Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 741
Filter
Add more filters

Publication year range
1.
Plant Physiol ; 195(3): 2094-2110, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38588029

ABSTRACT

Salt gland is an epidermal Na+ secretory structure that enhances salt resistance in the recretohalophyte sea lavender (Limonium bicolor). To elucidate the salt gland development trajectory and related molecular mechanisms, we performed single-cell RNA sequencing of L. bicolor protoplasts from young leaves at salt gland initiation and differentiation stages. Dimensionality reduction analyses defined 19 transcriptionally distinct cell clusters, which were assigned into 4 broad populations-promeristem, epidermis, mesophyll, and vascular tissue-verified by in situ hybridization. Cytokinin was further proposed to participate in salt gland development by the expression patterns of related genes and cytological evidence. By comparison analyses of Single-cell RNA sequencing with exogenous application of 6-benzylaminopurine, we delineated 5 salt gland development-associated subclusters and defined salt gland-specific differentiation trajectories from Subclusters 8, 4, and 6 to Subcluster 3 and 1. Additionally, we validated the participation of TRIPTYCHON and the interacting protein Lb7G34824 in salt gland development, which regulated the expression of cytokinin metabolism and signaling-related genes such as GLABROUS INFLORESCENCE STEMS 2 to maintain cytokinin homeostasis during salt gland development. Our results generated a gene expression map of young leaves at single-cell resolution for the comprehensive investigation of salt gland determinants and cytokinin participation that helps elucidate cell fate determination during epidermis formation and evolution in recretohalophytes.


Subject(s)
Cytokinins , Gene Expression Regulation, Plant , Plumbaginaceae , Cytokinins/metabolism , Cytokinins/pharmacology , Plumbaginaceae/genetics , Plumbaginaceae/growth & development , Plumbaginaceae/metabolism , Plant Leaves/growth & development , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
2.
Plant Physiol ; 192(2): 1420-1434, 2023 May 31.
Article in English | MEDLINE | ID: mdl-36690819

ABSTRACT

The inhibition of shoot branching by the growing shoot tip of plants, termed apical dominance, was originally thought to be mediated by auxin. Recently, the importance of the shoot tip sink strength during apical dominance has re-emerged with recent studies highlighting roles for sugars in promoting branching. This raises many unanswered questions on the relative roles of auxin and sugars in apical dominance. Here we show that auxin depletion after decapitation is not always the initial trigger of rapid cytokinin (CK) increases in buds that are instead correlated with enhanced sugars. Auxin may also act through strigolactones (SLs) which have been shown to suppress branching after decapitation, but here we show that SLs do not have a significant effect on initial bud outgrowth after decapitation. We report here that when sucrose or CK is abundant, SLs are less inhibitory during the bud release stage compared to during later stages and that SL treatment rapidly inhibits CK accumulation in pea (Pisum sativum) axillary buds of intact plants. After initial bud release, we find an important role of gibberellin (GA) in promoting sustained bud growth downstream of auxin. We are, therefore, able to suggest a model of apical dominance that integrates auxin, sucrose, SLs, CKs, and GAs and describes differences in signalling across stages of bud release to sustained growth.


Subject(s)
Decapitation , Plant Growth Regulators , Plant Growth Regulators/pharmacology , Indoleacetic Acids/pharmacology , Cytokinins/pharmacology , Sucrose/pharmacology , Sugars/pharmacology , Pisum sativum , Plant Shoots , Gene Expression Regulation, Plant
3.
Plant Physiol ; 191(4): 2447-2460, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36722159

ABSTRACT

Rhizobia-legume interactions recruit cytokinin for the induction of nodule primordia in the cortex. Cytokinin signaling regulates auxin transport and biosynthesis, causing local auxin accumulation, which triggers cortical cell division. Since sugar signaling can trigger auxin responses, we explored whether sugar treatments could rescue symbiosis in the Medicago truncatula cytokinin response 1 (cre1) mutant. Herein, we demonstrate that sucrose and its nonmetabolizable isomer turanose can trigger auxin response and recover functional symbiosis in cre1, indicating sucrose signaling to be necessary for the restoration of symbiosis. In both M. truncatula A17 (wild type) and cre1, sucrose signaling significantly upregulated IAA-Ala Resistant 3 (IAR33), encoding an auxin conjugate hydrolase, in rhizobia-infected as well as in uninfected roots. Knockdown of IAR33 (IAR33-KD) significantly reduced nodulation in A17, highlighting the importance of deconjugation-mediated auxin accumulation during nodule inception. In cre1, IAR33-KD restricted the sucrose-mediated restoration of functional symbiosis, suggesting that deconjugation-mediated auxin accumulation plays a key role in the absence of CRE1-mediated auxin biosynthesis and transport control. Overexpression of IAR33 also restored functional symbiosis in cre1, further suggesting that IAR33 mediates auxin accumulation in response to sucrose signaling. Since all the observed sucrose-mediated responses were common to A17 and cre1, deconjugation-mediated auxin response appeared to be independent of CRE1, which normally governs local auxin accumulation in the presence of rhizobia. We propose that sucrose-dependent restoration of symbiosis in cre1 occurs by the activation of IAR33-mediated auxin deconjugation.


Subject(s)
Cytokinins , Medicago truncatula , Cytokinins/pharmacology , Cytokinins/metabolism , Indoleacetic Acids/metabolism , Symbiosis/genetics , Sucrose/metabolism , Plant Roots/metabolism , Medicago truncatula/genetics , Medicago truncatula/metabolism , Perception , Plant Proteins/genetics , Plant Proteins/metabolism
4.
Plant Cell Environ ; 47(7): 2597-2613, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38549236

ABSTRACT

Plant leaves contain multiple cell types which achieve distinct characteristics whilst still coordinating development within the leaf. The bundle sheath possesses larger individual cells and lower chloroplast content than the adjacent mesophyll, but how this morphology is achieved remains unknown. To identify regulatory mechanisms determining bundle sheath cell morphology we tested the effects of perturbing environmental (light) and endogenous signals (hormones) during leaf development of Oryza sativa (rice). Total chloroplast area in bundle sheath cells was found to increase with cell size as in the mesophyll but did not maintain a 'set-point' relationship, with the longest bundle sheath cells demonstrating the lowest chloroplast content. Application of exogenous cytokinin and gibberellin significantly altered the relationship between cell size and chloroplast biosynthesis in the bundle sheath, increasing chloroplast content of the longest cells. Delayed exposure to light reduced the mean length of bundle sheath cells but increased corresponding leaf length, whereas premature light reduced final leaf length but did not affect bundle sheath cells. This suggests that the plant hormones cytokinin and gibberellin are regulators of the bundle sheath cell-chloroplast relationship and that final bundle sheath length may potentially be affected by light-mediated control of exit from the cell cycle.


Subject(s)
Chloroplasts , Cytokinins , Gibberellins , Light , Oryza , Plant Growth Regulators , Plant Leaves , Oryza/growth & development , Oryza/radiation effects , Oryza/cytology , Plant Leaves/growth & development , Plant Leaves/radiation effects , Cytokinins/metabolism , Cytokinins/pharmacology , Gibberellins/metabolism , Plant Growth Regulators/metabolism , Chloroplasts/metabolism , Cell Shape/radiation effects , Time Factors , Cell Size/radiation effects
5.
Int J Mol Sci ; 25(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38892338

ABSTRACT

The elongation of the mesocotyl plays an important role in the emergence of maize deep-sowing seeds. This study was designed to explore the function of exogenous salicylic acid (SA) and 6-benzylaminopurine (6-BA) in the growth of the maize mesocotyl and to examine its regulatory network. The results showed that the addition of 0.25 mmol/L exogenous SA promoted the elongation of maize mesocotyls under both 3 cm and 15 cm deep-sowing conditions. Conversely, the addition of 10 mg/L exogenous 6-BA inhibited the elongation of maize mesocotyls. Interestingly, the combined treatment of exogenous SA-6-BA also inhibited the elongation of maize mesocotyls. The longitudinal elongation of mesocotyl cells was the main reason affecting the elongation of maize mesocotyls. Transcriptome analysis showed that exogenous SA and 6-BA may interact in the hormone signaling regulatory network of mesocotyl elongation. The differential expression of genes related to auxin (IAA), jasmonic acid (JA), brassinosteroid (BR), cytokinin (CTK) and SA signaling pathways may be related to the regulation of exogenous SA and 6-BA on the growth of mesocotyls. In addition, five candidate genes that may regulate the length of mesocotyls were screened by Weighted Gene Co-Expression Network Analysis (WGCNA). These genes may be involved in the growth of maize mesocotyls through auxin-activated signaling pathways, transmembrane transport, methylation and redox processes. The results enhance our understanding of the plant hormone regulation of mesocotyl growth, which will help to further explore and identify the key genes affecting mesocotyl growth in plant hormone signaling regulatory networks.


Subject(s)
Benzyl Compounds , Gene Expression Regulation, Plant , Plant Growth Regulators , Purines , Salicylic Acid , Zea mays , Zea mays/growth & development , Zea mays/drug effects , Zea mays/genetics , Zea mays/metabolism , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Purines/pharmacology , Benzyl Compounds/pharmacology , Gene Expression Regulation, Plant/drug effects , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Oxylipins/pharmacology , Cytokinins/metabolism , Cytokinins/pharmacology , Seeds/drug effects , Seeds/growth & development , Seeds/genetics , Gene Expression Profiling , Signal Transduction/drug effects , Indoleacetic Acids/pharmacology , Indoleacetic Acids/metabolism , Cyclopentanes/pharmacology
6.
Development ; 147(20)2020 10 27.
Article in English | MEDLINE | ID: mdl-33028608

ABSTRACT

The phytohormone cytokinin regulates diverse aspects of plant growth and development. Our understanding of the metabolism and perception of cytokinin has made great strides in recent years, mostly from studies of the model dicot Arabidopsis Here, we employed a CRISPR/Cas9-based approach to disrupt a subset of cytokinin histidine kinase (HK) receptors in rice (Oryza sativa) in order to explore the role of cytokinin in a monocot species. In hk5 and hk6 single mutants, the root growth, leaf width, inflorescence architecture and/or floral development were affected. The double hk5 hk6 mutant showed more substantial defects, including severely reduced root and shoot growth, a smaller shoot apical meristem, and an enlarged root cap. Flowering was delayed in the hk5 hk6 mutant and the panicle was significantly reduced in size and infertile due to multiple defects in floral development. The hk5 hk6 mutant also exhibited a severely reduced cytokinin response, consistent with the developmental phenotypes arising from a defect in cytokinin signaling. These results indicate that HK5 and HK6 act as cytokinin receptors, with overlapping functions to regulate diverse aspects of rice growth and development.


Subject(s)
Cytokinins/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Receptors, Cell Surface/metabolism , Cytokinins/pharmacology , Flowers/drug effects , Flowers/growth & development , Meristem/drug effects , Meristem/growth & development , Mutation/genetics , Oryza/anatomy & histology , Oryza/drug effects , Plant Roots/drug effects , Plant Roots/growth & development , Plant Shoots/drug effects , Plant Shoots/growth & development , Seeds/drug effects , Seeds/growth & development
7.
J Exp Bot ; 74(21): 6541-6550, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37498739

ABSTRACT

Crosstalk between auxin and cytokinin contributes to widespread developmental processes, including root and shoot meristem maintenance, phyllotaxy, and vascular patterning. However, our understanding of crosstalk between these hormones is limited primarily to angiosperms. The moss Physcomitrium patens (formerly Physcomitrella patens) is a powerful system for studying plant hormone function. Auxin and cytokinin play similar roles in regulating moss gametophore (shoot) architecture, to those in flowering plant shoots. However, auxin-cytokinin crosstalk is poorly understood in moss. Here we find that the ratio of auxin to cytokinin is an important determinant of development in P. patens, especially during leaf development and branch stem cell initiation. Addition of high levels of auxin to P. patens gametophores blocks leaf outgrowth. However, simultaneous addition of high levels of both auxin and cytokinin partially restores leaf outgrowth, suggesting that the ratio of these hormones is the predominant factor. Likewise, during branch initiation and outgrowth, chemical inhibition of auxin synthesis phenocopies cytokinin application. Finally, cytokinin-insensitive mutants resemble plants with altered auxin signaling and are hypersensitive to auxin. In summary, our results suggest that the ratio between auxin and cytokinin signaling is the basis for developmental decisions in the moss gametophore.


Subject(s)
Bryophyta , Bryopsida , Cytokinins/pharmacology , Indoleacetic Acids/pharmacology , Bryopsida/genetics , Meristem , Plant Leaves , Hormones
8.
Plant Cell Rep ; 42(12): 1927-1936, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37803214

ABSTRACT

KEY MESSAGE: Increase of ENHANCER OF SHOOT REGENERATION 2 expression was consistent to treatment with kinetin, TIS108, and KK094 in adventitious shoot formation of ipecac. Unlike many plant species, ipecac (Carapichea ipecacuanha (Brot.) L. Andersson) can form adventitious shoots in tissue culture without cytokinin (CK) treatment. Strigolactone (SL) biosynthesis and signaling inhibitors stimulate adventitious shoot formation in ipecac, suggesting their potential use as novel growth regulators in plant tissue culture, but the molecular mechanism of their action is unclear. In this study, we compared the effects of SL-related inhibitors (TIS108 and KK094) and CKs (2iP, tZ, and kinetin) on adventitious shoot formation in ipecac. Exogenously applied SL-related inhibitors and CKs stimulated adventitious shoot formation. Combinations of SL-related inhibitors and kinetin also promoted adventitious shoot formation, but without additive effects. We also analyzed the expression of CK biosynthesis genes in ipecac. TIS108 increased the expression of the ipecac homolog of ISOPENTENYL TRANSFERASE 3 (CiIPT3) but decreased that of LONELY GUY 7 homolog (CiLOG7), presumably resulting in no change in 2iP-type CK levels. KK094 and kinetin increased CiLOG7 expression, elevating 2iP-type CK levels. Among pluripotency- and meristem-related genes, TIS108, KK094, and kinetin consistently increased the expression of ENHANCER OF SHOOT REGENERATION 2 homolog (CiESR2), which has a key role in shoot regeneration, in the internodal segment region that formed adventitious shoots. We propose that CiESR2 might be a key stimulator of adventitious shoot formation in ipecac.


Subject(s)
Cytokinins , Ipecac , Kinetin/pharmacology , Ipecac/pharmacology , Plant Shoots , Cytokinins/pharmacology , Plant Growth Regulators/pharmacology
9.
Int J Mol Sci ; 24(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36769369

ABSTRACT

Knotted1-like homeobox (KNOX) transcription factors are involved in plant development, playing complex roles in aerial organs. As Prunus species include important fruit tree crops of Italy, an exhaustive investigation of KNOX genes was performed using genomic and RNA-seq meta-analyses. Micropropagation is an essential technology for rootstock multiplication; hence, we investigated KNOX transcriptional behavior upon increasing 6-benzylaminopurine (BA) doses and the effects on GF677 propagules. Moreover, gene function in Prunus spp. was assessed by Gisela 6 rootstock transformation using fluorescence and peach KNOX transgenes. Based on ten Prunus spp., KNOX proteins fit into I-II-M classes named after Arabidopsis. Gene number, class member distribution, and chromosome positions were maintained, and exceptions supported the diversification of Prunus from Cerasus subgenera, and that of Armeniaca from the other sections within Prunus. Cytokinin (CK) cis-elements occurred in peach and almond KNOX promoters, suggesting a BA regulatory role in GF677 shoot multiplication as confirmed by KNOX expression variation dependent on dose, time, and interaction. The tripled BA concentration exacerbated stress, altered CK perception genes, and modified KNOX transcriptions, which are proposed to concur in in vitro anomalies. Finally, Gisela 6 transformation efficiency varied (2.6-0.6%) with the genetic construct, with 35S:GFP being more stable than 35S:KNOPE1 lines, which showed leaf modification typical of KNOX overexpression.


Subject(s)
Arabidopsis , Prunus persica , Prunus , Cytokinins/pharmacology , Cytokinins/metabolism , Prunus/metabolism , Homeodomain Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Genes, Homeobox , Arabidopsis/genetics , Prunus persica/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
10.
Int J Mol Sci ; 24(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36614184

ABSTRACT

Fine-tuned interactions between melatonin (MT) and hormones affected by environmental inputs are crucial for plant growth. Under high light (HL) conditions, melatonin reduced photodamage in Arabidopsis thaliana and contributed to the restoration of the expression of the cytokinin (CK) synthesis genes IPT3, IPT5 and LOG7 and genes for CK signal transduction AHK2,3 and ARR 1, 4, 5 and 12 which were downregulated by stress. However, CK signaling mutants displayed no significant changes in the expression of CK genes following HL + MT treatment, implying that a fully functional cytokinin signaling pathway is a prerequisite for MT-CK interactions. In turn, cytokinin treatment increased the expression of the key melatonin synthesis gene ASMT under both moderate and HL in wild-type plants. This upregulation was further accentuated in the ipt3,5,7 mutant which is highly sensitive to CK. In this mutant, in addition to ASMT, the melatonin synthesis genes SNAT and COMT, as well as the putative signaling genes CAND2 and GPA1, displayed elevated transcript levels. The results of the study suggest that melatonin acts synergistically with CK to cope with HL stress through melatonin-associated activation or repression of the respective hormonal genes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Melatonin , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cytokinins/pharmacology , Cytokinins/metabolism , Gene Expression Regulation, Plant , GTP-Binding Protein alpha Subunits/metabolism , Melatonin/pharmacology , Melatonin/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/genetics , Stress, Physiological
11.
Dokl Biochem Biophys ; 513(Suppl 1): S23-S25, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38189887

ABSTRACT

For the first time, N6-(5-phenylpentan-1-yl)adenine, a synthetic adenine derivative with a receptor-specific anticytokinin effect, was obtained. This compound exhibits a pronounced anticytokinin effect, reducing cytokinin-induced expression of the GUS reporter gene when interacting with the cytokinin receptor CRE1/AHK4 of the model plant Arabidopsis thaliana. This effect manifests itself much weaker with the related AHK2 receptor and is not observed at all with the AHK3 receptor. We showed that N6-(5-phenylpentan-1-yl)adenine does not bind to the ligand-binding sites of the Arabidopsis cytokinin receptors, which does not allow it to be classified as a true cytokinin antagonist. Despite the currently unknown mechanism of action, this compound may find its use as a component of plant growth regulators. Like true anticytokinins, it enhances root growth of Arabidopsis seedlings, apparently suppressing the action of endogenous cytokinins on the "root" receptor CRE1/AHK4.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cytokinins/pharmacology , Cytokinins/metabolism , Adenine/pharmacology , Adenine/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Histidine Kinase/metabolism , Receptors, Cell Surface/genetics
12.
Plant J ; 107(5): 1387-1402, 2021 09.
Article in English | MEDLINE | ID: mdl-34165836

ABSTRACT

Cytokinins regulate diverse aspects of plant growth and development, primarily through modulation of gene expression. The cytokinin-responsive transcriptome has been thoroughly described in dicots, especially Arabidopsis, but much less so in monocots. Here, we present a meta-analysis of five different transcriptomic analyses of rice (Oryza sativa) roots treated with cytokinin, including three previously unpublished experiments. We developed a treatment method in which hormone is added to the media of rice seedlings grown in sterile hydroponic culture under a continuous airflow, which resulted in minimal perturbation of the seedlings, thus greatly reducing changes in gene expression in the absence of exogenous hormone. We defined a core set of 205 upregulated and 86 downregulated genes that were differentially expressed in at least three of the transcriptomic datasets. This core set includes genes encoding the type-A response regulators (RRs) and cytokinin oxidases/dehydrogenases, which have been shown to be primary cytokinin response genes. GO analysis revealed that the upregulated genes were enriched for terms related to cytokinin/hormone signaling and metabolism, while the downregulated genes were significantly enriched for genes encoding transporters. Variations of type-B RR binding motifs were significantly enriched in the promoters of the upregulated genes, as were binding sites for other potential partner transcription factors. The promoters of the downregulated genes were generally enriched for distinct cis-acting motifs and did not include the type-B RR binding motif. This analysis provides insight into the molecular mechanisms underlying cytokinin action in a monocot and provides a useful foundation for future studies of this hormone in rice and other cereals.


Subject(s)
Cytokinins/pharmacology , Gene Expression Regulation, Plant , Oryza/genetics , Plant Growth Regulators/pharmacology , Signal Transduction , Transcriptome/drug effects , Acetylation , Gene Expression Profiling , Oryza/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/physiology , Promoter Regions, Genetic/genetics , Seedlings/genetics , Seedlings/physiology , Wounds and Injuries
13.
Development ; 146(13)2019 07 10.
Article in English | MEDLINE | ID: mdl-31160418

ABSTRACT

Cytokinins are plant hormones with crucial roles in growth and development. Although cytokinin signaling is well characterized in the model dicot Arabidopsis, we are only beginning to understand its role in monocots, such as rice (Oryza sativa) and other cereals of agronomic importance. Here, we used primarily a CRISPR/Cas9 gene-editing approach to characterize the roles of a key family of transcription factors, the type-B response regulators (RRs), in cytokinin signaling in rice. Results from the analysis of single rr mutants as well as higher-order rr21/22/23 mutant lines revealed functional overlap as well as subfunctionalization within members of the gene family. Mutant phenotypes associated with decreased activity of rice type-B RRs included effects on leaf and root growth, inflorescence architecture, flower development and fertilization, trichome formation and cytokinin sensitivity. Development of the stigma brush involved in pollen capture was compromised in the rr21/22/23 mutant, whereas anther development was compromised in the rr24 mutant. Novel as well as conserved roles for type-B RRs in the growth and development of a monocot compared with dicots were identified.


Subject(s)
Cytokinins/metabolism , Oryza , Plant Development/genetics , Plant Growth Regulators/physiology , Cytokinins/pharmacology , Gene Expression Regulation, Plant/drug effects , Genes, Plant/drug effects , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Plant Development/drug effects , Plant Proteins/physiology , Plants, Genetically Modified , Signal Transduction/drug effects , Signal Transduction/genetics
14.
Planta ; 256(1): 1, 2022 May 26.
Article in English | MEDLINE | ID: mdl-35616774

ABSTRACT

MAIN CONCLUSION: Exogenous BAP but not 2iP disrupts actin structures and induces tip-growth retardation and cytokinesis failure in the moss Physcomitrium patens. Synthetic cytokinins have been widely used to address hormonal responses during plant development. However, exogenous cytokinins can cause a variety of cellular effects. A detailed characterization of such effects has not been well studied. Here, using Physcomitrium patens as a model, we show that the aromatic cytokinin 6-benzylaminopurine (BAP) inhibits tip growth at concentrations above 0.2 µM. At higher concentrations (0.6-1 µM), BAP can additionally block mitotic entry and induce cytokinesis defects and cell death. These effects are associated with altered actin dynamics and structures. By contrast, 2-isopentenyladenine (2iP) does not cause marked defects at various concentrations up to 10 µM, while t-zeatin (tZ) can moderately inhibit moss growth. Our results provide mechanistic insight into the inhibitory effects of BAP on cell growth and cell division and call for attention to the use of synthetic cytokinins for bioassays.


Subject(s)
Bryophyta , Bryopsida , Actins/metabolism , Benzyl Compounds , Bryopsida/metabolism , Cytokinesis , Cytokinins/metabolism , Cytokinins/pharmacology , Purines
15.
Biotechnol Appl Biochem ; 69(6): 2624-2640, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35048414

ABSTRACT

Thidiazuron (TDZ) is an active substituted phenyl urea compound that has found a significant role as a plant growth regulator. The most exciting aspect of its function is that it can mimic auxins and cytokinin but is chemically different from these two. Many theories have been put forward, and experiments performed to understand the mode of action of TDZ in callogenesis. One suggested mechanism presents that it works by inhibiting the cytokinin degrading enzymes that compete with cytokinin for an active site on the enzyme. An example is the TDZ-induced suppressed expression of gibberellic acid (GA) biosynthesis genes encoding GA3 and GA20 oxidases. This is entailed with a slightly increased expression of GA catabolism genes encoding GA20 oxidase. Similarly, one of the recommendations is that TDZ induces the expression of specific genes and transcription regulatory sequences that are either responsible directly for callus formation or in turn induce other auxins or cytokinin for callogenesis. There is no concise review available that discusses the details of TDZ-induced callus, specifically and other in vitro cultures in general. This review is an attempt to explore all these pathways and mechanisms involved in callogenesis in plants stimulated by TDZ.


Subject(s)
Cytokinins , Plant Growth Regulators , Plant Growth Regulators/pharmacology , Cytokinins/pharmacology , Cytokinins/metabolism , Plants/metabolism , Oxidoreductases , Indoleacetic Acids
16.
Int J Mol Sci ; 23(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35409120

ABSTRACT

Shoot multiplication induced by exogenous cytokinins (CKs) has been commonly used in Phalaenopsis micropropagation for commercial production. Despite this, mechanisms of CKs action on shoot multiplication remain unclear in Phalaenopsis. In this study, we first identified key CKs metabolic genes, including six isopentenyltransferase (PaIPTs), six cytokinin riboside 5' monophosphate phosphoribohydrolase (PaLOGs), and six cytokinin dehydrogenase (PaCKXs), from the Phalaenopsis genome. Then, we investigated expression profiles of these CKs metabolic genes and endogenous CKs dynamics in shoot proliferation by thidiazuron (TDZ) treatments (an artificial plant growth regulator with strong cytokinin-like activity). Our data showed that these CKs metabolic genes have organ-specific expression patterns. The shoot proliferation in vitro was effectively promoted with increased TDZ concentrations. Following TDZ treatments, the highly expressed CKs metabolic genes in micropropagated shoots were PaIPT1, PaLOG2, and PaCKX4. By 30 days of culture, TDZ treatments significantly induced CK-ribosides levels in micropropagated shoots, such as tZR and iPR (2000-fold and 200-fold, respectively) as compared to the controls, whereas cZR showed only a 10-fold increase. Overexpression of PaIPT1 and PaLOG2 by agroinfiltration assays resulted in increased CK-ribosides levels in tobacco leaves, while overexpression of PaCKX4 resulted in decreased CK-ribosides levels. These findings suggest de novo biosynthesis of CKs induced by TDZ, primarily in elevation of tZR and iPR levels. Our results provide a better understanding of CKs metabolism in Phalaenopsis micropropagation.


Subject(s)
Cytokinins , Orchidaceae , Cytokinins/metabolism , Cytokinins/pharmacology , Orchidaceae/metabolism , Plant Growth Regulators/metabolism
17.
Int J Mol Sci ; 23(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35886991

ABSTRACT

The in vitro cultures of plant stem cells and stem cell-like cells can be established from tissues containing meristematic cells. Chemical compounds-as well as their production potential-is among the emerging topics of plant biotechnology. We induced the callus cell biomass growth and characterized the parameters indicating the presence of stem cells or stem cell-like cells. Four types of explants (stem, petiole, leaf, root) from Sida hermaphrodita (L.) Rusby and various combinations of auxins and cytokinins were tested for initiation of callus, growth of sub-cultivated callus biomass, and establishment of stem cells or stem cell-like cells. Induction of callus and its growth parameters were significantly affected both by the explant type and the combination of used plant growth hormones and regulators. The responsibility for callus initiation and growth was the highest in stem-derived explants containing cambial meristematic cells. Growth parameters of callus biomass and specific characteristics of vacuoles confirmed the presence of stem cells or stem cell-like cells in sub-cultivated callus cell biomass. Establishment of in vitro stem cell or stem cell-like cell cultures in S. hermaphrodita can lead to the development of various applications of in vitro cultivation systems as well as alternative applications of this crop.


Subject(s)
Meristem , Plant Growth Regulators , Cytokinins/pharmacology , Indoleacetic Acids/metabolism , Meristem/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plants/metabolism , Stem Cells/metabolism
18.
Int J Mol Sci ; 23(13)2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35806416

ABSTRACT

Flowering Chinese cabbage (Brassica campestris L. ssp. Chinensis var. utilis Tsen et Lee) is an important and extensively cultivated vegetable in south China, whose major food product is the stalk. In the process of stalk formation, its initiation and development are regulated by a series of hormonal signals, such as cytokinin and gibberellin. In this study, we analyzed the effects of zeatin (ZT) and gibberellin A3 (GA3), and their interaction, on the bolting of flowering Chinese cabbage. The results indicated that the three-true-leaf spraying of ZT and GA synthesis inhibitor (PAC) inhibited plant height but increased stem diameter. Cytokinin (CTK) synthesis inhibitor (YZJ) and GA3 treatment increased plant height and decreased stem diameter. In addition, ZT and GA3 co-treated plants displayed antagonistic effect. Further, 19 type-B authentic response regulators (ARR-Bs), the positive regulators of cytokinin signal transduction were identified from flowering Chinese cabbage. Comprehensive analysis of phylogeny showed BcARR-Bs clustered into three subfamilies with 10 conserved motifs. Analysis of their expression patterns in different tissues and at various growth stage, and their response to hormone treatment suggest that ARR1-b localized in the nucleus displayed unique highest expression patterns in stem tips, are responsive both to ZT and GA, suggesting a significant role in mediating the crosstalk of ZT and GA in the bolting of flowering Chinese cabbage.


Subject(s)
Brassica , Cytokinins , Brassica/metabolism , Cytokinins/metabolism , Cytokinins/pharmacology , Gene Expression Regulation, Plant , Genes, Plant , Phylogeny , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
19.
Int J Mol Sci ; 23(6)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35328357

ABSTRACT

Fluctuating environmental conditions trigger adaptive responses in plants, which are regulated by phytohormones. During photoperiod stress caused by a prolongation of the light period, cytokinin (CK) has a protective function. Auxin often acts as an antagonist of CK in developmental processes and stress responses. Here, we investigated the regulation of the photoperiod stress response in Arabidopsis thaliana by auxin and its interaction with CK. Transcriptome analysis revealed an altered transcript abundance of numerous auxin metabolism and signaling genes after photoperiod stress treatment. The changes appeared earlier and were stronger in the photoperiod-stress-sensitive CK receptor mutant arabidopsis histidine kinase 2 (ahk2),3 compared to wild-type plants. The concentrations of indole-3-acetic acid (IAA), IAA-Glc and IAA-Asp increased in both genotypes, but the increases were more pronounced in ahk2,3. Genetic analysis revealed that the gain-of-function YUCCA 1 (YUC1) mutant, yuc1D, displayed an increased photoperiod stress sensitivity. In contrast, a loss of the auxin receptors TRANSPORT-INHIBITOR-RESISTANT 1 (TIR1), AUXIN SIGNALING F-BOX 2 (AFB2) and AFB3 in wild-type and ahk2,3 background caused a reduced photoperiod stress response. Overall, this study revealed that auxin promotes response to photoperiod stress antagonizing the protective CK.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cytokinins/metabolism , Cytokinins/pharmacology , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Photoperiod , Plant Roots/metabolism
20.
Int J Mol Sci ; 23(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36232653

ABSTRACT

Cytokinins, classical phytohormones, affect all stages of plant ontogenesis, but their application in agriculture is limited because of the lack of appropriate ligands, including those specific for individual cytokinin receptors. In this work, a series of chiral N6-benzyladenine derivatives were studied as potential cytokinins or anticytokinins. All compounds contained a methyl group at the α-carbon atom of the benzyl moiety, making them R- or S-enantiomers. Four pairs of chiral nucleobases and corresponding ribonucleosides containing various substituents at the C2 position of adenine heterocycle were synthesized. A nucleophilic substitution reaction by secondary optically active amines was used. A strong influence of the chirality of studied compounds on their interaction with individual cytokinin receptors of Arabidopsis thaliana was uncovered in in vivo and in vitro assays. The AHK2 and CRE1/AHK4 receptors were shown to have low affinity for the studied S-nucleobases while the AHK3 receptor exhibited significant affinity for most of them. Thereby, three synthetic AHK3-specific cytokinins were discovered: N6-((S)-α-methylbenzyl)adenine (S-MBA), 2-fluoro,N6-((S)-α-methylbenzyl)adenine (S-FMBA) and 2-chloro,N6-((S)-α-methylbenzyl)adenine (S-CMBA). Interaction patterns between individual receptors and specific enantiomers were rationalized by structure analysis and molecular docking. Two other S-enantiomers (N6-((S)-α-methylbenzyl)adenosine, 2-amino,N6-((S)-α-methylbenzyl)adenosine) were found to exhibit receptor-specific and chirality-dependent anticytokinin properties.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ribonucleosides , Adenine , Adenosine/pharmacology , Amines , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Benzyl Compounds , Carbon , Carrier Proteins , Cytokinins/chemistry , Cytokinins/pharmacology , Ligands , Molecular Docking Simulation , Plant Growth Regulators , Protein Kinases/metabolism , Purines
SELECTION OF CITATIONS
SEARCH DETAIL