ABSTRACT
Crohn's disease is a chronic inflammatory intestinal disease that is frequently accompanied by aberrant healing and stricturing complications. Crosstalk between activated myeloid and stromal cells is critical in the pathogenicity of Crohn's disease1,2, and increases in intravasating monocytes are correlated with a lack of response to anti-TNF treatment3. The risk alleles with the highest effect on Crohn's disease are loss-of-function mutations in NOD24,5, which increase the risk of stricturing6. However, the mechanisms that underlie pathogenicity driven by NOD2 mutations and the pathways that might rescue a lack of response to anti-TNF treatment remain largely uncharacterized. Here we use direct ex vivo analyses of patients who carry risk alleles of NOD2 to show that loss of NOD2 leads to dysregulated homeostasis of activated fibroblasts and macrophages. CD14+ peripheral blood mononuclear cells from carriers of NOD2 risk alleles produce cells that express high levels of collagen, and elevation of conserved signatures is observed in nod2-deficient zebrafish models of intestinal injury. The enrichment of STAT3 regulation and gp130 ligands in activated fibroblasts and macrophages suggested that gp130 blockade might rescue the activated program in NOD2-deficient cells. We show that post-treatment induction of the STAT3 pathway is correlated with a lack of response to anti-TNF treatment in patients, and demonstrate in vivo in zebrafish the amelioration of the activated myeloid-stromal niche using the specific gp130 inhibitor bazedoxifene. Our results provide insights into NOD2-driven fibrosis in Crohn's disease, and suggest that gp130 blockade may benefit some patients with Crohn's disease-potentially as a complement to anti-TNF therapy.
Subject(s)
Crohn Disease/metabolism , Cytokine Receptor gp130/metabolism , Myeloid Cells/cytology , Nod2 Signaling Adaptor Protein/metabolism , Stromal Cells/cytology , Alleles , Animals , Collagen/metabolism , Cytokine Receptor gp130/antagonists & inhibitors , Disease Models, Animal , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Ileitis/metabolism , Indoles/pharmacology , Interleukin-11/metabolism , Lipopolysaccharide Receptors/metabolism , Macrophages/cytology , Macrophages/metabolism , Male , Myeloid Cells/metabolism , Receptor, Platelet-Derived Growth Factor alpha/metabolism , STAT3 Transcription Factor/metabolism , Stromal Cells/metabolism , WT1 Proteins/metabolism , Zebrafish , Zebrafish Proteins/metabolismABSTRACT
gp130 functions as a shared signal-transducing subunit not only for interleukin (IL)-6 but also for eight other human cytokine receptor complexes. The IL-6 signaling pathway mediated through gp130 encompasses classical, trans, or cluster signaling, intricately regulated by a diverse array of modulators affecting IL-6, its receptor, and gp130. Currently, only a limited number of small molecule antagonists and agonists for gp130 are known. This review aims to comprehensively examine the current knowledge of these modulators and provide insights into their pharmacological properties, particularly in the context of cancer and other diseases. Notably, the prominent gp130 modulators SC144, bazedoxifene, and raloxifene are discussed in detail, with a specific focus on the discovery of SC144's iron-chelating properties. This adds a new dimension to the understanding of its pharmacological effects and therapeutic potential in conditions where iron homeostasis is significant. Our bioinformatic analysis of gp130 and genes related to iron homeostasis reveals insightful correlations, implicating the role of iron in the gp130 signaling pathway. Overall, this review contributes to the evolving understanding of gp130 modulation and its potential therapeutic applications in various disease contexts. SIGNIFICANCE STATEMENT: This perspective provides a timely and comprehensive analysis of advancements in gp130 signaling research, emphasizing the therapeutic implications of the currently available modulators. Bioinformatic analysis demonstrates potential interplay between gp130 and genes that regulate iron homeostasis, suggesting new therapeutic avenues. By combining original research findings with a broader discussion of gp130's therapeutic potential, this perspective significantly contributes to the field.
Subject(s)
Cytokine Receptor gp130 , Iron , Signal Transduction , Animals , Humans , Cytokine Receptor gp130/metabolism , Iron/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Signal Transduction/drug effectsABSTRACT
The physiological functions of members of the tumor-necrosis factor (TNF) receptor (TNFR)-associated factor (TRAF) family in T cell immunity are not well understood. We found that in the presence of interleukin 6 (IL-6), naive TRAF5-deficient CD4(+) T cells showed an enhanced ability to differentiate into the TH17 subset of helper T cells. Accordingly, TH17 cell-associated experimental autoimmune encephalomyelitis (EAE) was greatly exaggerated in Traf5(-/-) mice. Although it is normally linked with TNFR signaling pathways, TRAF5 constitutively associated with a cytoplasmic region in the signal-transducing receptor gp130 that overlaps with the binding site for the transcription activator STAT3 and suppressed the recruitment and activation of STAT3 in response to IL-6. Our results identify TRAF5 as a negative regulator of the IL-6 receptor signaling pathway that limits the induction of proinflammatory CD4(+) T cells that require IL-6 for their development.
Subject(s)
Cytokine Receptor gp130/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , T-Lymphocyte Subsets/immunology , TNF Receptor-Associated Factor 5/metabolism , Th17 Cells/immunology , Animals , CD4 Antigens/metabolism , Cell Differentiation/genetics , Cells, Cultured , Disease Progression , Interleukin-6/immunology , Mice , Mice, Inbred Strains , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein/immunology , Peptide Fragments/immunology , STAT3 Transcription Factor/metabolism , Signal Transduction/genetics , TNF Receptor-Associated Factor 5/genetics , Transcriptional Activation/geneticsABSTRACT
Ciliary neurotrophic factor (CNTF) activates cells via the non-signaling α-receptor CNTF receptor (CNTFR) and the two signaling ß-receptors glycoprotein 130 (gp130) and leukemia inhibitory factor receptor (LIFR). The CNTF derivate, Axokine, was protective against obesity and insulin resistance, but clinical development was halted by the emergence of CNTF antibodies. The chimeric cytokine IC7 used the framework of interleukin (IL-)6 with the LIFR-binding site from CNTF to activate cells via IL-6R:gp130:LIFR complexes. Similar to CNTF/Axokine, IC7 protected mice from obesity and insulin resistance. Here, we developed CNTF-independent chimeras that specifically target the IL-6R:gp130:LIFR complex. In GIL-6 and GIO-6, we transferred the LIFR binding site from LIF or OSM to IL-6, respectively. While GIO-6 signals via gp130:IL-6R:LIFR and gp130:IL-6R:OSMR complexes, GIL-6 selectively activates the IL-6R:gp130:LIFR receptor complex. By re-evaluation of IC7 and CNTF, we discovered the Oncostatin M receptor (OSMR) as an alternative non-canonical high-affinity receptor leading to IL-6R:OSMR:gp130 and CNTFR:OSMR:gp130 receptor complexes, respectively. The discovery of OSMR as an alternative high-affinity receptor for IC7 and CNTF designates GIL-6 as the first truly selective IL-6R:gp130:LIFR cytokine, whereas GIO-6 is a CNTF-free alternative for IC7.
Subject(s)
Ciliary Neurotrophic Factor , Cytokine Receptor gp130 , Interleukin-6 , Signal Transduction , Animals , Humans , Mice , Ciliary Neurotrophic Factor/metabolism , Ciliary Neurotrophic Factor/genetics , Cytokine Receptor gp130/metabolism , Cytokine Receptor gp130/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Leukemia Inhibitory Factor Receptor alpha Subunit/metabolism , Leukemia Inhibitory Factor Receptor alpha Subunit/genetics , Models, Molecular , Protein Engineering/methods , Protein Structure, Tertiary , Receptors, Interleukin-6/metabolism , Receptors, Interleukin-6/genetics , Receptors, OSM-LIF/metabolism , Receptors, OSM-LIF/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Mice, Inbred C57BLABSTRACT
The participation of a specific subset of B cells and how they are regulated in cancer is unclear. Here, we demonstrate that the proportion of CD5(+) relative to interleukin-6 receptor α (IL-6Rα)-expressing B cells was greatly increased in tumors. CD5(+) B cells responded to IL-6 in the absence of IL-6Rα. IL-6 directly bound to CD5, leading to activation of the transcription factor STAT3 via gp130 and its downstream kinase JAK2. STAT3 upregulated CD5 expression, thereby forming a feed-forward loop in the B cells. In mouse tumor models, CD5(+) but not CD5(-) B cells promoted tumor growth. CD5(+) B cells also showed activation of STAT3 in multiple types of human tumor tissues. Thus, our findings demonstrate a critical role of CD5(+) B cells in promoting cancer.
Subject(s)
B-Lymphocytes/immunology , CD5 Antigens/metabolism , Interleukin-6/metabolism , Melanoma, Experimental/pathology , STAT3 Transcription Factor/immunology , Animals , CD5 Antigens/biosynthesis , Cell Line, Tumor , Cytokine Receptor gp130/metabolism , Humans , Interleukin-6/immunology , Janus Kinase 2/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NIH 3T3 Cells , Protein Binding , Receptors, Interleukin-6/biosynthesis , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/immunology , Transcriptional Activation/immunologyABSTRACT
IL-6 family members contribute to host defense through the stimulation of acute-phase signaling, hematopoiesis, immune reactions, and regenerative processes. To investigate essential mechanisms that are linked toward a constitutively activated gp130 signaling, we generated and characterized a mouse model that reflects a constitutive and cytokine-independent activation of JAK/STAT3 signaling by Lgp130 in CD4- and CD8-positive T cells. Lgp130 is an engineered form of gp130 in which dimerization and activation are forced by a leucine zipper. T cell-specific Lgp130 activation resulted in massive phenotypical abnormalities, including splenomegaly, lymphadenopathy, and an upregulation of innate immune system components shown by hyperinflammatory signatures in several organs. Moreover, T cell-restricted expression of Lgp130 resulted in increased numbers of cytotoxic and regulatory T cells, especially in lymph nodes. Consistent with this, we found an elevated platelet production and increase in megakaryocytes in the spleen and bone marrow that are causative for an acute thrombocytosis accompanied by anemia. Due to a shortened life span of T cell-specific Lgp130 mice, we could also show that next to an overall increase in regulatory cell-cycle genes, an activation of p53 and increased expression of p21 provide evidence for a senescence-like phenotype. Together, these data suggest that T cell-restricted gp130 activation is not only involved in autoimmune processes but also in senescence-associated aging. Therefore, Lgp130 expression in T cells might be a suitable model to study inflammation and disease.
Subject(s)
Aging, Premature , Animals , Mice , Cytokine Receptor gp130/genetics , Cytokine Receptor gp130/metabolism , Hematopoiesis , Spleen/metabolism , STAT3 Transcription Factor/metabolismABSTRACT
IL-6 plays a fundamental role in T cell differentiation and is strictly controlled by surface expression and shedding of IL-6R. IL-6 also acts on other cells that might affect T cell maturation. To study the impact of cell-autonomous and uncontrolled IL-6 signaling in T cells, we generated mice with a constitutively active IL-6R gp130 chain (Lgp130) expressed either in all T cells (Lgp130 × CD4Cre mice) or inducible in CD4+ T cells (Lgp130 × CD4CreERT2 mice). Lgp130 × CD4Cre mice accumulated activated T cells, including TH17 cells, in the lung, resulting in severe inflammation. Tamoxifen treatment of Lgp130 × CD4CreERT2 mice caused Lgp130 expression in 40-50% of CD4+ T cells, but mice developed lung disease only after several months. Lgp130+ CD4+ T cells were also enriched for TH17 cells; however, there was concomitant expansion of Lgp130- regulatory T cells, which likely restricted pathologic Lgp130+ T cells. In vitro, constitutive gp130 signaling in T cells enhanced but was not sufficient for TH17 cell differentiation. Augmented TH17 cell development of Lgp130+ T cells was also observed in Lgp130 × CD4CreERT2 mice infected with Staphylococcus aureus, but gp130 activation did not interfere with formation of TH1 cells against Listeria monocytogenes. Lgp130+ CD4+ T cells acquired a memory T cell phenotype and persisted in high numbers as a polyclonal T cell population in lymphoid and peripheral tissues, but we did not observe T cell lymphoma formation. In conclusion, cell-autonomous gp130 signaling alters T cell differentiation. Although gp130 signaling is not sufficient for TH17 cell differentiation, it still promotes accumulation of activated T cells in the lung that cause tissue inflammation.
Subject(s)
Pneumonia , Th17 Cells , Animals , Mice , Cell Differentiation , Cytokine Receptor gp130/metabolism , Inflammation , Interleukin-6/metabolism , Lung/metabolism , Th1 Cells/metabolism , Th17 Cells/metabolismABSTRACT
The gp130 receptor cytokines IL-6 and CNTF improve metabolic homeostasis but have limited therapeutic use for the treatment of type 2 diabetes. Accordingly, we engineered the gp130 ligand IC7Fc, in which one gp130-binding site is removed from IL-6 and replaced with the LIF-receptor-binding site from CNTF, fused with the Fc domain of immunoglobulin G, creating a cytokine with CNTF-like, but IL-6-receptor-dependent, signalling. Here we show that IC7Fc improves glucose tolerance and hyperglycaemia and prevents weight gain and liver steatosis in mice. In addition, IC7Fc either increases, or prevents the loss of, skeletal muscle mass by activation of the transcriptional regulator YAP1. In human-cell-based assays, and in non-human primates, IC7Fc treatment results in no signs of inflammation or immunogenicity. Thus, IC7Fc is a realistic next-generation biological agent for the treatment of type 2 diabetes and muscle atrophy, disorders that are currently pandemic.
Subject(s)
Cytokine Receptor gp130/metabolism , Cytokines/chemical synthesis , Cytokines/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Immunoglobulin G/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Adaptor Proteins, Signal Transducing/metabolism , Animals , Binding, Competitive , Cytokines/chemistry , Diabetes Mellitus, Type 2/metabolism , Drug Design , Fatty Liver/prevention & control , Glucose Tolerance Test , Humans , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Incretins/metabolism , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Male , Mice , Muscle, Skeletal/drug effects , Obesity/metabolism , Pancreas/metabolism , Phosphoproteins/metabolism , Protein Engineering , Receptors, Interleukin-6/metabolism , Signal Transduction , Transcription Factors , Weight Gain/drug effects , YAP-Signaling ProteinsABSTRACT
Pulmonary emphysema is associated with dysregulated innate immune responses that promote chronic pulmonary inflammation and alveolar apoptosis, culminating in lung destruction. However, the molecular regulators of innate immunity that promote emphysema are ill-defined. Here, we investigated whether innate immune inflammasome complexes, comprising the adaptor ASC, Caspase-1 and specific pattern recognition receptors (PRRs), promote the pathogenesis of emphysema. In the lungs of emphysematous patients, as well as spontaneous gp130F/F and cigarette smoke (CS)-induced mouse models of emphysema, the expression (messenger RNA and protein) and activation of ASC, Caspase-1, and the inflammasome-associated PRR and DNA sensor AIM2 were up-regulated. AIM2 up-regulation in emphysema coincided with the biased production of the mature downstream inflammasome effector cytokine IL-1ß but not IL-18. These observations were supported by the genetic blockade of ASC, AIM2, and the IL-1 receptor and therapy with AIM2 antagonistic suppressor oligonucleotides, which ameliorated emphysema in gp130F/F mice by preventing elevated alveolar cell apoptosis. The functional requirement for AIM2 in driving apoptosis in the lung epithelium was independent of its expression in hematopoietic-derived immune cells and the recruitment of infiltrating immune cells in the lung. Genetic and inhibitor-based blockade of AIM2 also protected CS-exposed mice from pulmonary alveolar cell apoptosis. Intriguingly, IL-6 trans-signaling via the soluble IL-6 receptor, facilitated by elevated levels of IL-6, acted upstream of the AIM2 inflammasome to augment AIM2 expression in emphysema. Collectively, we reveal cross-talk between the AIM2 inflammasome/IL-1ß and IL-6 trans-signaling axes for potential exploitation as a therapeutic strategy for emphysema.
Subject(s)
DNA-Binding Proteins , Immunity, Innate , Interleukin-1beta , Interleukin-6 , Pulmonary Emphysema , Animals , Apoptosis , Caspase 1/metabolism , Cytokine Receptor gp130/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Inflammasomes/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Pulmonary Emphysema/immunologyABSTRACT
At least 0.5% of people in the Western world develop inflammatory bowel disease (IBD). While antibodies that block tumor necrosis factor (TNF) α and Interleukin (IL-)23 have been approved for the treatment of IBD, IL-6 antibodies failed in the phase II clinical trial due to non-tolerable side effects. However, two clinical phase II studies suggest that inhibiting IL-6/soluble IL-6R (sIL-6R)-induced trans-signaling via the cytokine receptor gp130 benefit IBD patients with fewer adverse events. Here we develop inhibitors targeting a combination of IL-6/sIL-6R and TNF or IL-12/IL-23 signaling, named cs130-TNFVHHFc and cs130-IL-12/23VHHFc. Surface plasmon resonance experiments showed that recombinant cs130-TNFVHHFc and cs130-IL-12/23VHHFc bind with high affinity to IL-6/sIL-6R complexes and human TNFα (hTNFα) or IL-12/IL-23, respectively. Immunoprecipitation experiments have verified the higher ordered complex formation of the inhibitors with IL-6/sIL-6R and IL-12. We demonstrated that cs130-TNFVHHFc and cs130-IL-12/23VHHFc block IL-6/sIL-6R trans-signaling-induced proliferation and STAT3 phosphorylation of Ba/F3-gp130 cells, as well as hTNFα- or IL-23-induced signaling, respectively. In conclusion, cs130-TNFVHHFc and cs130-IL-12/23VHHFc represent a class of dimeric and bispecific chimeric cytokine inhibitors that consist of a soluble cytokine receptor fused to anti-cytokine nanobodies.
Subject(s)
Cytokine Receptor gp130 , Interleukin-12 , Interleukin-23 , Single-Domain Antibodies , Tumor Necrosis Factor-alpha , Humans , Cytokine Receptor gp130/metabolism , Inflammatory Bowel Diseases/drug therapy , Interleukin-12/metabolism , Interleukin-23/metabolism , Interleukin-6/metabolism , Receptors, Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Single-Domain Antibodies/pharmacology , Signal TransductionABSTRACT
BACKGROUND: Leukemia inhibitory factor (LIF) is a multifunctional member of the IL-6 cytokine family that activates downstream signaling pathways by binding to the heterodimer consisting of LIFR and gp130 on the cell surface. Previous research has shown that LIF is highly expressed in various tumor tissues (e.g. pancreatic cancer, breast cancer, prostate cancer, and colorectal cancer) and promotes cancer cell proliferation, migration, invasion, and differentiation. Moreover, the overexpression of LIF correlates with poor clinicopathological characteristics. Therefore, we hypothesized that LIF could be a promising target for the treatment of cancer. In this work, we developed the antagonist antibody 1G11 against LIF and investigated its anti-tumor mechanism and its therapeutic efficacy in mouse models. RESULTS: A series of single-chain variable fragments (scFvs) targeting LIF were screened from a naive human scFv phage library. These scFvs were reconstructed in complete IgG form and produced by the mammalian transient expression system. Among the antibodies, 1G11 exhibited the excellent binding activity to human, cynomolgus monkey and mouse LIF. Functional analysis demonstrated 1G11 could block LIF binding to LIFR and inhibit the intracellular STAT3 phosphorylation signal. Interestingly, 1G11 did not block LIF binding to gp130, another LIF receptor that is involved in forming the receptor complex together with LIFR. In vivo, intraperitoneal administration of 1G11 inhibited tumor growth in CT26 and MC38 models of colorectal cancer. IHC analysis demonstrated that p-STAT3 and Ki67 were decreased in tumor tissue, while c-caspase 3 was increased. Furthermore, 1G11 treatment improves CD3+, CD4 + and CD8 + T cell infiltration in tumor tissue. CONCLUSIONS: We developed antagonist antibodies targeting LIF/LIFR signaling pathway from a naive human scFv phage library. Antagonist anti-LIF antibody exerts antitumor effects by specifically reducing p-STAT3. Further studies revealed that anti-LIF antibody 1G11 increased immune cell infiltration in tumor tissues.
Subject(s)
Leukemia Inhibitory Factor , Single-Chain Antibodies , Animals , Humans , Single-Chain Antibodies/immunology , Single-Chain Antibodies/pharmacology , Mice , Leukemia Inhibitory Factor/immunology , Leukemia Inhibitory Factor/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/immunology , Cytokine Receptor gp130/immunology , Cytokine Receptor gp130/metabolism , Cytokine Receptor gp130/antagonists & inhibitors , Peptide Library , Signal Transduction , Female , Macaca fascicularis , Mice, Inbred BALB C , Xenograft Model Antitumor AssaysABSTRACT
Atherosclerosis is a cardiovascular disease caused by cholesterol-laden arterial plaques. This study evaluated the correlation between interleukin-6 (IL-6), its receptors (IL6R/CD126), and glycoprotein 130 (gp130) alongside atherosclerosis biomarkers in a cohort of 142 subjects, equally divided between lean and obese individuals. Subsequent analyses used THP-1-derived macrophages to assess the biochemical impact of inhibiting IL-6 receptors. IL-6 secretion increased with atherosclerosis in obese subjects, while IL6R/CD126 and gp130 on monocytes decreased. Pharmacological gp130 inhibition altered lipid metabolism, increasing LDLR gene expression and cholesterol synthesis via SREBF2 and mevalonate kinase, along with HMG-CoA reductase at protein levels. gp130-deficient cells produced more cholesterol and had lower ABCA1 levels, suggesting hindered cholesterol efflux. Filipin III staining confirmed cholesterol retention in gp130-inhibited cells. Ex-vivo investigation on lean PBMCs further defined the impact of gp130 inhibition on the reduction of cholesterol efflux. Our results indicates gp130 is crucial for macrophage reverse cholesterol transport and may be a target for atherosclerosis treatments.
Subject(s)
Atherosclerosis , Cholesterol , Cytokine Receptor gp130 , Macrophages , Receptors, Interleukin-6 , Humans , Atherosclerosis/metabolism , Biological Transport , Cholesterol/metabolism , Cytokine Receptor gp130/metabolism , Interleukin-6/metabolism , Lipid Metabolism , Macrophages/metabolism , Obesity/metabolism , Receptors, Interleukin-6/metabolism , Receptors, LDL/metabolism , Signal Transduction , THP-1 CellsABSTRACT
Uncontrolled neuroinflammation mediates traumatic brain injury (TBI) pathology and impairs recovery. Interleukin-6 (IL-6), a pleiotropic inflammatory regulator, is associated with poor clinical TBI outcomes. IL-6 operates via classical-signaling through membrane-bound IL-6 receptor (IL-6R) and trans-signaling through soluble IL-6 receptor (s)IL-6R. IL-6 trans-signaling specifically contributes to neuropathology, making it a potential precision therapeutic TBI target. Soluble glycoprotein 130 (sgp130) prevents IL-6 trans-signaling, sparing classical signaling, thus is a possible treatment. Mice received either controlled cortical impact (CCI) (6.0 ± 0.2 m/s; 2 mm; 50-60ms) or sham procedures. Vehicle (VEH) or sgp130-Fc was subcutaneously administered to sham (VEH or 1 µg) and CCI (VEH, 0.25 µg or 1 µg) mice on days 1, 4, 7, 10 and 13 post-surgery to assess effects on cognition [Morris Water Maze (MWM)] and ipsilateral hemisphere IL-6 related biomarkers (day 21 post-surgery). CCI + sgp130-Fc groups (0.25 µg and 1 µg) were combined for analysis given similar behavior/biomarker outcomes. CCI + VEH mice had longer latencies and path lengths to the platform and increased peripheral zone time versus Sham + VEH and Sham + sgp130-Fc mice, suggesting injury-induced impairments in learning and anxiety. CCI + sgp130-Fc mice had shorter platform latencies and path lengths and had decreased peripheral zone time, indicating a therapeutic benefit of sgp130-Fc after injury on learning and anxiety. Interestingly, Sham + sgp130-Fc mice had shorter platform latencies, path lengths and peripheral zone times than Sham + VEH mice, suggesting a beneficial effect of sgp130-Fc, independent of injury. CCI + VEH mice had increased brain IL-6 and decreased sgp130 levels versus Sham + VEH and Sham + sgp130-Fc mice. There was no treatment effect on IL-6, sIL6-R or sgp130 in Sham + VEH versus Sham + sgp130-Fc mice. There was also no treatment effect on IL-6 in CCI + VEH versus CCI + sgp130-Fc mice. However, CCI + sgp130-Fc mice had increased sIL-6R and sgp130 versus CCI + VEH mice, demonstrating sgp130-Fc treatment effects on brain biomarkers. Inflammatory chemokines (MIP-1ß, IP-10, MIG) were increased in CCI + VEH mice versus Sham + VEH and Sham + sgp130-Fc mice. However, CCI + sgp130-Fc mice had decreased chemokine levels versus CCI + VEH mice. IL-6 positively correlated, while sgp130 negatively correlated, with chemokine levels. Overall, we found that systemic sgp130-Fc treatment after CCI improved learning, decreased anxiety and reduced CCI-induced brain chemokines. Future studies will explore sex-specific dosing and treatment mechanisms for sgp130-Fc therapy.
Subject(s)
Brain Injuries, Traumatic , Cytokine Receptor gp130 , Disease Models, Animal , Maze Learning , Mice, Inbred C57BL , Animals , Brain Injuries, Traumatic/drug therapy , Mice , Male , Cytokine Receptor gp130/metabolism , Maze Learning/drug effects , Maze Learning/physiology , Chemokines/metabolism , Interleukin-6/metabolism , Cognition/drug effects , Cognition/physiologyABSTRACT
INTRODUCTION: The IL-12-IFNγ-Th1 and the IL-6-IL-23-Th17 axes are considered the dominant pathogenic pathways in Giant Cell Arteritis (GCA). Both pathways signal via activation of the downstream JAK/STAT proteins. We hypothesized that phosphorylated STAT (pSTAT) signatures in circulating immune cells may aid to stratify GCA-patients for personalized treatment. METHODS: To investigate pSTAT expression, PBMCs from treatment-naive GCA-patients (n = 18), infection controls (INF, n = 11) and age-matched healthy controls (HC, n = 15) were stimulated in vitro with IL-6, IL-2, IL-10, IFN-γ, M-CSF or GM-CSF, and stained with CD3, CD4, CD19, CD45RO, pSTAT1, pSTAT3, pSTAT5 antibodies, and analyzed by flow cytometry. Serum IL-6, sIL-6-receptor and gp130 were measured by Luminex. The change in percentages of pSTAT3+CD4+T-cells was evaluated at diagnosis and at 3 months and 1-year of follow-up. Kaplan-Meier analyses was used to asses prognostic accuracy. RESULTS: Analysis of IL-6 stimulated immune cell subsets revealed a significant decrease in percentages of pSTAT3+CD4+T-cells of GCA-patients and INF-controls compared to HCs. Following patient stratification according to high (median>1.5 pg/mL) and low (median<1.5 pg/mL) IL-6 levels, we observed a reduction in the pSTAT3 response in GCA-patients with high serum IL-6. Percentages of pSTAT3+CD4+T-cells in patients with high serum IL-6 levels at diagnosis normalized after glucocorticoid (GC) treatment. Importantly, we found that patients with low percentages of pSTAT3+CD4+T-cells at baseline require longer GC-treatment. CONCLUSION: Overall, in GCA, the percentages of in vitro IL-6-induced pSTAT3+CD4+T-cells likely reflect prior in vivo exposure to high IL-6 and may serve as a prognostic marker for GC-treatment duration and may assist improving personalized treatment options in the future.
Subject(s)
CD4-Positive T-Lymphocytes , Giant Cell Arteritis , Interleukin-6 , Signal Transduction , Humans , Giant Cell Arteritis/immunology , Giant Cell Arteritis/diagnosis , Giant Cell Arteritis/drug therapy , Giant Cell Arteritis/metabolism , Interleukin-6/metabolism , Interleukin-6/blood , Female , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Male , Aged , Janus Kinases/metabolism , Middle Aged , Phosphorylation , STAT3 Transcription Factor/metabolism , Aged, 80 and over , STAT Transcription Factors/metabolism , Receptors, Interleukin-6/metabolism , Biomarkers , Cytokine Receptor gp130/metabolismABSTRACT
The tick-borne encephalitis virus (TBEV) serocomplex includes several medically important flavivirus members endemic to Europe, Asia, and North America, which can induce severe neuroinvasive or viscerotropic diseases with unclear mechanisms of pathogenesis. Langat virus (LGTV) shares a high sequence identity with TBEV but exhibits lower pathogenic potential in humans and serves as a model for virus-host interactions. In this study, we demonstrated that LGTV infection inhibits the activation of gp130/JAK/STAT (Janus kinases (JAK) and signal transducer and activator of transcription (STAT)) signaling, which plays a pivotal role in numerous biological processes. Our data show that the LGTV-infected cells had significantly lower phosphorylated STAT3 (pSTAT3) protein upon oncostatin M (OSM) stimulation than the mock-infected control. LGTV infection blocked the nuclear translocation of STAT3 without a significant effect on total STAT3 protein level. LGTV inhibited JAK1 activation and reduced gp130 protein expression in infected cells, with the viral NS5 protein mediating this effect. TBEV infection also reduces gp130 level. On the other hand, pretreatment of Vero cells with OSM significantly reduces LGTV replication, and STAT1/STAT2 knockdown had little effect on OSM-mediated antiviral effect, which suggests it is independent of STAT1/STAT2 and, instead, it is potentially mediated by STAT3 signlaing. These findings shed light on the LGTV and TBEV-cell interactions, offering insights for the future development of antiviral therapeutics and improved vaccines.
Subject(s)
Biological Phenomena , Encephalitis Viruses, Tick-Borne , Animals , Chlorocebus aethiops , Humans , Janus Kinases/metabolism , Vero Cells , Cytokine Receptor gp130/metabolism , Antiviral Agents/metabolismABSTRACT
OBJECTIVE: Neutralization of Interleukin (IL)-6-signaling by antibodies is considered a promising tool for the treatment of osteoarthritis (OA). To gain further insight into this potential treatment, this study investigated the effects of IL-6-signaling and IL-6 neutralization on chondrocyte metabolism and the release of IL-6-signaling-related mediators by human chondrocytes. DESIGN: Chondrocytes were collected from 49 patients with advanced knee/hip OA or femoral neck fracture. Isolated chondrocytes were stimulated with different mediators to analyze the release of IL-6, soluble IL-6 receptor (sIL-6R) and soluble gp130 (sgp130). The effect of IL-6 and IL-6/sIL-6R complex as well as neutralization of IL-6-signaling on the metabolism was analyzed. RESULTS: OA chondrocytes showed high basal IL-6 production and release, which was strongly negatively correlated with the production of cartilage-matrix-proteins. Chondrocytes produced and released sIL-6R and sgp130. The IL-6/sIL-6R complex significantly increased nitric oxide, prostaglandin E2 and matrix metalloproteinase 1 production, decreased Pro-Collagen Type II and mitochondrial ATP production, and increased glycolysis in OA chondrocytes. Neutralization of IL-6-signaling by antibodies did not significantly affect the metabolism of OA chondrocytes, but blocking of glycoprotein 130 (gp130)-signaling by SC144 significantly reduced the basal IL-6 release. CONCLUSION: Although IL-6 trans-signaling induced by IL-6/sIL-6R complex negatively affects OA chondrocytes, antibodies against IL-6 or IL-6R did not affect chondrocyte metabolism. Since inhibition of gp130-signaling reduced the enhanced basal release of IL-6, interfering with gp130-signaling may ameliorate OA progression because high cellular release of IL-6 correlates with reduced production of cartilage-matrix-proteins.
Subject(s)
Interleukin-6 , Humans , Chondrocytes/metabolism , Cytokine Receptor gp130/metabolism , Interleukin-6/metabolism , Receptors, Interleukin-6/metabolism , Signal TransductionABSTRACT
TNF receptor-associated factor 5 (TRAF5) restrains early signaling activity of the IL-6 receptor in naive CD4+ T cells by interacting with the shared gp130 chain, although TRAF5 was initially discovered as a cytoplasmic adaptor protein to activate signaling mediated by TNF receptor family molecules. This leads to the question of whether TRAF5 limits signaling via the receptor for IL-27, which is composed of gp130 and WSX-1. The aim of this study is to clarify the role of TRAF5 in IL-27 receptor signaling and to understand the differential role of TRAF5 on cytokine receptor signaling. We found that Traf5 -/- CD4+ T cells displayed significantly higher levels of phosphorylated STAT1 and STAT-regulated genes Socs3 and Tbx21, as early as 1 h after IL-27 exposure when compared with Traf5 +/+ CD4+ T cells. Upon IL-27 and TCR signals, the Traf5 deficiency significantly increased the induction of IL-10 and promoted the proliferation of CD4+ T cells. Traf5 -/- mice injected with IL-27 displayed significantly enhanced delayed-type hypersensitivity responses, demonstrating that TRAF5 works as a negative regulator for IL-27 receptor signaling. In contrast, IL-2 and proliferation mediated by glucocorticoid-induced TNF receptor-related protein (GITR) and TCR signals were significantly decreased in Traf5 -/- CD4+ T cells, confirming that TRAF5 works as a positive regulator for cosignaling via GITR. Collectively, our results demonstrate that TRAF5 reciprocally controls signals mediated by the IL-27 receptor and GITR in CD4+ T cells and suggest that the regulatory activity of TRAF5 in gp130 is distinct from that in TNF receptor family molecules in a T cell.
Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cytokine Receptor gp130/metabolism , Glucocorticoid-Induced TNFR-Related Protein/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Interleukin/metabolism , TNF Receptor-Associated Factor 5/metabolism , Animals , Cell Proliferation , Hypersensitivity, Delayed/immunology , Interleukin-10/immunology , Interleukins/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin/genetics , STAT1 Transcription Factor/metabolism , Signal Transduction/immunology , Suppressor of Cytokine Signaling 3 Protein/metabolism , T-Box Domain Proteins/metabolism , TNF Receptor-Associated Factor 5/geneticsABSTRACT
Osteosarcoma is the most common primary bone tumor. Using the multiple ligands simultaneous docking method, we found that bazedoxifene could bind to the GP130 D1 domain. We then demonstrated that bazedoxifene can decrease cell viability and cell migration of osteosarcoma cells by inhibiting interleukin 6 (IL-6) and IL-11/GP130 signaling. Consistently, treatment with IL-6 or IL-11 antibody or knockdown of GP130 by siRNA silenced the activation of STAT3, ERK, and AKT. Similarly, recombinant IL-6 and IL-11 proteins antagonized the inhibitory effect of bazedoxifene on osteosarcoma cells. Finally, the combinational treatment of temsirolimus and bazedoxifene synergistically suppressed osteosarcoma development in vitro and in vivo. Our findings suggest that bazedoxifene directly prompts the deactivation of GP130 and inhibits the osteosarcoma progression in vitro and in vivo. Therefore, bazedoxifene could be effectively applied as a therapeutic drug for human osteosarcoma in the future.
Subject(s)
Interleukin-6 , Osteosarcoma , Humans , Cytokine Receptor gp130/metabolism , Interleukin-11/pharmacology , Cell Line, Tumor , Signal Transduction , Osteosarcoma/drug therapyABSTRACT
There are a limited number of clinically useful serum biomarkers to predict tumor onset or treatment response in gastric cancer (GC). For this reason, we explored the serum proteome of the gp130Y757F murine model of intestinal-type gastric cancer (IGC). We identified 30 proteins with significantly elevated expression in early gp130Y757F IGC and 12 proteins that were significantly elevated in late gp130Y757F IGC compared to age- and gender-matched wild-type mice. Within these signatures, there was an overlap of 10 proteins commonly elevated in both early- and late-stage disease. These results highlight the potential to identify serum biomarkers of disease stage. Since IGC in the gp130Y757F model can be reversed following therapeutic inhibition of Interleukin (IL)-11, we explored whether the protein signatures we identified could be used to monitor tumor regression. We compared two different therapeutic modalities and found 5 proteins to be uniquely differentially expressed between control animals and animals halfway through treatment, with 10 differentially expressed at the end of treatment. Our findings highlight the potential to identify reliable biomarkers to track IGC tumor regression in response to treatment.
Subject(s)
Signal Transduction , Stomach Neoplasms , Mice , Animals , Signal Transduction/physiology , Stomach Neoplasms/pathology , Cytokine Receptor gp130/metabolism , Biomarkers , Biomarkers, TumorABSTRACT
IL6 is a proinflammatory cytokine that binds to membrane-bound IL6 receptor (IL6R) or soluble IL6R to signal via gp130 in cis or trans, respectively. We tested the hypothesis that sgp130Fc, which is believed to be a selective IL6 trans-signalling inhibitor, is in fact a non-specific inhibitor of gp130 signalling. In human cancer and primary cells, sgp130Fc inhibited IL6, IL11, OSM and CT1 cis-signalling. The IC50 values of sgp130Fc for IL6 and OSM cis-signalling were markedly (20- to 200-fold) lower than the concentrations of sgp130Fc used in mouse studies and clinical trials. sgp130 inhibited IL6 and OSM signalling in the presence of an ADAM10/17 inhibitor and the absence of soluble IL6R or OSMR, with effects that were indistinguishable from those of a gp130 neutralising antibody. These data show that sgp130Fc does not exclusively block IL6 trans-signalling and reveal instead that broad inhibition of gp130 signalling likely underlies its therapeutic effects. This proposes global or modular inhibition of gp130 as a therapeutic approach for treating human disease.