Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 285
Filter
Add more filters

Publication year range
1.
Nature ; 588(7839): 699-704, 2020 12.
Article in English | MEDLINE | ID: mdl-33208952

ABSTRACT

Dozens of genes contribute to the wide variation in human pigmentation. Many of these genes encode proteins that localize to the melanosome-the organelle, related to the lysosome, that synthesizes pigment-but have unclear functions1,2. Here we describe MelanoIP, a method for rapidly isolating melanosomes and profiling their labile metabolite contents. We use this method to study MFSD12, a transmembrane protein of unknown molecular function that, when suppressed, causes darker pigmentation in mice and humans3,4. We find that MFSD12 is required to maintain normal levels of cystine-the oxidized dimer of cysteine-in melanosomes, and to produce cysteinyldopas, the precursors of pheomelanin synthesis made in melanosomes via cysteine oxidation5,6. Tracing and biochemical analyses show that MFSD12 is necessary for the import of cysteine into melanosomes and, in non-pigmented cells, lysosomes. Indeed, loss of MFSD12 reduced the accumulation of cystine in lysosomes of fibroblasts from patients with cystinosis, a lysosomal-storage disease caused by inactivation of the lysosomal cystine exporter cystinosin7-9. Thus, MFSD12 is an essential component of the cysteine importer for melanosomes and lysosomes.


Subject(s)
Cysteine/metabolism , Lysosomes/metabolism , Melanosomes/metabolism , Membrane Proteins/metabolism , Biological Transport , Cell Fractionation , Cell Line , Cystine/metabolism , Cystinosis/genetics , Cystinosis/metabolism , Fibroblasts , Humans , Melanins/metabolism , Membrane Proteins/deficiency , Membrane Proteins/genetics , Oxidation-Reduction
2.
Am J Physiol Renal Physiol ; 326(6): F981-F987, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38545650

ABSTRACT

Cystinosis is an autosomal recessive lysosomal storage disorder, caused by mutations in the CTNS gene, resulting in an absent or altered cystinosin (CTNS) protein. Cystinosin exports cystine out of the lysosome, with a malfunction resulting in cystine accumulation and a defect in other cystinosin-mediated pathways. Cystinosis is a systemic disease, but the kidneys are the first and most severely affected organs. In the kidney, the disease initially manifests as a generalized dysfunction in the proximal tubules (also called renal Fanconi syndrome). MFSD12 is a lysosomal cysteine importer that directly affects the cystine levels in melanoma cells, HEK293T cells, and cystinosis patient-derived fibroblasts. In this study, we aimed to evaluate MFSD12 mRNA levels in cystinosis patient-derived proximal tubular epithelial cells (ciPTECs) and to study the effect of MFSD12 knockout on cystine levels. We showed similar MFSD12 mRNA expression in patient-derived ciPTECs in comparison with the control cells. CRISPR MFSD12 knockout in a patient-derived ciPTEC (CTNSΔ57kb) resulted in significantly reduced cystine levels. Furthermore, we evaluated proximal tubular reabsorption after injection of mfsd12a translation-blocking morpholino (TB MO) in a ctns-/- zebrafish model. This resulted in decreased cystine levels but caused a concentration-dependent increase in embryo dysmorphism. Furthermore, the mfsd12a TB MO injection did not improve proximal tubular reabsorption or megalin expression. In conclusion, MFSD12 mRNA depletion reduced cystine levels in both tested models without improvement of the proximal tubular function in the ctns-/- zebrafish embryo. In addition, the apparent toxicity of higher mfsd12a TB MO concentrations on the zebrafish development warrants further evaluation.NEW & NOTEWORTHY In this study, we show that MFSD12 depletion with either CRISPR/Cas9-mediated gene editing or a translation-blocking morpholino significantly reduced cystine levels in cystinosis ciPTECs and ctns-/- zebrafish embryos, respectively. However, we observed no improvement in the proximal tubular reabsorption of dextran in the ctns-/- zebrafish embryos injected with mfsd12a translation-blocking morpholino. Furthermore, a negative effect of the mfsd12a morpholino on the zebrafish development warrants further investigation.


Subject(s)
Cystine , Cystinosis , Disease Models, Animal , Kidney Tubules, Proximal , Zebrafish , Animals , Zebrafish/metabolism , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Cystinosis/metabolism , Cystinosis/genetics , Cystinosis/pathology , Humans , Cystine/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Epithelial Cells/metabolism , Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems, Neutral/metabolism , CRISPR-Cas Systems
3.
Lab Invest ; 104(1): 100287, 2024 01.
Article in English | MEDLINE | ID: mdl-37949358

ABSTRACT

Cystinosis is an autosomal recessive disease caused by mutations in the CTNS gene encoding a protein called cystinosine, which is a lysosomal cystine transporter. Disease-causing mutations lead to accumulation of cystine crystals in the lysosomes, thereby causing dysfunction of vital organs. Determination of the increased leukocyte cystine level is one of the most used methods for diagnosis. However, this method is expensive, difficult to perform, and may yield different results in different laboratories. In this study, a disease model was created with CTNS gene-silenced HK2 cells, which can mimic cystinosis in cell culture, and multiomics methods (ie, proteomics, metabolomics, and fluxomics) were implemented at this cell culture to investigate new biomarkers for the diagnosis. CTNS-silenced cell line exhibited distinct metabolic profiles compared with the control cell line. Pathway analysis highlighted significant alterations in various metabolic pathways, including alanine, aspartate, and glutamate metabolism; glutathione metabolism; aminoacyl-tRNA biosynthesis; arginine and proline metabolism; beta-alanine metabolism; ascorbate and aldarate metabolism; and histidine metabolism upon CTNS silencing. Fluxomics analysis revealed increased cycle rates of Krebs cycle intermediates such as fumarate, malate, and citrate, accompanied by enhanced activation of inorganic phosphate and ATP production. Furthermore, proteomic analysis unveiled differential expression levels of key proteins involved in crucial cellular processes. Notably, peptidyl-prolyl cis-trans isomerase A, translation elongation factor 1-beta (EF-1beta), and 60S acidic ribosomal protein decreased in CTNS-silenced cells. Additionally, levels of P0 and tubulin α-1A chain were reduced, whereas levels of 40S ribosomal protein S8 and Midasin increased. Overall, our study, through the utilization of an in vitro cystinosis model and comprehensive multiomics approach, led to the way toward the identification of potential new biomarkers while offering valuable insights into the pathogenesis of cystinosis.


Subject(s)
Amino Acid Transport Systems, Neutral , Cystinosis , Humans , Cystinosis/genetics , Cystinosis/metabolism , Cystine/genetics , Cystine/metabolism , Proteomics , Biomarkers , Gene Silencing , RNA, Small Interfering/genetics , Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems, Neutral/metabolism
4.
Int J Mol Sci ; 25(3)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38338900

ABSTRACT

Cystinosis is a low-prevalence lysosomal storage disease. The pathomechanism involves abnormal functioning of the cystinosine lysosomal cystine transporter (CTNS), causing intraliposomal accumulation of the amino acid cysteine disulfide, which crystallizes and deposits in several parts of the body. The most common ophthalmic complication of cystinosis is the deposition of "gold dust" cystine crystals on the cornea, which already occurs in infancy and leads to severe photosensitivity and dry eyes as it gradually progresses with age. In the specific treatment of cystinosis, preparations containing cysteamine (CYA) are used. The availability of commercialized eyedrops for the targeted treatment is scarce, and only Cystadrops® are commercially available with strong limitations. Thus, magistral CYA-containing compounded eyedrops (CYA-CED) could have a key role in patient care; however, a rationally designed comprehensive study on the commercialized and magistral products is still missing. This work aims to build up a comprehensive study about commercialized and magistral CYA eye drops, involving pharmacokinetic and physicochemical characterization (applying mucoadhesivity, rheology test, investigation of drug release, and parallel artificial membrane permeability assays), as well as ex vivo tests, well supported by statistical analysis.


Subject(s)
Cystinosis , Humans , Cystinosis/metabolism , Cysteamine/therapeutic use , Cysteamine/metabolism , Cystine/metabolism , Ophthalmic Solutions/therapeutic use , Cornea/metabolism
5.
Exp Eye Res ; 226: 109338, 2023 01.
Article in English | MEDLINE | ID: mdl-36470430

ABSTRACT

Corneal wound healing is integral for resolution of corneal disease or for post-operative healing. However, corneal scarring that may occur secondary to this process can significantly impair vision. Tissue transglutaminase 2 (TGM2) inhibition has shown promising antifibrotic effects and thus holds promise to prevent or treat corneal scarring. The commercially available ocular solution for treatment of ocular manifestations of Cystinosis, Cystaran®, contains the TGM2 inhibitor cysteamine hydrochloride (CH). The purpose of this study is to assess the safety of CH on corneal epithelial and stromal wounds, its effects on corneal wound healing, and its efficacy against corneal scarring following wounding. Quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC) were first used to quantify and localize TGM2 expression in the cornea. Subsequently, (i) the in vitro effects of CH at 0.163, 1.63, and 16.3 mM on corneal epithelial cell migration was assessed with an epithelial cell migration assay, and (ii) the in vivo effects of application of 1.63 mM CH on epithelial and stromal wounds was assessed in a rabbit model with ophthalmic examinations, inflammation scoring, color and fluorescein imaging, optical coherence tomography (OCT), and confocal biomicroscopy. Post-mortem assessment of corneal tissue post-stromal wounding included biomechanical characterization (atomic force microscopy (AFM)), histology (H&E staining), and determining incidence of myofibroblasts (immunostaining against α-SMA) in wounded corneal tissue. TGM2 expression was highest in corneal epithelial cells. Application of the TGM2 inhibitor CH did not affect in vitro epithelial cell migration at the two lower concentrations tested. At 16.3 mM, decreased cell migration was observed. In vivo application of CH at 57 mM was well tolerated and did not adversely affect wound healing. No difference in corneal scarring was found between CH treated and vehicle control eyes. This study shows that the TGM2 inhibitor CH, at the FDA-approved dose, is well tolerated in a rabbit model of corneal wound healing and does not adversely affect epithelial or stromal wound healing. This supports the safe use of this medication in Cystinosis patients with open corneal wounds. CH did not have an effect on corneal scarring in this study, suggesting that Cystaran® administration to patients with corneal wounds is unlikely to decrease corneal fibrosis.


Subject(s)
Corneal Injuries , Cysteamine , Cystinosis , Epithelium, Corneal , Animals , Rabbits , Cicatrix/metabolism , Cornea/drug effects , Cornea/metabolism , Corneal Diseases/pathology , Corneal Injuries/drug therapy , Corneal Injuries/metabolism , Cysteamine/pharmacology , Cysteamine/therapeutic use , Cysteamine/metabolism , Cystinosis/metabolism , Cystinosis/pathology , Epithelium, Corneal/pathology , Protein Glutamine gamma Glutamyltransferase 2/antagonists & inhibitors , Wound Healing/drug effects
6.
BMC Nephrol ; 24(1): 351, 2023 11 29.
Article in English | MEDLINE | ID: mdl-38031005

ABSTRACT

BACKGROUND: Nephropathic Cystinosis (NC), a rare disease characterised by intra-lysosomal accumulation of cystine, results in progressive kidney failure (KF). Compliance to lifelong oral cysteamine, the only therapy, is often compromised. The relationship between compliance and costs of NC has not been previously formally assessed. The present study evaluates the impact of compliance on lifetime (direct) costs of treating KF in NC patients in the United Kingdom. METHODS: A three-state (KF-free, post-KF, death) partitioned survival model was developed for hypothetical 'Good Compliance' (GC) and 'Poor Compliance' (PC) cohorts. Survival in the KF-free state was determined by a published regression function of composite compliance score (CCS). The CCS is a summation of annual compliance scores (ACS) over treatment duration prior to KF. ACSs are indexed on annual (average) leukocyte cystine levels (LCL). The Poor Compliance cohort was defined to reflect NC patients in a previous study with a mean LCL of 2.35 nmols nmol half-cystine/mg protein over the study period - and an estimated mean ACS of 1.64 over a 13.4 year treatment duration. The Good Compliance cohort was assumed to have an ACS of 2.25 for 21 years. Major KF costs were evaluated - i.e., dialysis, kidney transplants, and subsequent monitoring. RESULTS: The mean CCS was 47 for the GC and 22 for the PC cohort respectively, corresponding to estimated lifetime KF costs of £92,370 and £117,830 respectively - i.e., a cost saving of £25,460/patient, or £1,005/patient for every 1-unit improvement in CCS. CONCLUSION: This analysis indicates that lifetime costs of KF in NC can be reduced through improved treatment compliance with oral cysteamine.


Subject(s)
Cystinosis , Fanconi Syndrome , Renal Insufficiency , Humans , Cystinosis/complications , Cystinosis/drug therapy , Cystinosis/metabolism , Cysteamine/therapeutic use , Cystine/metabolism , Renal Dialysis , Patient Compliance , United Kingdom
7.
Int J Mol Sci ; 24(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36674769

ABSTRACT

Cystinosis is an autosomal recessive lysosomal storage disease, caused by mutations in the CTNS gene, resulting in multi-organ cystine accumulation. Three forms of cystinosis are distinguished: infantile and juvenile nephropathic cystinosis affecting kidneys and other organs such as the eyes, endocrine system, muscles, and brain, and adult ocular cystinosis affecting only the eyes. Currently, elevated white blood cell (WBC) cystine content is the gold standard for the diagnosis of cystinosis. We present a patient with proteinuria at adolescent age and corneal cystine crystals, but only slightly elevated WBC cystine levels (1.31 ½ cystine/mg protein), precluding the diagnosis of nephropathic cystinosis. We demonstrate increased levels of cystine in skin fibroblasts and urine-derived kidney cells (proximal tubular epithelial cells and podocytes), that were higher than the values observed in the WBC and healthy control. CTNS gene analysis shows the presence of a homozygous missense mutation (c.590 A > G; p.Asn177Ser), previously described in the Arab population. Our observation underlines that low WBC cystine levels can be observed in patients with juvenile cystinosis, which may delay the diagnosis and timely administration of cysteamine. In such patients, the diagnosis can be confirmed by cystine measurement in slow-dividing cells and by molecular analysis of the CTNS gene.


Subject(s)
Amino Acid Transport Systems, Neutral , Cystinosis , Adult , Adolescent , Humans , Cystinosis/diagnosis , Cystinosis/genetics , Cystinosis/metabolism , Cystine/metabolism , Cysteamine , Leukocytes/metabolism , Amino Acid Transport Systems, Neutral/genetics
8.
Am J Physiol Renal Physiol ; 323(2): F156-F170, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35695380

ABSTRACT

The lysosomal storage disease cystinosis is caused by mutations in CTNS, encoding the cystine transporter cystinosin, and in its severest form leads to proximal tubule dysfunction followed by kidney failure. Patients receive the drug-based therapy cysteamine from diagnosis. However, despite long-term treatment, cysteamine only slows the progression of end-stage renal disease. Preclinical testing in cystinotic rodents is required to evaluate new therapies; however, the current models are suboptimal. To solve this problem, we generated a new cystinotic rat model using CRISPR/Cas9-mediated gene editing to disrupt exon 3 of Ctns and measured various parameters over a 12-mo time course. Ctns-/- rats display hallmarks of cystinosis by 3-6 mo of age, as demonstrated by a failure to thrive, excessive thirst and urination, cystine accumulation in tissues, corneal cystine crystals, loss of LDL receptor-related protein 2 in proximal tubules, and immune cell infiltration. High levels of glucose, calcium, albumin, and protein were excreted at 6 mo of age, consistent with the onset of Fanconi syndrome, with a progressive diminution of urine urea and creatinine from 9 mo of age, indicative of chronic kidney disease. Kidney histology and immunohistochemistry showed proximal tubule atrophy and glomerular damage as well as classic "swan neck" lesions. Overall, Ctns-/- rats show a disease progression that more faithfully recapitulates nephropathic cystinosis than existing rodent models. The Ctns-/- rat provides an excellent new rodent model of nephropathic cystinosis that is ideally suited for conducting preclinical drug testing and is a powerful tool to advance cystinosis research.NEW & NOTEWORTHY Animal models of disease are essential to perform preclinical testing of new therapies before they can progress to clinical trials. The cystinosis field has been hampered by a lack of suitable animal models that fully recapitulate the disease. Here, we generated a rat model of cystinosis that closely models the human condition in a timeframe that makes them an excellent model for preclinical drug testing as well as being a powerful tool to advance research.


Subject(s)
Amino Acid Transport Systems, Neutral , Cystinosis , Fanconi Syndrome , Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems, Neutral/metabolism , Animals , Cysteamine/pharmacology , Cysteamine/therapeutic use , Cystine/genetics , Cystine/metabolism , Cystine/therapeutic use , Cystinosis/drug therapy , Cystinosis/genetics , Cystinosis/metabolism , Fanconi Syndrome/genetics , Phenotype , Rats
9.
Mol Genet Metab ; 134(4): 309-316, 2021 12.
Article in English | MEDLINE | ID: mdl-34823997

ABSTRACT

Cystinosis is an autosomal recessive lysosomal storage disorder caused by mutations in the CTNS gene encoding the lysosomal cystine transporter, cystinosin, and leading to multi-organ degeneration including kidney failure. A clinical trial for cystinosis is ongoing to test the safety and efficacy of transplantation of autologous hematopoietic stem and progenitor cells (HSPCs) ex vivo gene-modified to introduce functional CTNS cDNA. Preclinical studies in Ctns-/- mice previously showed that a single HSPC transplantation led to significant tissue cystine decrease and long-term tissue preservation. The main mechanism of action involves the differentiation of the transplanted HSPCs into macrophages within tissues and transfer of cystinosin-bearing lysosomes to the diseased cells via tunneling nanotubes. However, a major concern was that the most common cystinosis-causing mutation in humans is a 57-kb deletion that eliminates not only CTNS but also the adjacent sedopheptulose kinase SHPK/CARKL gene encoding a metabolic enzyme that influences macrophage polarization. Here, we investigated if absence of Shpk could negatively impact the efficiency of transplanted HSPCs to differentiate into macrophages within tissues and then to prevent cystinosis rescue. We generated Shpk knockout mouse models and detected a phenotype consisting of perturbations in the pentose phosphate pathway (PPP), the metabolic shunt regulated by SHPK. Shpk-/- mice also recapitulated the urinary excretion of sedoheptulose and erythritol found in cystinosis patients homozygous for the 57-kb deletion. Transplantation of Shpk-/--HSPCs into Ctns-/- mice resulted in significant reduction in tissue cystine load and restoration of Ctns expression, as well as improved kidney architecture comparable to WT-HSPC recipients. Altogether, these data demonstrate that absence of SHPK does not alter the ability of HSPCs to rescue cystinosis, and then patients homozygous for the 57-kb deletion should benefit from ex vivo gene therapy and can be enrolled in the ongoing clinical trial. However, because of the limits inherent to animal models, outcomes of this patient population will be carefully compared to the other enrolled subjects.


Subject(s)
Cystinosis/therapy , Hematopoietic Stem Cell Transplantation/methods , Phosphotransferases (Alcohol Group Acceptor)/deficiency , Amino Acid Transport Systems, Neutral/genetics , Animals , Cell Differentiation , Cystinosis/metabolism , Disease Models, Animal , Genetic Therapy , Hematopoietic Stem Cells/cytology , Metabolomics , Mice , Mice, Inbred C57BL , Pentose Phosphate Pathway , Phosphotransferases (Alcohol Group Acceptor)/genetics
10.
J Am Soc Nephrol ; 31(9): 2184-2192, 2020 09.
Article in English | MEDLINE | ID: mdl-32631973

ABSTRACT

BACKGROUND: The rare lysosomal storage disease nephropathic cystinosis presents with renal Fanconi syndrome that evolves in time to CKD. Although biochemical abnormalities in common causes of CKD-mineral and bone disorder have been defined, it is unknown if persistent phosphate wasting in nephropathic cystinosis is associated with a biochemical mineral pattern distinct from that typically observed in CKD-mineral and bone disorder. METHODS: We assessed and compared determinants of mineral homeostasis in patients with nephropathic cystinosis across the predialysis CKD spectrum to these determinants in age- and CKD stage-matched patients, with causes of CKD other than nephropathic cystinosis. RESULTS: The study included 50 patients with nephropathic cystinosis-related CDK and 97 with CKD from other causes. All major aspects of mineral homeostasis were differentially effected in patients with CKD stemming from nephropathic cystinosis versus other causes. Patients with nephropathic cystinosis had significantly lower percent tubular reabsorption of phosphate and fibroblast growth factor-23 (FGF23) at all CKD stages, and lower blood phosphate in CKD stages 3-5. Linear regression analyses demonstrated lower FGF23 levels in nephropathic cystinosis participants at all CKD stages when corrected for eGFR and age, but not when adjusted for serum phosphate. CONCLUSIONS: Nephropathic cystinosis CKD patients have mineral abnormalities that are distinct from those in CKD stemming from other causes. Persistently increased urinary phosphate excretion maintains serum phosphate levels within the normal range, thus protecting patients with nephropathic cystinosis from elevations of FGF23 during early CKD stages. These findings support the notion that phosphate is a significant driver of increased FGF23 levels in CKD and that mineral abnormalities associated with CKD are likely to vary depending on the underlying renal disease.


Subject(s)
Chronic Kidney Disease-Mineral and Bone Disorder/metabolism , Cystinosis/metabolism , Fibroblast Growth Factors/blood , Adolescent , Adult , Child , Child, Preschool , Female , Fibroblast Growth Factor-23 , Homeostasis , Humans , Male , Phosphates/metabolism , Vitamin D/blood , Young Adult
11.
J Am Soc Nephrol ; 31(7): 1522-1537, 2020 07.
Article in English | MEDLINE | ID: mdl-32503896

ABSTRACT

BACKGROUND: Mutations in the gene that encodes the lysosomal cystine transporter cystinosin cause the lysosomal storage disease cystinosis. Defective cystine transport leads to intralysosomal accumulation and crystallization of cystine. The most severe phenotype, nephropathic cystinosis, manifests during the first months of life, as renal Fanconi syndrome. The cystine-depleting agent cysteamine significantly delays symptoms, but it cannot prevent progression to ESKD and does not treat Fanconi syndrome. This suggests the involvement of pathways in nephropathic cystinosis that are unrelated to lysosomal cystine accumulation. Recent data indicate that one such potential pathway, lysosome-mediated degradation of autophagy cargoes, is compromised in cystinosis. METHODS: To identify drugs that reduce levels of the autophagy-related protein p62/SQSTM1 in cystinotic proximal tubular epithelial cells, we performed a high-throughput screening on the basis of an in-cell ELISA assay. We then tested a promising candidate in cells derived from patients with, and mouse models of, cystinosis, and in preclinical studies in cystinotic zebrafish. RESULTS: Of 46 compounds identified as reducing p62/SQSTM1 levels in cystinotic cells, we selected luteolin on the basis of its efficacy, safety profile, and similarity to genistein, which we previously showed to ameliorate other lysosomal abnormalities of cystinotic cells. Our data show that luteolin improves the autophagy-lysosome degradative pathway, is a powerful antioxidant, and has antiapoptotic properties. Moreover, luteolin stimulates endocytosis and improves the expression of the endocytic receptor megalin. CONCLUSIONS: Our data show that luteolin improves defective pathways of cystinosis and has a good safety profile, and thus has potential as a treatment for nephropathic cystinosis and other renal lysosomal storage diseases.


Subject(s)
Antioxidants/pharmacology , Cystinosis/drug therapy , Drug Evaluation, Preclinical/methods , Luteolin/pharmacology , RNA, Messenger/metabolism , Amino Acid Transport Systems, Neutral/genetics , Animals , Antioxidants/adverse effects , Apoptosis/drug effects , Autophagy/drug effects , Cells, Cultured , Cystinosis/metabolism , Disease Models, Animal , Endocytosis/drug effects , Humans , Kidney Tubules, Proximal/pathology , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Luteolin/adverse effects , Lysosomes/drug effects , Mice , Oxidative Stress/drug effects , Phenotype , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Zebrafish
12.
Int J Mol Sci ; 22(23)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34884638

ABSTRACT

Diagnosis and cure for rare diseases represent a great challenge for the scientific community who often comes up against the complexity and heterogeneity of clinical picture associated to a high cost and time-consuming drug development processes. Here we show a drug repurposing strategy applied to nephropathic cystinosis, a rare inherited disorder belonging to the lysosomal storage diseases. This approach consists in combining mechanism-based and cell-based screenings, coupled with an affordable computational analysis, which could result very useful to predict therapeutic responses at both molecular and system levels. Then, we identified potential drugs and metabolic pathways relevant for the pathophysiology of nephropathic cystinosis by comparing gene-expression signature of drugs that share common mechanisms of action or that involve similar pathways with the disease gene-expression signature achieved with RNA-seq.


Subject(s)
Amino Acid Transport Systems, Neutral/genetics , Cystinosis/drug therapy , Cystinosis/genetics , Drug Repositioning , Kidney Diseases/drug therapy , Kidney Diseases/genetics , Rare Diseases/drug therapy , Amino Acid Transport Systems, Neutral/metabolism , Amino Acid Transport Systems, Neutral/radiation effects , Cells, Cultured , Computational Biology/methods , Cystinosis/metabolism , Drug Evaluation, Preclinical/methods , Humans , Kidney Diseases/metabolism , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Metabolic Networks and Pathways , Rare Diseases/genetics , Rare Diseases/metabolism , Transcriptome
13.
Am J Pathol ; 189(5): 1053-1064, 2019 05.
Article in English | MEDLINE | ID: mdl-30794806

ABSTRACT

Cystinosis is a rare lysosomal storage disorder caused by loss-of-function mutations of the CTNS gene, encoding cystinosin, a symporter that mediates cystine efflux from lysosomes. Approximately 95% of patients with cystinosis display renal Fanconi syndrome, short stature, osteopenia, and rickets. In this study, we investigated whether the absence of cystinosin primarily affects bone remodeling activity, apart from the influences of the Fanconi syndrome on bone mineral metabolism. Using micro-computed tomography and histomorphometric and bone serum biomarker analysis, we evaluated the bone phenotype of 1-month-old Ctns-/- knockout (KO) male mice without tubulopathy. An in vitro study was performed to characterize the effects of cystinosin deficiency on osteoblasts and osteoclasts. Micro-computed tomography analysis showed a reduction of trabecular bone volume, bone mineral density, and number and thickness in KO mice compared with wild-type animals; histomorphometric analysis revealed a reduction of osteoblast and osteoclast parameters in tibiae of cystinotic mice. Decreased levels of serum procollagen type 1 amino-terminal propeptide and tartrate-resistant acid phosphatase in KO mice confirmed reduced bone remodeling activity. In vitro experiments showed an impairment of Ctns-/- osteoblasts and osteoclasts. In conclusion, cystinosin deficiency primarily affects bone cells, leading to a bone loss phenotype of KO mice, independent from renal failure.


Subject(s)
Amino Acid Transport Systems, Neutral/physiology , Bone Diseases/pathology , Cystinosis/pathology , Osteoblasts/pathology , Osteogenesis , Animals , Bone Diseases/etiology , Bone Diseases/metabolism , Cystinosis/etiology , Cystinosis/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/metabolism
14.
BMC Ophthalmol ; 20(1): 73, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32102651

ABSTRACT

BACKGROUND: Presence of corneal cystine crystals is the main ocular manifestation of cystinosis, although controversial findings concerning the corneal layer with the highest density have been reported. The aim of this study was the analysis of the characteristics of crystal arrangement in different corneal layers and the assessment of corneal morphological changes with age. METHODS: A cross sectional study was carried out in three children and three adults who had nephropathic cystinosis and corneal cystine depositions. All patients underwent a comprehensive ophthalmological examination including best corrected distance visual acuity, slit-lamp examination, in vivo confocal microscopy and anterior segment optical coherence tomography. An evaluation of the depth of crystal deposits and crystal density in different corneal layers was also performed. Due to the low number of subjects no statistical comparison was performed. RESULTS: Anterior segment optical coherence tomography images revealed deposition of hyperreflective crystals from limbus to limbus in each patient. Crystals appeared as randomly oriented hyperreflective, elongated structures on in vivo confocal microscopy images in all corneal layers except the endothelium. In children the deposits occurred predominantly in the anterior stroma, while in adults, the crystals were mostly localized in the posterior corneal stroma with the depth of crystal deposition showing an increasing tendency with age (mean depth of crystal density was 353.17 ± 49.23 µm in children and it was 555.75 ± 25.27 µm in adults). Mean crystal density of the epithelium was 1.47 ± 1.17 (median: 1.5; interquartile range: 0.3-2.4). Mean crystal density of the anterior and posterior stroma of children and adults was 3.37 ± 0.34 (median: 3.4; interquartile range: 3.25-3.55) vs. 1.23 ± 0.23 (median: 1.2; interquartile range: 1.05-1.35) and 0.76 ± 0.49 (median: 0.7; interquartile range: 0.4-1.15) vs. 3.63 ± 0.29 (median: 3.7; interquartile range: 3.45-3.8), respectively. Endothelium had intact structure in all cases. Some hexagonal crystals were observed in two subjects. CONCLUSIONS: In vivo confocal microscopy and anterior segment optical coherence tomography confirmed an age-related pattern of crystal deposition. In children, crystals tend to locate anteriorly, while in adults, deposits are found posteriorly in corneal stroma.


Subject(s)
Anterior Eye Segment/diagnostic imaging , Cornea/metabolism , Corneal Diseases/metabolism , Cysteine/metabolism , Cystinosis/metabolism , Microscopy, Confocal , Tomography, Optical Coherence , Adolescent , Adult , Child , Cornea/diagnostic imaging , Corneal Diseases/diagnostic imaging , Cross-Sectional Studies , Crystallization , Cystinosis/diagnostic imaging , Female , Humans , Male , Visual Acuity , Young Adult
15.
Kidney Int ; 96(2): 350-362, 2019 08.
Article in English | MEDLINE | ID: mdl-30928021

ABSTRACT

Inflammation is involved in the pathogenesis of many disorders. However, the underlying mechanisms are often unknown. Here, we test whether cystinosin, the protein involved in cystinosis, is a critical regulator of galectin-3, a member of the ß-galactosidase binding protein family, during inflammation. Cystinosis is a lysosomal storage disorder and, despite ubiquitous expression of cystinosin, the kidney is the primary organ impacted by the disease. Cystinosin was found to enhance lysosomal localization and degradation of galectin-3. In Ctns-/- mice, a mouse model of cystinosis, galectin-3 is overexpressed in the kidney. The absence of galectin-3 in cystinotic mice ameliorates pathologic renal function and structure and decreases macrophage/monocyte infiltration in the kidney of the Ctns-/-Gal3-/- mice compared to Ctns-/- mice. These data strongly suggest that galectin-3 mediates inflammation involved in kidney disease progression in cystinosis. Furthermore, galectin-3 was found to interact with the pro-inflammatory cytokine Monocyte Chemoattractant Protein-1, which stimulates the recruitment of monocytes/macrophages, and proved to be significantly increased in the serum of Ctns-/- mice and also patients with cystinosis. Thus, our findings highlight a new role for cystinosin and galectin-3 interaction in inflammation and provide an additional mechanistic explanation for the kidney disease of cystinosis. This may lead to the identification of new drug targets to delay cystinosis progression.


Subject(s)
Amino Acid Transport Systems, Neutral/metabolism , Cystinosis/complications , Fanconi Syndrome/immunology , Galectin 3/metabolism , Inflammation/immunology , Amino Acid Transport Systems, Neutral/genetics , Animals , Chemokine CCL2/immunology , Chemokine CCL2/metabolism , Cystine/metabolism , Cystinosis/immunology , Cystinosis/metabolism , Cystinosis/pathology , Disease Models, Animal , Disease Progression , Fanconi Syndrome/metabolism , Fanconi Syndrome/pathology , Female , Galectin 3/genetics , Humans , Inflammation/metabolism , Inflammation/pathology , Kidney Tubules, Proximal/immunology , Kidney Tubules, Proximal/pathology , Lysosomes/metabolism , Macrophages/immunology , Male , Mice , Mice, Knockout , Monocytes/immunology , Proteolysis
16.
Cell Mol Life Sci ; 75(18): 3411-3422, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29549422

ABSTRACT

Nephropathic cystinosis (NC) is a rare disease caused by mutations in the CTNS gene encoding for cystinosin, a lysosomal transmembrane cystine/H+ symporter, which promotes the efflux of cystine from lysosomes to cytosol. NC is the most frequent cause of Fanconi syndrome (FS) in young children, the molecular basis of which is not well established. Proximal tubular cells have very high metabolic rate due to the active transport of many solutes. Not surprisingly, mitochondrial disorders are often characterized by FS. A similar mechanism may also apply to NC. Because cAMP has regulatory properties on mitochondrial function, we have analyzed cAMP levels and mitochondrial targets in CTNS-/- conditionally immortalized proximal tubular epithelial cells (ciPTEC) carrying the classical homozygous 57-kb deletion (delCTNS-/-) or with compound heterozygous loss-of-function mutations (mutCTNS-/-). Compared to wild-type cells, cystinotic cells had significantly lower mitochondrial cAMP levels (delCTNS-/- ciPTEC by 56% ± 10.5, P < 0.0001; mutCTNS-/- by 26% ± 4.3, P < 0.001), complex I and V activities, mitochondrial membrane potential, and SIRT3 protein levels, which were associated with increased mitochondrial fragmentation. Reduction of complex I and V activities was associated with lower expression of part of their subunits. Treatment with the non-hydrolysable cAMP analog 8-Br-cAMP restored mitochondrial potential and corrected mitochondria morphology. Treatment with cysteamine, which reduces the intra-lysosomal cystine, was able to restore mitochondrial cAMP levels, as well as most other abnormal mitochondrial findings. These observations were validated in CTNS-silenced HK-2 cells, indicating a pivotal role of mitochondrial cAMP in the proximal tubular dysfunction observed in NC.


Subject(s)
Cyclic AMP/metabolism , Cystinosis/pathology , Mitochondria/metabolism , Amino Acid Transport Systems, Neutral/antagonists & inhibitors , Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems, Neutral/metabolism , Cell Line , Cystinosis/metabolism , Electron Transport Chain Complex Proteins/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Humans , Kidney Tubules, Proximal/cytology , Membrane Potential, Mitochondrial , RNA Interference , RNA, Small Interfering/metabolism , Sirtuin 3/metabolism
17.
BMC Nephrol ; 20(1): 400, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31672123

ABSTRACT

BACKGROUND: Cystinosis is an autosomal recessive lysosomal storage disorder characterized by accumulation of cystine in lysosomes throughout the body. Cystinosis is caused by mutations in the CTNS gene that encodes the lysosomal cystine carrier protein cystinosin. CTNS mutations result in either complete absence or reduced cystine transporting function of the protein. The diagnosis of nephropathic cystinosis is generally based on measuring leukocyte cystine level, demonstration of corneal cystine crystals by the slit lamp examination and confirmed by genetic analysis of the CTNS gene. CASE PRESENTATION: A boy born to consanguineous Caucasian parents had the characteristic clinical features of the infantile nephropathic cystinosis including renal Fanconi syndrome (polydipsia/polyuria, metabolic acidosis, hypokalemia, hypophosphatemia, low molecular weight proteinuria, glycosuria, cystine crystals in the cornea) and elevated WBC cystine levels. Initially we performed RFLP analysis of the common in the Northern European population 57-kb deletion of proband's DNA, then a direct Sanger sequencing which revealed no mutations in the coding part of the CTNS gene. To confirm the diagnosis we performed RT-PCR analysis of total RNA obtained from patient-derived fibroblasts in combination with cDNA sequencing. This revealed the skipping of exon 4 and exon 5 in the CTNS in our patient. Therefore, we detected a novel 9-kb homozygous deletion in the CTNS gene at genomic DNA level, spanning region from intron 3 to intron 5. In order to identify the inheritance pattern of the deletion we analyzed DNA of proband's mother and father. Both parents were found to be heterozygous carriers of the CTNS mutation. CONCLUSIONS: Analysis of CTNS gene transcript allowed to identify a large homozygous deletion in the patient with infantile nephropathic cystinosis. Mutational detection at RNA level may be an efficient tool to establish the genetic defect in some cystinosis patients.


Subject(s)
Amino Acid Transport Systems, Neutral/genetics , Cystinosis/genetics , Mutation , Child, Preschool , Consanguinity , Cysteamine/therapeutic use , Cystine Depleting Agents/therapeutic use , Cystinosis/drug therapy , Cystinosis/metabolism , DNA Mutational Analysis , Exons/genetics , Fibroblasts/chemistry , Humans , Infant , Introns/genetics , Male , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction
18.
Int J Mol Sci ; 21(1)2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31888107

ABSTRACT

Nephropathic cystinosis is a rare lysosomal storage disorder caused by mutations in CTNS gene leading to Fanconi syndrome. Independent studies reported defective clearance of damaged mitochondria and mitochondrial fragmentation in cystinosis. Proteins involved in the mitochondrial dynamics and the mitochondrial ultrastructure were analyzed in CTNS-/- cells treated with cysteamine, the only drug currently used in the therapy for cystinosis but ineffective to treat Fanconi syndrome. CTNS-/- cells showed an overexpression of parkin associated with deregulation of ubiquitination of mitofusin 2 and fission 1 proteins, an altered proteolytic processing of optic atrophy 1 (OPA1), and a decreased OPA1 oligomerization. According to molecular findings, the analysis of electron microscopy images showed a decrease of mitochondrial cristae number and an increase of cristae lumen and cristae junction width. Cysteamine treatment restored the fission 1 ubiquitination, the mitochondrial size, number and lumen of cristae, but had no effect on cristae junction width, making CTNS-/- tubular cells more susceptible to apoptotic stimuli.


Subject(s)
Amino Acid Transport Systems, Neutral/genetics , Cysteamine/pharmacology , Cystinosis/genetics , Mitochondria/metabolism , Cells, Cultured , Cystinosis/metabolism , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , GTP Phosphohydrolases/metabolism , Humans , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Membrane Proteins/metabolism , Mitochondria/drug effects , Mitochondrial Dynamics/drug effects , Mitochondrial Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
19.
J Biol Chem ; 292(25): 10328-10346, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28465352

ABSTRACT

The lysosomal storage disease cystinosis, caused by cystinosin deficiency, is characterized by cell malfunction, tissue failure, and progressive renal injury despite cystine-depletion therapies. Cystinosis is associated with defects in chaperone-mediated autophagy (CMA), but the molecular mechanisms are incompletely understood. Here, we show CMA substrate accumulation in cystinotic kidney proximal tubule cells. We also found mislocalization of the CMA lysosomal receptor LAMP2A and impaired substrate translocation into the lysosome caused by defective CMA in cystinosis. The impaired LAMP2A trafficking and localization were rescued either by the expression of wild-type cystinosin or by the disease-associated point mutant CTNS-K280R, which has no cystine transporter activity. Defective LAMP2A trafficking in cystinosis was found to associate with decreased expression of the small GTPase Rab11 and the Rab7 effector RILP. Defective Rab11 trafficking in cystinosis was rescued by treatment with small-molecule CMA activators. RILP expression was restored by up-regulation of the transcription factor EB (TFEB), which was down-regulated in cystinosis. Although LAMP2A expression is independent of TFEB, TFEB up-regulation corrected lysosome distribution and lysosomal LAMP2A localization in Ctns-/- cells but not Rab11 defects. The up-regulation of Rab11, Rab7, or RILP, but not its truncated form RILP-C33, rescued LAMP2A-defective trafficking in cystinosis, whereas dominant-negative Rab11 or Rab7 impaired LAMP2A trafficking. Treatment of cystinotic cells with a CMA activator increased LAMP2A localization at the lysosome and increased cell survival. Altogether, we show that LAMP2A trafficking is regulated by cystinosin, Rab11, and RILP and that CMA up-regulation is a potential clinically relevant mechanism to increase cell survival in cystinosis.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Transport Systems, Neutral/metabolism , Cystinosis/metabolism , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomes/metabolism , rab GTP-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Substitution , Amino Acid Transport Systems, Neutral/genetics , Animals , Cystinosis/genetics , Cystinosis/pathology , Enzyme Activators/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Enzymologic/genetics , Lysosomal-Associated Membrane Protein 2/genetics , Lysosomes/genetics , Mice , Mice, Knockout , Point Mutation , Protein Transport/genetics , rab GTP-Binding Proteins/biosynthesis , rab GTP-Binding Proteins/genetics , rab7 GTP-Binding Proteins
20.
Pediatr Res ; 81(1-1): 113-119, 2017 01.
Article in English | MEDLINE | ID: mdl-27656773

ABSTRACT

BACKGROUND: Nephropathic cystinosis is a lysosomal storage disease that is caused by mutations in the CTNS gene encoding a cystine/proton symporter cystinosin and an isoform cystinosin-LKG which is generated by an alternative splicing of exon 12. We have investigated the physiological role of the cystinosin-LKG that is widely expressed in epithelial tissues. METHODS: We have analyzed the intracellular localization and the function of the cystinosin-LKG conjugated with DsRed (cystinosin-LKG-RFP) in Madin-Darby canine kidney cells (MDCK II) and in proximal tubular epithelial cells carrying a deletion of the CTNS gene (cystinotic PTEC), respectively. RESULTS: Cystinosin-LKG-RFP colocalized with markers of lysosomes, late endosomes and was also expressed on the apical surface of polarized MDCK II cells. Moreover, immune-electron microscopy images of MDCK II cells overexpressing cystinosin-LKG-RFP showed stacked lamellar membranes inside perinuclear lysosomal structures. To study the role of LKG-isoform, we have investigated cystine accumulation and apoptosis that have been described in cystinotic cells. Cystinosin-LKG decreased cystine levels by approximately 10-fold similarly to cystinosin-RFP. The levels of TNFα- and actinomycin D-inducted apoptosis dropped in cystinotic cells expressing LKG-isoform. This effect was also similar to the main isoform. CONCLUSION: Our results suggest that cystinosin-LKG and cystinosin move similar functional activities in cells.


Subject(s)
Amino Acid Transport Systems, Neutral/metabolism , Cystine/metabolism , Cystinosis/metabolism , Cystinosis/pathology , Alternative Splicing , Amino Acid Transport Systems, Neutral/chemistry , Amino Acid Transport Systems, Neutral/genetics , Animals , Apoptosis , Cells, Cultured , Cystinosis/genetics , Dogs , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Lysosomes/metabolism , Madin Darby Canine Kidney Cells , Microscopy, Electron, Transmission , Mutation , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL