is an actively regulated biological process resembling bone formation, and osteogenic differentiation of vascular smooth muscle cells (VSMCs) plays a crucial role in this process. 1-Palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), an oxidized phospholipid, is found in atherosclerotic plaques and has been shown to induce oxidative stress. However, the effects of POVPC on osteogenic differentiation and calcification of VSMCs have yet to be studied. In the present study, we investigated the role of POVPC in vascular calcification using in vitro and ex vivo models. POVPC increased mineralization of VSMCs and arterial rings, as shown by alizarin red staining. In addition, POVPC treatment increased expression of osteogenic markers Runx2 and BMP2, indicating that POVPC promotes osteogenic transition of VSMCs. Moreover, POVPC increased oxidative stress and impaired mitochondria function of VSMCs, as shown by increased ROS levels, impairment of mitochondrial membrane potential, and decreased ATP levels. Notably, ferroptosis triggered by POVPC was confirmed by increased levels of intracellular ROS, lipid ROS, and MDA, which were decreased by ferrostatin-1, a ferroptosis inhibitor. Furthermore, ferrostatin-1 attenuated POVPC-induced calcification of VSMCs. Taken together, our study for the first time demonstrates that POVPC promotes vascular calcification via activation of VSMC ferroptosis. Reducing the levels of POVPC or inhibiting ferroptosis might provide a novel strategy to treat vascular calcification.


Subject(s)
Cyclohexylamines , Ferroptosis , Phenylenediamines , Vascular Calcification , Humans , Muscle, Smooth, Vascular/metabolism , Phospholipids/metabolism , Phosphorylcholine/metabolism , Reactive Oxygen Species/metabolism , Osteogenesis , Vascular Calcification/metabolism , Myocytes, Smooth Muscle/metabolism , Cells, Cultured
3.
FASEB J ; 38(15): e23850, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39091212

ABSTRACT

Atherosclerosis is a leading cause of cardiovascular diseases (CVDs), often resulting in major adverse cardiovascular events (MACEs), such as myocardial infarction and stroke due to the rupture or erosion of vulnerable plaques. Ferroptosis, an iron-dependent form of cell death, has been implicated in the development of atherosclerosis. Despite its involvement in CVDs, the specific role of ferroptosis in atherosclerotic plaque stability remains unclear. In this study, we confirmed the presence of ferroptosis in unstable atherosclerotic plaques and demonstrated that the ferroptosis inhibitor ferrostatin-1 (Fer-1) stabilizes atherosclerotic plaques in apolipoprotein E knockout (Apoe-/-) mice. Using bioinformatic analysis combining RNA sequencing (RNA-seq) with single-cell RNA sequencing (scRNA-seq), we identified Yes-associated protein 1 (YAP1) as a potential key regulator of ferroptosis in vascular smooth muscle cells (VSMCs) of unstable plaques. In vitro, we found that YAP1 protects against oxidized low-density lipoprotein (oxLDL)-induced ferroptosis in VSMCs. Mechanistically, YAP1 exerts its anti-ferroptosis effects by regulating the expression of glutaminase 1 (GLS1) to promote the synthesis of glutamate (Glu) and glutathione (GSH). These findings establish a novel mechanism where the inhibition of ferroptosis promotes the stabilization of atherosclerotic plaques through the YAP1/GLS1 axis, attenuating VSMC ferroptosis. Thus, targeting the YAP1/GLS1 axis to suppress VSMC ferroptosis may represent a novel strategy for preventing and treating unstable atherosclerotic plaques.


Subject(s)
Ferroptosis , Muscle, Smooth, Vascular , Plaque, Atherosclerotic , YAP-Signaling Proteins , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Mice , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , YAP-Signaling Proteins/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Humans , Male , Mice, Inbred C57BL , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , Mice, Knockout , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Phenylenediamines/pharmacology , Cyclohexylamines/pharmacology , Apolipoproteins E/metabolism , Apolipoproteins E/genetics
4.
Exp Cell Res ; 435(2): 113923, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38190870

ABSTRACT

Atrial fibrillation (AF) is an extremely common clinical arrhythmia disease, but whether its mechanism is associated with ferroptosis remains unclear. The tRNA-derived small RNAs (tsRNAs) are involved in a variety of cardiovascular diseases, however, their role and mechanism in atrial remodeling in AF have not been studied. We aimed to explore whether tsRNAs mediate ferroptosis in AF progression. The AF models were constructed to detect ferroptosis-related indicators, and Ferrostatin-1 (Fer-1) was introduced to clarify the relationship between ferroptosis and AF. Atrial myocardial tissue was used for small RNA sequencing to screen potential tsRNAs. tsRNA functioned on ferroptosis and AF was explored. Atrial fibrosis and changes in the cellular structures and arrangement were observed in AF mice model, and these alterations were accompanied by ferroptosis occurrence, exhibited by the accumulation of Fe2+ and MDA levels and the decrease of expression of FTH1, GPX4, and SLC7A11. Blocking above ferroptosis activation with Fer-1 resulted in a significant improvement for AF. A total of 7 tsRNAs were upregulated (including tsRNA-5008a) and 2 tsRNAs were downregulated in atrial myocardial tissue in the AF group compared with the sham group. We constructed a tsRNA-mRNA regulated network, which showed tsRNA-5008a targeted 16 ferroptosis-related genes. Knockdown of tsRNA-5008a significantly suppressed ferroptosis through targeting SLC7A11 and diminished myocardial fibrosis both in vitro and in vivo. On the contrary, tsRNA-5008a mimics promoted ferroptosis in cardiomyocytes. Collectively, tsRNA-5008a involved in AF through ferroptosis. Our study provides novel insights into the role of tsRNA-5008a mediated ferroptosis in AF progression.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , Cyclohexylamines , Ferroptosis , Phenylenediamines , Animals , Mice , Atrial Fibrillation/genetics , Myocytes, Cardiac , Atrial Remodeling/genetics , Ferroptosis/genetics , Heart Atria
5.
Exp Cell Res ; 438(1): 114029, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38608805

ABSTRACT

Aberrant expression of airway epithelial E-cadherin is a key feature of asthma, yet the underlying mechanisms are largely unknown. Ferroptosis is a novel form of regulated cell death involved in asthma pathogenesis. This study was aimed to evaluate the role of ferroptosis and to investigate whether ferroptosis mediates E-cadherin disruption in mixed granulocyte asthma (MGA). Two murine models of MGA were established using toluene diisocyanate (TDI) or ovalbumin with Complete Freund's Adjuvant (OVA/CFA). Specific antagonists of ferroptosis, including Liproxstatin-1 (Lip-1) and Ferrostatin-1 (Fer-1) were given to the mice. The allergen-exposed mice displayed markedly shrunk mitochondria in the airway epithelia, with decreased volume and denser staining accompanied by down-regulated GPX4 as well as up-regulated FTH1 and malondialdehyde, which are markers of ferroptosis. Decreased pulmonary expression of E-cadherin was also observed, with profound loss of membrane E-cadherin in the airway epithelia, as well as increased secretion of sE-cadherin. Treatment with Lip-1 not only showed potent protective effects against the allergen-induced airway hyperresponsiveness and inflammatory responses, but also rescued airway epithelial E-cadherin expression and inhibited the release of sE-cadherin. Taken together, our data demonstrated that ferroptosis mediates airway epithelial E-cadherin dysfunction in MGA.


Subject(s)
Asthma , Cadherins , Disease Models, Animal , Ferroptosis , Granulocytes , Animals , Female , Mice , Asthma/metabolism , Asthma/pathology , Asthma/chemically induced , Cadherins/metabolism , Cyclohexylamines/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial Cells/drug effects , Ferroptosis/drug effects , Granulocytes/metabolism , Granulocytes/pathology , Mice, Inbred BALB C , Ovalbumin , Phenylenediamines/pharmacology , Quinoxalines , Spiro Compounds
6.
J Mol Cell Cardiol ; 192: 36-47, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734062

ABSTRACT

AIMS: Ferroptosis is a form of iron-regulated cell death implicated in ischemic heart disease. Our previous study revealed that Sirtuin 3 (SIRT3) is associated with ferroptosis and cardiac fibrosis. In this study, we tested whether the knockout of SIRT3 in cardiomyocytes (SIRT3cKO) promotes mitochondrial ferroptosis and whether the blockade of ferroptosis would ameliorate mitochondrial dysfunction. METHODS AND RESULTS: Mitochondrial and cytosolic fractions were isolated from the ventricles of mice. Cytosolic and mitochondrial ferroptosis were analyzed by comparison to SIRT3loxp mice. An echocardiography study showed that SIRT3cKO mice developed heart failure as evidenced by a reduction of EF% and FS% compared to SIRT3loxp mice. Comparison of mitochondrial and cytosolic fractions of SIRT3cKO and SIRT3loxp mice revealed that, upon loss of SIRT3, mitochondrial, but not cytosolic, total lysine acetylation was significantly increased. Similarly, acetylated p53 was significantly upregulated only in the mitochondria. These data demonstrate that SIRT3 is the primary mitochondrial deacetylase. Most importantly, loss of SIRT3 resulted in significant reductions of frataxin, aconitase, and glutathione peroxidase 4 (GPX4) in the mitochondria. This was accompanied by a significant increase in levels of mitochondrial 4-hydroxynonenal. Treatment of SIRT3cKO mice with the ferroptosis inhibitor ferrostatin-1 (Fer-1) for 14 days significantly improved preexisting heart failure. Mechanistically, Fer-1 treatment significantly increased GPX4 and aconitase expression/activity, increased mitochondrial iron­sulfur clusters, and improved mitochondrial membrane potential and Complex IV activity. CONCLUSIONS: Inhibition of ferroptosis ameliorated cardiac dysfunction by specifically targeting mitochondrial aconitase and iron­sulfur clusters. Blockade of mitochondrial ferroptosis may be a novel therapeutic target for mitochondrial cardiomyopathies.


Subject(s)
Aconitate Hydratase , Ferroptosis , Mice, Knockout , Myocytes, Cardiac , Phenylenediamines , Sirtuin 3 , Animals , Sirtuin 3/metabolism , Sirtuin 3/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Aconitate Hydratase/metabolism , Ferroptosis/drug effects , Mice , Acetylation , Phenylenediamines/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/genetics , Iron/metabolism , Frataxin , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/drug effects , Iron-Binding Proteins/metabolism , Iron-Binding Proteins/genetics , Heart Failure/metabolism , Heart Failure/genetics , Cytosol/metabolism , Cyclohexylamines
7.
J Lipid Res ; 65(2): 100499, 2024 02.
Article in English | MEDLINE | ID: mdl-38218337

ABSTRACT

Ferroptosis is a novel cell death mechanism that is mediated by iron-dependent lipid peroxidation. It may be involved in atherosclerosis development. Products of phospholipid oxidation play a key role in atherosclerosis. 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) is a phospholipid oxidation product present in atherosclerotic lesions. It remains unclear whether PGPC causes atherosclerosis by inducing endothelial cell ferroptosis. In this study, human umbilical vein endothelial cells (HUVECs) were treated with PGPC. Intracellular levels of ferrous iron, lipid peroxidation, superoxide anions (O2•-), and glutathione were detected, and expression of fatty acid binding protein-3 (FABP3), glutathione peroxidase 4 (GPX4), and CD36 were measured. Additionally, the mitochondrial membrane potential (MMP) was determined. Aortas from C57BL6 mice were isolated for vasodilation testing. Results showed that PGPC increased ferrous iron levels, the production of lipid peroxidation and O2•-, and FABP3 expression. However, PGPC inhibited the expression of GPX4 and glutathione production and destroyed normal MMP. These effects were also blocked by ferrostatin-1, an inhibitor of ferroptosis. FABP3 silencing significantly reversed the effect of PGPC. Furthermore, PGPC stimulated CD36 expression. Conversely, CD36 silencing reversed the effects of PGPC, including PGPC-induced FABP3 expression. Importantly, E06, a direct inhibitor of the oxidized 1-palmitoyl-2-arachidonoyl-phosphatidylcholine IgM natural antibody, inhibited the effects of PGPC. Finally, PGPC impaired endothelium-dependent vasodilation, ferrostatin-1 or FABP3 inhibitors inhibited this impairment. Our data demonstrate that PGPC impairs endothelial function by inducing endothelial cell ferroptosis through the CD36 receptor to increase FABP3 expression. Our findings provide new insights into the mechanisms of atherosclerosis and a therapeutic target for atherosclerosis.


Subject(s)
Atherosclerosis , Cyclohexylamines , Ferroptosis , Phenylenediamines , Animals , Mice , Humans , Phospholipids , Phosphorylcholine , Phospholipid Ethers/metabolism , Phospholipid Ethers/pharmacology , Mice, Inbred C57BL , Human Umbilical Vein Endothelial Cells/metabolism , Endothelium/metabolism , Glutathione/metabolism , Iron/metabolism , Fatty Acid Binding Protein 3
8.
J Pharmacol Exp Ther ; 390(1): 14-28, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38272671

ABSTRACT

Abuse of novel arylcyclohexylamines (ACX) poses risks for toxicities, including adverse neurocognitive effects. In vivo effects of ring-substituted analogs of phencyclidine (PCP), eticyclidine (PCE), and ketamine are understudied. Adult male National Institutes of Health Swiss mice were used to assess locomotor effects of PCP and its 3-OH, 3-MeO, 3-Cl, and 4-MeO analogs, PCE and its 3-OH and 3-MeO analogs, and ketamine and its deschloro and 2F-deschloro analogs, in comparison with those of methamphetamine (METH), 3,4-methylenedioxymethamphetamine (MDMA), and two benzofuran analogs of MDMA. PCP-like interoceptive effects for all of these ACXs were determined using a food-reinforced drug discrimination procedure in adult male Sprague Dawley rats. A novel operant assay of rule-governed behavior incorporating aspects of attentional set-shifting was used to profile psychosis-like neurocognitive effects of PCP and 3-Cl-PCP in rats, in comparison with cocaine and morphine. PCP-like ACXs were more effective locomotor stimulants than the amphetamines, PCE-like ACXs were as effective as the amphetamines, and ketamine-like ACXs were less effective than the amphetamines. Addition of -Cl, -OH, or -OMe at the 3-position on the aromatic ring did not impact locomotor effectiveness, but addition of -OMe at the 4-position reduced locomotor effectiveness. Lethal effects were induced by drugs with -OH at the 3-position or -OMe at the 3- or 4-position. All novel ACXs substituted at least partially for PCP, and PCP and 3-Cl-PCP elicited dose-dependent psychosis-like neurocognitive deficits in the rule-governed behavior task not observed with cocaine or morphine. Novel ACXs exhibit substantial abuse liability and toxicities not necessarily observed with their parent drugs. SIGNIFICANCE STATEMENT: Novel arylcyclohexylamine analogs of PCP, PCE, and ketamine are appearing on the illicit market, and abuse of these drugs poses risks for toxicities, including adverse neurocognitive effects. These studies demonstrate that the novel ACXs exhibit PCP-like abuse liability in the drug discrimination assay, elicit varied locomotor stimulant and lethal effects in mice, and induce psychosis-like neurocognitive effects in rats.


Subject(s)
Phencyclidine , Rats, Sprague-Dawley , Animals , Male , Mice , Phencyclidine/analogs & derivatives , Phencyclidine/toxicity , Rats , Psychoses, Substance-Induced/etiology , Cyclohexylamines , Motor Activity/drug effects , Cognition/drug effects , Conditioning, Operant/drug effects , Locomotion/drug effects , Illicit Drugs/adverse effects , Illicit Drugs/toxicity , Ketamine/analogs & derivatives , Ketamine/toxicity , Substance-Related Disorders/psychology , Phencyclidine Abuse
9.
Biol Reprod ; 110(5): 1012-1024, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38320204

ABSTRACT

Cyclophosphamide (CP) is a widely used chemotherapeutic drug and immunosuppressant in the clinic, and the hypoandrogenism caused by CP is receiving more attention. Some studies found that ferroptosis is a new mechanism of cell death closely related to chemotherapeutic drugs and plays a key role in regulating reproductive injuries. The purpose of this study is to explore ferroptosis' role in testicular Leydig cell dysfunction and molecular mechanisms relating to it. In this study, the level of ferroptosis in the mouse model of testicular Leydig cell dysfunction induced by CP was significantly increased and further affected testosterone synthesis. The ferroptosis inhibitors ferrostatin-1 (Fer-1) and iron chelator deferoxamine (DFO) can improve injury induced by CP. The results of immunohistochemistry showed that Fer-1 and DFO could improve the structural disorder of seminiferous tubules and the decrease of the number of Leydig cells in testicular tissue induced by CP. Immunofluorescence and western blot confirmed that Fer-1 and DFO could improve the expression of key enzymes in testosterone synthesis. The activation of SMAD family member 2 (Smad2)/cyclin-dependent kinase inhibitor 1A (Cdkn1a) pathway can improve the ferroptosis of Leydig cells induced by CP and protect the function of Leydig cells. By inhibiting the Smad2/Cdkn1a signal pathway, CP can regulate ferroptosis, resulting in testicular Leydig cell dysfunction. In this study, CP-induced hypoandrogenism is explained theoretically and a potential therapeutic strategy is provided.


Subject(s)
Cyclophosphamide , Ferroptosis , Leydig Cells , Smad2 Protein , Animals , Male , Mice , Cyclohexylamines/pharmacology , Cyclophosphamide/toxicity , Leydig Cells/drug effects , Leydig Cells/metabolism , Phenylenediamines/pharmacology , Signal Transduction/drug effects , Smad2 Protein/metabolism , Testis/drug effects , Testis/metabolism , Testis/pathology
10.
Neurochem Res ; 49(7): 1703-1719, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38512425

ABSTRACT

Propofol is a clinically common intravenous general anesthetic and is widely used for anesthesia induction, maintenance and intensive care unit (ICU) sedation in children. Hypoxemia is a common perioperative complication. In clinical work, we found that children with hypoxemia who received propofol anesthesia experienced significant postoperative cognitive changes. To explore the causes of this phenomenon, we conducted the study. In this study, our in vivo experiments found that immature rats exposed to hypoxia combined with propofol (HCWP) could develop cognitive impairment. We performed the RNA-seq analysis of its hippocampal tissues and found that autophagy and ferroptosis may play a role in our model. Next, we verified the participation of the two modes of death by detecting the expression of autophagy-related indexes Sequestosome 1 (SQSTM1) and Beclin1, and ferroptosis-related indicators Fe2+, reactive oxygen species (ROS) and glutathione peroxidase 4 (GPX4). Meanwhile, we found that ferrostatin-1 (Fer-1), an inhibitor of ferroptosis, could improve cognitive impairment in immature rats caused by HCWP. In addition, we found that nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy, which acted as a key junction between autophagy and ferroptosis, was also involved. Finally, our in vitro experiments concluded that autophagy activation was an upstream factor in HCWP-induced hippocampus ferroptosis through the intervention of autophagy inhibitor 3-methyladenine (3-MA). Our study was expected to provide an attractive therapeutic target for cognitive impairment that occurred after HCWP exposures.


Subject(s)
Cognitive Dysfunction , Ferroptosis , Hippocampus , Hypoxia , Propofol , Rats, Sprague-Dawley , Animals , Ferroptosis/drug effects , Ferroptosis/physiology , Propofol/pharmacology , Hippocampus/metabolism , Hippocampus/drug effects , Cognitive Dysfunction/metabolism , Male , Hypoxia/metabolism , Rats , Autophagy/drug effects , Autophagy/physiology , Ferritins/metabolism , Cyclohexylamines , Phenylenediamines
11.
Microb Cell Fact ; 23(1): 121, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725068

ABSTRACT

BACKGROUND: Mycosporine-like amino acids (MAAs) are a class of strongly UV-absorbing compounds produced by cyanobacteria, algae and corals and are promising candidates for natural sunscreen components. Low MAA yields from natural sources, coupled with difficulties in culturing its native producers, have catalyzed synthetic biology-guided approaches to produce MAAs in tractable microbial hosts like Escherichia coli, Saccharomyces cerevisiae and Corynebacterium glutamicum. However, the MAA titres obtained in these hosts are still low, necessitating a thorough understanding of cellular factors regulating MAA production. RESULTS: To delineate factors that regulate MAA production, we constructed a shinorine (mycosporine-glycine-serine) producing yeast strain by expressing the four MAA biosynthetic enzymes from Nostoc punctiforme in Saccharomyces cerevisiae. We show that shinorine is produced from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate (S7P), and not from the shikimate pathway intermediate 3-dehydroquinate (3DHQ) as previously suggested. Deletions of transaldolase (TAL1) and phosphofructokinase (PFK1/PFK2) genes boosted S7P/shinorine production via independent mechanisms. Unexpectedly, the enhanced S7P/shinorine production in the PFK mutants was not entirely due to increased flux towards the pentose phosphate pathway. We provide multiple lines of evidence in support of a reversed pathway between glycolysis and the non-oxidative pentose phosphate pathway (NOPPP) that boosts S7P/shinorine production in the phosphofructokinase mutant cells. CONCLUSION: Reversing the direction of flux between glycolysis and the NOPPP offers a novel metabolic engineering strategy in Saccharomyces cerevisiae.


Subject(s)
Amino Acids , Glycolysis , Pentose Phosphate Pathway , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Amino Acids/metabolism , Metabolic Engineering/methods , Nostoc/metabolism , Nostoc/genetics , Sugar Phosphates/metabolism , Glycine/metabolism , Glycine/analogs & derivatives , Cyclohexylamines
12.
BMC Gastroenterol ; 24(1): 245, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090535

ABSTRACT

BACKGROUND: Ferroptosis is a newly recognized form of regulatory cell death characterized by severe lipid peroxidation triggered by iron overload and the production of reactive oxygen species (ROS). However, the role of ferroptosis in severe acute pancreatitis(SAP) has not been fully elucidated. METHODS: We established four severe acute pancreatitis models of rats including the sham control group, the SAP group, the Fer -1-treated SAP (SAP + Fer-1) group, the 3-MA-treated SAP (SAP + 3-MA) group. The SAP group was induced by retrograde injection of sodium taurocholate into the pancreatic duct. The other two groups were intraperitoneally injected with ferroptosis inhibitor (Fer-1) and autophagy inhibitor (3-MA), respectively. The model of severe acute pancreatitis with amylase crest-related inflammatory factors was successfully established. Then we detected ferroptosis (GPX4, SLC7A1 etc.) and autophagy-related factors (LC3II, p62 ect.) to further clarify the relationship between ferroptosis and autophagy. RESULTS: Our study found that ferroptosis occurs during the development of SAP, such as iron and lipid peroxidation in pancreatic tissues, decreased levels of reduced glutathione peroxidase 4 (GPX 4) and glutathione (GSH), and increased malondialdehyde(MDA) and significant mitochondrial damage. In addition, ferroptosis related proteins such as GPX4, solute carrier family 7 member 11(SLC7A11) and ferritin heavy chain 1(FTH1) were significantly decreased. Next, the pathogenesis of ferroptosis in SAP was studied. First, treatment with the ferroptosis inhibitor ferrostatin-1(Fer-1) significantly alleviated ferroptosis in SAP. Interestingly, autophagy occurs during the pathogenesis of SAP, and autophagy promotes the occurrence of ferroptosis in SAP. Moreover, 3-methyladenine (3-MA) inhibition of autophagy can significantly reduce iron overload and ferroptosis in SAP. CONCLUSIONS: Our results suggest that ferroptosis is a novel pathogenesis of SAP and is dependent on autophagy. This study provides a new theoretical basis for the study of SAP.


Subject(s)
Autophagy , Disease Models, Animal , Ferroptosis , Lipid Peroxidation , Pancreatitis , Rats, Sprague-Dawley , Animals , Pancreatitis/metabolism , Pancreatitis/pathology , Rats , Male , Adenine/analogs & derivatives , Adenine/pharmacology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Taurocholic Acid , Cyclohexylamines/pharmacology , Pancreas/pathology , Pancreas/metabolism , Phenylenediamines/pharmacology , Malondialdehyde/metabolism , Reactive Oxygen Species/metabolism , Acute Disease , Glutathione/metabolism , Iron/metabolism
13.
Bioorg Med Chem ; 105: 117716, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38608329

ABSTRACT

In this study, a series of new formylpiperazine-derived ferroptosis inhibitors were designed and synthesized based on the structure of a known ferroptosis inhibitor, ferrostatin-1 (Fer-1). The anti-ferroptosis activity of these synthetic compounds in human umbilical vein endothelial cells (HUVECs) induced by Erastin was evaluated. It was found that some of the new compounds, especially compound 26, showed potent anti-ferroptosis activity, as evidenced by its ability to restore cell viability, reduce iron accumulation, scavenge reactive oxygen species, maintain mitochondrial membrane potential, increase GSH levels, decrease LPO and MDA content, and upregulate GPX4 expression. Moreover, compound 26 exhibited superior microsomal stability than Fer-1. The present results suggest that compound 26 is a promising lead compound for the development of new ferroptosis inhibitors for the treatment of vascular diseases.


Subject(s)
Cell Survival , Cyclohexylamines , Drug Design , Ferroptosis , Human Umbilical Vein Endothelial Cells , Piperazines , Humans , Ferroptosis/drug effects , Piperazines/pharmacology , Piperazines/chemical synthesis , Piperazines/chemistry , Human Umbilical Vein Endothelial Cells/drug effects , Structure-Activity Relationship , Cyclohexylamines/pharmacology , Cyclohexylamines/chemistry , Cyclohexylamines/chemical synthesis , Cell Survival/drug effects , Molecular Structure , Phenylenediamines/pharmacology , Phenylenediamines/chemistry , Phenylenediamines/chemical synthesis , Dose-Response Relationship, Drug , Reactive Oxygen Species/metabolism , Ferrous Compounds/pharmacology , Ferrous Compounds/chemistry , Ferrous Compounds/chemical synthesis , Membrane Potential, Mitochondrial/drug effects
14.
J Pharmacol Sci ; 155(2): 44-51, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677785

ABSTRACT

Subretinal hemorrhages result in poor vision and visual field defects. During hemorrhage, several potentially toxic substances are released from iron-based hemoglobin and hemin, inducing cellular damage, the detailed mechanisms of which remain unknown. We examined the effects of excess intracellular iron on retinal pigment epithelial (RPE) cells. A Fe2+ probe, SiRhoNox-1 was used to investigate Fe2+ accumulation after treatment with hemoglobin or hemin in the human RPE cell line ARPE-19. We also evaluated the production of reactive oxygen species (ROS) and lipid peroxidation. Furthermore, the protective effect of-an iron chelator, 2,2'-bipyridyl (BP), and ferrostatin-1 (Fer-1) on the cell damage, was evaluated. Fe2+ accumulation increased in the hemoglobin- or hemin-treated groups, as well as intracellular ROS production and lipid peroxidation. In contrast, BP treatment suppressed RPE cell death, ROS production, and lipid peroxidation. Pretreatment with Fer-1 ameliorated cell death in a concentration-dependent manner and suppressed ROS production and lipid peroxidation. Taken together, these findings indicate that hemoglobin and hemin, as well as subretinal hemorrhage, may induce RPE cell damage and visual dysfunction via intracellular iron accumulation.


Subject(s)
Hemin , Hemoglobins , Iron , Retinal Pigment Epithelium , Humans , Cell Death/drug effects , Cell Line , Cyclohexylamines/pharmacology , Hemin/pharmacology , Hemoglobins/metabolism , Iron/metabolism , Iron Chelating Agents/pharmacology , Lipid Peroxidation/drug effects , Phenylenediamines/pharmacology , Reactive Oxygen Species/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology
15.
J Biochem Mol Toxicol ; 38(8): e23791, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39082238

ABSTRACT

Liver injury caused by acetaminophen (APAP) overdose is the leading cause of acute liver failure in western countries. The mode of APAP-induced cell death has been controversially discussed with ferroptosis emerging as a more recent hypothesis. Ferroptosis is characterized by ferrous iron-catalyzed lipid peroxidation (LPO) causing cell death, which can be prevented by the lipophilic antioxidants ferrostatin-1 and UAMC-3203. To assess the efficacy of these ferroptosis inhibitors, we used two murine models of APAP hepatotoxicity, APAP overdose alone or in combination with FeSO4 in fasted male C57BL/6J mice. APAP triggered severe liver injury in the absence of LPO measured as hepatic malondialdehyde (MDA) levels. In contrast, ferrous iron co-treatment aggravated APAP-induced liver injury and caused extensive LPO. Standard doses of ferrostatin-1 did not affect MDA levels or the injury in both models. In contrast, UAMC-3203 partially protected in both models and reduced LPO in the presence of ferrous iron. However, UAMC-3203 attenuated the translocation of phospho-JNK through downregulation of the mitochondrial anchor protein Sab resulting in reduced mitochondrial dysfunction and liver injury. Thus, APAP toxicity does not involve ferroptosis under normal conditions. The lack of effects of ferroptosis inhibitors in the pathophysiology indicates that ferroptosis signaling pathways are not relevant therapeutic targets.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Disease Models, Animal , Ferroptosis , Mice, Inbred C57BL , Animals , Acetaminophen/adverse effects , Acetaminophen/toxicity , Ferroptosis/drug effects , Male , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/drug therapy , Mice , Cyclohexylamines/pharmacology , Lipid Peroxidation/drug effects , Phenylenediamines/pharmacology
16.
Acta Pharmacol Sin ; 45(8): 1673-1685, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38641746

ABSTRACT

Acute kidney injury (AKI) is defined as sudden loss of renal function characterized by increased serum creatinine levels and reduced urinary output with a duration of 7 days. Ferroptosis, an iron-dependent regulated necrotic pathway, has been implicated in the progression of AKI, while ferrostatin-1 (Fer-1), a selective inhibitor of ferroptosis, inhibited renal damage, oxidative stress and tubular cell death in AKI mouse models. However, the clinical translation of Fer-1 is limited due to its lack of efficacy and metabolic instability. In this study we designed and synthesized four Fer-1 analogs (Cpd-A1, Cpd-B1, Cpd-B2, Cpd-B3) with superior plasma stability, and evaluated their therapeutic potential in the treatment of AKI. Compared with Fer-1, all the four analogs displayed a higher distribution in mouse renal tissue in a pharmacokinetic assay and a more effective ferroptosis inhibition in erastin-treated mouse tubular epithelial cells (mTECs) with Cpd-A1 (N-methyl-substituted-tetrazole-Fer-1 analog) being the most efficacious one. In hypoxia/reoxygenation (H/R)- or LPS-treated mTECs, treatment with Cpd-A1 (0.25 µM) effectively attenuated cell damage, reduced inflammatory responses, and inhibited ferroptosis. In ischemia/reperfusion (I/R)- or cecal ligation and puncture (CLP)-induced AKI mouse models, pre-injection of Cpd-A1 (1.25, 2.5, 5 mg·kg-1·d-1, i.p.) dose-dependently improved kidney function, mitigated renal tubular injury, and abrogated inflammation. We conclude that Cpd-A1 may serve as a promising therapeutic agent for the treatment of AKI.


Subject(s)
Acute Kidney Injury , Ferroptosis , Mice, Inbred C57BL , Phenylenediamines , Animals , Ferroptosis/drug effects , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Mice , Male , Phenylenediamines/pharmacology , Phenylenediamines/therapeutic use , Cyclohexylamines/pharmacology , Cyclohexylamines/therapeutic use , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism
17.
Biosci Biotechnol Biochem ; 88(7): 830-838, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38684478

ABSTRACT

Mycosporine-like amino acids (MAAs) are the natural UV-absorbing compounds with antioxidant activity found in microalgae and macroalgae. We collected red algae Asparagopsis taxiformis, Meristotheca japonica, and Polysiphonia senticulosa from Nagasaki, where UV radiation is more intense than in Hokkaido, and investigated the effect of UV radiation on MAA content. It was suggested that A. taxiformis and M. japonica contained shinorine and palythine, while UV-absorbing compound in P. senticulosa could not be identified. The amounts of these MAAs were lower compared to those from Hokkaido. Despite an increase in UV radiation in both regions from February to April, MAA contents of red algae from Nagasaki slightly decreased while those from Hokkaido significantly decreased. This difference was suggested the amount of inorganic nitrogen in the ocean. Antioxidant activity of MAAs increased under alkaline conditions. The extract containing MAAs from P. senticulosa showed the highest antioxidant activity among 4 red algae.


Subject(s)
Amino Acids , Antioxidants , Rhodophyta , Rhodophyta/chemistry , Amino Acids/analysis , Antioxidants/chemistry , Antioxidants/pharmacology , Japan , Ultraviolet Rays , Biphenyl Compounds/antagonists & inhibitors , Hydrogen-Ion Concentration , Cyclohexanols , Cyclohexylamines , Glycine/analogs & derivatives
18.
Arch Toxicol ; 98(6): 1781-1794, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38573338

ABSTRACT

Doxorubicin (DOX) is one of the most frequently used chemotherapeutic drugs belonging to the class of anthracyclines. However, the cardiotoxic effects of anthracyclines limit their clinical use. Recent studies have suggested that ferroptosis is the main underlying pathogenetic mechanism of DOX-induced cardiomyopathy (DIC). BTB-and-CNC homology 1 (Bach1) acts as a key role in the regulation of ferroptosis. However, the mechanistic role of Bach1 in DIC remains unclear. Therefore, this study aimed to investigate the underlying mechanistic role of Bach1 in DOX-induced cardiotoxicity using the DIC mice in vivo (DOX at cumulative dose of 20 mg/kg) and the DOX-treated H9c2 cardiomyocytes in vitro (1 µM). Our results show a marked upregulation in the expression of Bach1 in the cardiac tissues of the DOX-treated mice and the DOX-treated cardiomyocytes. However, Bach1-/- mice exhibited reduced lipid peroxidation and less severe cardiomyopathy after DOX treatment. Bach1 knockdown protected against DOX-induced ferroptosis in both in vivo and in vitro models. Ferrostatin-1 (Fer-1), a potent inhibitor of ferroptosis, significantly alleviated DOX-induced cardiac damage. However, the cardioprotective effects of Bach1 knockdown were reversed by pre-treatment with Zinc Protoporphyrin (ZnPP), a selective inhibitor of heme oxygenase-1(HO-1). Taken together, these findings demonstrated that Bach1 promoted oxidative stress and ferroptosis through suppressing the expression of HO-1. Therefore, Bach1 may present as a promising new therapeutic target for the prevention and early intervention of DOX-induced cardiotoxicity.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Cardiomyopathies , Doxorubicin , Ferroptosis , Heme Oxygenase-1 , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac , Oxidative Stress , Animals , Ferroptosis/drug effects , Doxorubicin/toxicity , Oxidative Stress/drug effects , Cardiomyopathies/chemically induced , Cardiomyopathies/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Male , Mice , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Cell Line , Rats , Cardiotoxicity , Antibiotics, Antineoplastic/toxicity , Lipid Peroxidation/drug effects , Protoporphyrins/pharmacology , Signal Transduction/drug effects , Cyclohexylamines , Membrane Proteins , Phenylenediamines
19.
BMC Womens Health ; 24(1): 41, 2024 01 13.
Article in English | MEDLINE | ID: mdl-38218826

ABSTRACT

BACKGROUND: Resistance can develop during treatment of advanced endometrial cancer (EC), leading to unsatisfactory results. Fanconi anemia complementation group D2 (Fancd2) has been shown to be closely related to drug resistance in cancer cells. Therefore, this study was designed to explore the correlation of Fancd2 with EC resistance and the mechanism of Fancd2. METHODS: Real-time quantitative PCR (RT-qPCR) was used to detect the expression of Fancd2 in EC tissues and cells. EC cells (Ishikawa) and paclitaxel-resistant EC cells (Ishikawa/TAX) were transfected to knock down Fancd2. In addition, the ferroptosis inhibitor Ferrostatin-1 was adopted to treat Ishikawa/TAX cells. The sensitivity of cancer cells to chemotherapeutic agents was observed via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and inhibitory concentration (IC)50 was calculated. Reactive oxygen species (ROS) levels were measured by flow cytometry, the activity of malondialdehyde (MDA) and the levels of glutathione (GSH) and Fe2+ in cells were detected by corresponding kits, and protein expression of solute farrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) was obtained through western blot. RESULTS: Compared with the normal tissues and endometrial epithelial cells, Fancd2 expression was significantly increased in EC tissues and Ishikawa cells, respectively. After knock-down of Fancd2, Ishikawa cells showed significantly increased sensitivity to chemotherapeutic agents. Besides, compared with Ishikawa cells, the levels of ROS, the activity of MDA, and the levels of GSH and Fe2+ were significantly decreased in Ishikawa/TAX cells, while the expression levels of SLC7A11 and GPX4 were significantly increased. Knock-down of Fancd2 significantly increased the ferroptosis levels in Ishikawa/TAX cells, but this effect could be reversed by Ferrostatin-1. CONCLUSION: Fancd2 increases drug resistance in EC cells by inhibiting the cellular ferroptosis pathway.


Subject(s)
Cyclohexylamines , Endometrial Neoplasms , Fanconi Anemia , Ferroptosis , Phenylenediamines , Female , Humans , Reactive Oxygen Species/therapeutic use , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics
20.
Ecotoxicol Environ Saf ; 281: 116680, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964057

ABSTRACT

Inhaling polyhexamethylene guanidine (PHMG) aerosol, a broad-spectrum disinfectant, can lead to severe pulmonary fibrosis. Ferroptosis, a form of programmed cell death triggered by iron-dependent lipid peroxidation, is believed to play a role in the chemical-induced pulmonary injury. This study aimed to investigate the mechanism of ferroptosis in the progression of PHMG-induced pulmonary fibrosis. C57BL/6 J mice and the alveolar type II cell line MLE-12 were used to evaluate the toxicity of PHMG in vivo and in vitro, respectively. The findings indicated that iron deposition was observed in PHMG induced pulmonary fibrosis mouse model and ferroptosis related genes have changed after 8 weeks PHMG exposure. Additionally, there were disturbances in the antioxidant system and mitochondrial damage in MLE-12 cells following a 12-hour treatment with PHMG. Furthermore, the study observed an increase in lipid peroxidation and a decrease in GPX4 activity in MLE-12 cells after exposure to PHMG. Moreover, pretreatment with the ferroptosis inhibitors Ferrostatin-1 (Fer-1) and Liproxstatin-1 (Lip-1) not only restored the antioxidant system and GPX4 activity but also mitigated lipid peroxidation. Current data exhibit the role of ferroptosis pathway in PHMG-induced pulmonary fibrosis and provide a potential target for future treatment.


Subject(s)
Ferroptosis , Guanidines , Lipid Peroxidation , Mice, Inbred C57BL , Phospholipid Hydroperoxide Glutathione Peroxidase , Pulmonary Fibrosis , Animals , Ferroptosis/drug effects , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Mice , Lipid Peroxidation/drug effects , Cell Line , Guanidines/toxicity , Guanidines/pharmacology , Male , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology , Cyclohexylamines/pharmacology , Phenylenediamines , Quinoxalines , Spiro Compounds
SELECTION OF CITATIONS
SEARCH DETAIL