ABSTRACT
The presence of granulated lymphocytes in the human uterine mucosa, known as decidua during pregnancy, or endometrium otherwise, was first noted in the nineteenth century, but it was not until 1990 that these cells were identified as a type of natural killer (NK) cell. From the outset, uterine NK (uNK) cells were found to be less cytotoxic than their circulating counterparts, peripheral NK (pNK) cells. Recently, unbiased approaches have defined three subpopulations of uNK cells, all of which cluster separately from pNK cells. Here, we review the history of research into uNK cells, including their ability to interact with placental extravillous trophoblast cells and their potential role in regulating placental implantation. We go on to review more recent advances that focus on uNK cell development and heterogeneity and their potential to defend against infection and to mediate memory effects. Finally, we consider how a better understanding of these cells could be leveraged in the future to improve outcomes of pregnancy for mothers and babies.
Subject(s)
Placenta , Uterus , Humans , Pregnancy , Female , Animals , Killer Cells, Natural/metabolism , Mucous Membrane , DeciduaABSTRACT
The immune cells that reside at the interface between the placenta and uterus are thought to play many important roles in pregnancy. Recent work has revealed that the composition and function of these cells are locally controlled by the specialized uterine stroma (the decidua) that surrounds the implanted conceptus. Here, I discuss how key immune cell types (natural killer cells, macrophages, dendritic cells, and T cells) are either enriched or excluded from the decidua, how their function is regulated within the decidua, and how they variously contribute to pregnancy success or failure. The discussion emphasizes the relationship between human and mouse studies. Deeper understanding of the immunology of the maternal-fetal interface promises to yield significant insight into the pathogenesis of many human pregnancy complications, including preeclampsia, intrauterine growth restriction, spontaneous abortion, preterm birth, and congenital infection.
Subject(s)
Maternal-Fetal Exchange/immunology , Animals , Cell Differentiation/immunology , Decidua/cytology , Decidua/immunology , Decidua/pathology , Embryo Implantation/immunology , Female , Humans , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Placenta/blood supply , Placenta/immunology , PregnancyABSTRACT
Beginning in the first trimester, fetally derived extravillous trophoblasts (EVTs) invade the uterus and remodel its spiral arteries, transforming them into large, dilated blood vessels. Several mechanisms have been proposed to explain how EVTs coordinate with the maternal decidua to promote a tissue microenvironment conducive to spiral artery remodelling (SAR)1-3. However, it remains a matter of debate regarding which immune and stromal cells participate in these interactions and how this evolves with respect to gestational age. Here we used a multiomics approach, combining the strengths of spatial proteomics and transcriptomics, to construct a spatiotemporal atlas of the human maternal-fetal interface in the first half of pregnancy. We used multiplexed ion beam imaging by time-of-flight and a 37-plex antibody panel to analyse around 500,000 cells and 588 arteries within intact decidua from 66 individuals between 6 and 20 weeks of gestation, integrating this dataset with co-registered transcriptomics profiles. Gestational age substantially influenced the frequency of maternal immune and stromal cells, with tolerogenic subsets expressing CD206, CD163, TIM-3, galectin-9 and IDO-1 becoming increasingly enriched and colocalized at later time points. By contrast, SAR progression preferentially correlated with EVT invasion and was transcriptionally defined by 78 gene ontology pathways exhibiting distinct monotonic and biphasic trends. Last, we developed an integrated model of SAR whereby invasion is accompanied by the upregulation of pro-angiogenic, immunoregulatory EVT programmes that promote interactions with the vascular endothelium while avoiding the activation of maternal immune cells.
Subject(s)
Maternal-Fetal Exchange , Trophoblasts , Uterus , Female , Humans , Pregnancy , Arteries/physiology , Decidua/blood supply , Decidua/cytology , Decidua/immunology , Decidua/physiology , Pregnancy Trimester, First/genetics , Pregnancy Trimester, First/metabolism , Pregnancy Trimester, First/physiology , Trophoblasts/cytology , Trophoblasts/immunology , Trophoblasts/physiology , Uterus/blood supply , Uterus/cytology , Uterus/immunology , Uterus/physiology , Maternal-Fetal Exchange/genetics , Maternal-Fetal Exchange/immunology , Maternal-Fetal Exchange/physiology , Time Factors , Proteomics , Gene Expression Profiling , Datasets as Topic , Gestational AgeABSTRACT
The relationship between the human placenta-the extraembryonic organ made by the fetus, and the decidua-the mucosal layer of the uterus, is essential to nurture and protect the fetus during pregnancy. Extravillous trophoblast cells (EVTs) derived from placental villi infiltrate the decidua, transforming the maternal arteries into high-conductance vessels1. Defects in trophoblast invasion and arterial transformation established during early pregnancy underlie common pregnancy disorders such as pre-eclampsia2. Here we have generated a spatially resolved multiomics single-cell atlas of the entire human maternal-fetal interface including the myometrium, which enables us to resolve the full trajectory of trophoblast differentiation. We have used this cellular map to infer the possible transcription factors mediating EVT invasion and show that they are preserved in in vitro models of EVT differentiation from primary trophoblast organoids3,4 and trophoblast stem cells5. We define the transcriptomes of the final cell states of trophoblast invasion: placental bed giant cells (fused multinucleated EVTs) and endovascular EVTs (which form plugs inside the maternal arteries). We predict the cell-cell communication events contributing to trophoblast invasion and placental bed giant cell formation, and model the dual role of interstitial EVTs and endovascular EVTs in mediating arterial transformation during early pregnancy. Together, our data provide a comprehensive analysis of postimplantation trophoblast differentiation that can be used to inform the design of experimental models of the human placenta in early pregnancy.
Subject(s)
Multiomics , Pregnancy Trimester, First , Trophoblasts , Female , Humans , Pregnancy , Cell Movement , Placenta/blood supply , Placenta/cytology , Placenta/physiology , Pregnancy Trimester, First/physiology , Trophoblasts/cytology , Trophoblasts/metabolism , Trophoblasts/physiology , Decidua/blood supply , Decidua/cytology , Maternal-Fetal Relations/physiology , Single-Cell Analysis , Myometrium/cytology , Myometrium/physiology , Cell Differentiation , Organoids/cytology , Organoids/physiology , Stem Cells/cytology , Transcriptome , Transcription Factors/metabolism , Cell CommunicationABSTRACT
Effective interplay between the uterus and the embryo is essential for pregnancy establishment; however, convenient methods to screen embryo implantation success and maternal uterine response in experimental mouse models are currently lacking. Here, we report 3DMOUSEneST, a groundbreaking method for analyzing mouse implantation sites based on label-free higher harmonic generation microscopy, providing unprecedented insights into the embryo-uterine dynamics during early pregnancy. The 3DMOUSEneST method incorporates second-harmonic generation microscopy to image the three-dimensional structure formed by decidual fibrillar collagen, named 'decidual nest', and third-harmonic generation microscopy to evaluate early conceptus (defined as the embryo and extra-embryonic tissues) growth. We demonstrate that decidual nest volume is a measurable indicator of decidualization efficacy and correlates with the probability of early pregnancy progression based on a logistic regression analysis using Smad1/5 and Smad2/3 conditional knockout mice with known implantation defects. 3DMOUSEneST has great potential to become a principal method for studying decidual fibrillar collagen and characterizing mouse models associated with early embryonic lethality and fertility issues.
Subject(s)
Decidua , Embryo Implantation , Animals , Female , Embryo Implantation/physiology , Pregnancy , Mice , Uterus/physiology , Embryo, Mammalian , Mice, Knockout , Imaging, Three-Dimensional/methods , Mice, Inbred C57BLABSTRACT
Natural killer cells (NKs) are abundant in the human decidua, regulating trophoblast invasion and angiogenesis. Several diseases of poor placental development are associated with first pregnancies, so we thus looked to characterize differences in decidual NKs (dNKs) in first versus repeated pregnancies. We discovered a population found in repeated pregnancies, which has a unique transcriptome and epigenetic signature, and is characterized by high expression of the receptors NKG2C and LILRB1. We named these cells Pregnancy Trained decidual NK cells (PTdNKs). PTdNKs have open chromatin around the enhancers of IFNG and VEGFA. Activation of PTdNKs led to increased production and secretion of IFN-γ and VEGFα, with the latter supporting vascular sprouting and tumor growth. The precursors of PTdNKs seem to be found in the endometrium. Because repeated pregnancies are associated with improved placentation, we propose that PTdNKs, which are present primarily in repeated pregnancies, might be involved in proper placentation.
Subject(s)
Immunologic Memory/immunology , Killer Cells, Natural/immunology , Transcriptome/immunology , Uterus/immunology , Animals , Cell Line, Tumor , Decidua/immunology , Decidua/metabolism , Female , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , Killer Cells, Natural/metabolism , Mice, Inbred C57BL , Mice, SCID , Mice, Transgenic , Pregnancy , Uterus/cytology , Vascular Endothelial Growth Factor A/immunology , Vascular Endothelial Growth Factor A/metabolismABSTRACT
The process of human parturition involves inflammation at the interface where fetal chorion trophoblast cells interact with maternal decidual stromal (DS) cells and maternal immune cells in the decidua (endometrium of pregnancy). This study tested the hypothesis that inflammation at the chorion-decidua interface (CDI) induces labor by negating the capacity for progesterone (P4) to block labor and that this is mediated by inactivation of P4 in DS cells by aldo-keto reductase family 1 member C1 (AKR1C1). In human, Rhesus macaque, and mouse CDI, AKR1C1 expression increased in association with term and preterm labor. In a human DS cell line and in explant cultures of term human fetal membranes containing the CDI, the prolabor inflammatory cytokine, interleukin-1ß (IL-1ß), and media conditioned by LPS-stimulated macrophages increased AKR1C1 expression and coordinately reduced nuclear P4 levels and P4 responsiveness. Loss of P4 responsiveness was overcome by inhibition of AKR1C1 activity, inhibition of AKR1C1 expression, and bypassing AKR1C1 activity with a P4 analog that is not metabolized by AKR1C1. Increased P4 activity in response to AKR1C1 inhibition was prevented by the P4 receptor antagonist RU486. Pharmacologic inhibition of AKR1C1 activity prevented parturition in a mouse model of inflammation-induced preterm parturition. The data suggest that inflammatory stimuli at the CDI drive labor by inducing AKR1C1-mediated P4 inactivation in DS cells and that inhibiting and/or bypassing of AKR1C1-mediated P4 inactivation is a plausible therapeutic strategy to mitigate the risk of inflammation-associated preterm birth.
Subject(s)
20-Hydroxysteroid Dehydrogenases , Decidua , Inflammation , Macaca mulatta , Parturition , Progesterone , Stromal Cells , Female , Animals , Progesterone/metabolism , Progesterone/pharmacology , Decidua/metabolism , Humans , Mice , Stromal Cells/metabolism , Pregnancy , Inflammation/metabolism , 20-Hydroxysteroid Dehydrogenases/metabolism , 20-Hydroxysteroid Dehydrogenases/genetics , Interleukin-1beta/metabolism , Chorion/metabolismABSTRACT
Natural killer cells (NKs) found during pregnancy at the maternal-fetal interface named decidual (d)NKs, show signs of education following first pregnancy, resulting in better placentation and fetus-growth, hence termed pregnancy trained dNKs (PTdNKs). Here we show that PTdNKs provide increased protection of the fetus from Fusobacterium nucleatum (FN) infection. We demonstrate that PTdNKs secrete elevated amounts of the bacteriocidal protein granulysin (GNLY) upon incubation with FN compared to dNKs derived from first pregnancies, which leads to increased killing of FN. Furthermore, we showed mechanistically that the GNLY secretion is mediated through the interaction of the FN's Fap2 protein with Gal-GalNAc present on PTdNKs. Finally, we show in vivo, using GNLY-tg mice that enhanced protection of the fetuses from FN infection is observed, as compared to wild type and that this enhance protection is NK cell dependent. Altogether, we show a new function for PTdNKs as protectors of the fetus from bacterial infection.
Subject(s)
Decidua , Fusobacterium nucleatum , Pregnancy , Female , Mice , Animals , Decidua/metabolism , Killer Cells, Natural/metabolismABSTRACT
Decidual macrophages residing at the maternal-fetal interface have been recognized as pivotal factors for maintaining normal pregnancy; however, they are also key target cells of Toxoplasma gondii (T. gondii) in the pathology of T. gondii-induced adverse pregnancy. Trem2, as a functional receptor on macrophage surface, recognizes and binds various kinds of pathogens. The role and underlying mechanism of Trem2 in T. gondii infection remain elusive. In the present study, we found that T. gondii infection downregulated Trem2 expression and that Trem2-/- mice exhibited more severe adverse pregnancy outcomes than wildtype mice. We also demonstrated that T. gondii infection resulted in increased decidual macrophages, which were significantly reduced in the Trem2-/- pregnant mouse model as compared to wildtype control animals. We further described the inhibited proliferation, migration, and invasion functions of trophoblast cell by T. gondii antigens through macrophages as an "intermediate bridge", while this inhibition can be rescued by Trem2 agonist HSP60. Concurrently, Trem2 deficiency in bone marrow-derived macrophages (BMDMs) heightened the inhibitory effect of TgAg on the migration and invasion of trophoblast cells, accompanied by higher pro-inflammatory factors (IL-1ß, IL-6 and TNF-α) but a lower chemokine (CXCL1) in T. gondii antigens-treated BMDMs. Furthermore, compelling evidence from animal models and in vitro cell experiments suggests that T. gondii inhibits the Trem2-Syk-PI3K signaling pathway, leading to impaired function of decidual macrophages. Therefore, our findings highlight Trem2 signaling as an essential pathway by which decidual macrophages respond to T. gondii infection, suggesting Trem2 as a crucial sensor of decidual macrophages and potential therapeutic target in the pathology of T. gondii-induced adverse pregnancy.
Subject(s)
Decidua , Macrophages , Membrane Glycoproteins , Signal Transduction , Toxoplasma , Toxoplasmosis , Animals , Female , Mice , Pregnancy , Decidua/immunology , Decidua/metabolism , Macrophages/metabolism , Macrophages/immunology , Macrophages/parasitology , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Phosphatidylinositol 3-Kinases/metabolism , Pregnancy Complications, Parasitic/immunology , Pregnancy Complications, Parasitic/parasitology , Pregnancy Outcome , Receptors, Immunologic/metabolism , Syk Kinase/metabolism , Toxoplasma/immunology , Toxoplasmosis/immunology , Toxoplasmosis/metabolism , Toxoplasmosis/parasitology , Trophoblasts/parasitology , Trophoblasts/metabolism , Trophoblasts/immunologyABSTRACT
Pregnancy poses an immunological challenge, since the mother's immune system must adapt to tolerate the developing embryo until birth. The mechanisms governing this maternal-fetal dialogue have traditionally centered on the immune system. Yang et al. propose a new concept: immune-featured decidual stromal cells (DSCs), which emerge as pivotal players in mammalian maternal-fetal crosstalk.
Subject(s)
Decidua , Stromal Cells , Pregnancy , Female , HumansABSTRACT
Natural killer (NK) cells are present in large populations at the maternal-fetal interface during early pregnancy. However, the role of NK cells in fetal growth is unclear. Here, we have identified a CD49a+Eomes+ subset of NK cells that secreted growth-promoting factors (GPFs), including pleiotrophin and osteoglycin, in both humans and mice. The crosstalk between HLA-G and ILT2 served as a stimulus for GPF-secreting function of this NK cell subset. Decreases in this GPF-secreting NK cell subset impaired fetal development, resulting in fetal growth restriction. The transcription factor Nfil3, but not T-bet, affected the function and the number of this decidual NK cell subset. Adoptive transfer of induced CD49a+Eomes+ NK cells reversed impaired fetal growth and rebuilt an appropriate local microenvironment. These findings reveal properties of NK cells in promoting fetal growth. In addition, this research proposes approaches for therapeutic administration of NK cells in order to reverse restricted nourishments within the uterine microenvironment during early pregnancy.
Subject(s)
Abortion, Habitual/immunology , Adoptive Transfer , Carrier Proteins/metabolism , Cytokines/metabolism , Fetal Development/immunology , Fetal Growth Retardation/prevention & control , Intercellular Signaling Peptides and Proteins/metabolism , Killer Cells, Natural/transplantation , Abortion, Habitual/genetics , Abortion, Habitual/pathology , Adult , Animals , Antigens, CD/genetics , Antigens, CD/immunology , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/immunology , Carrier Proteins/genetics , Carrier Proteins/immunology , Cellular Microenvironment , Cytokines/genetics , Cytokines/immunology , Decidua/immunology , Decidua/pathology , Female , Fetal Growth Retardation/genetics , Fetal Growth Retardation/immunology , Fetal Growth Retardation/pathology , Fetus , Gene Expression Regulation, Developmental , HLA-G Antigens/genetics , HLA-G Antigens/immunology , Humans , Integrin alpha1/genetics , Integrin alpha1/immunology , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/immunology , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Leukocyte Immunoglobulin-like Receptor B1/genetics , Leukocyte Immunoglobulin-like Receptor B1/immunology , Mice , Mice, Inbred C57BL , Pregnancy , Signal Transduction , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunologyABSTRACT
Maternal tolerance to semi- or fully allograft conceptus is a prerequisite for the maintenance of pregnancy. Once this homeostasis is disrupted, it may result in pregnancy loss. As a potential approach to prevent pregnancy loss, targeting decidual immune cells (DICs) at the maternal-fetal interface has been suggested. Although the phenotypic features and functions of DIC have been extensively profiled, the regulatory pathways for this unique immunological adaption have yet to be elucidated. In recent years, a pivotal mechanism has been highlighted in the area of immunometabolism, by which the changes in intracellular metabolic pathways in DIC and interaction with the adjacent metabolites in the microenvironment can alter their phenotypes and function. More inspiringly, the manipulation of metabolic profiling in DIC provides a novel avenue for the prevention and treatment of pregnancy loss. Herein, this review highlights the major metabolic programs (specifically, glycolysis, ATP-adenosine metabolism, lysophosphatidic acid metabolism, and amino acid metabolism) in multiple immune cells (including decidual NK cells, macrophages, and T cells) and their integrations with the metabolic microenvironment in normal pregnancy. Importantly, this perspective may help to provide a potential therapeutic strategy for reducing pregnancy loss via targeting this interplay.
Subject(s)
Decidua , Killer Cells, Natural , Female , Humans , Immune Tolerance , Macrophages , Pregnancy , T-LymphocytesABSTRACT
BACKGROUND: Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS: Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS: We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS: These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.
Subject(s)
Decidua , Galectins , Macrophages , Pre-Eclampsia , Vascular Remodeling , Pre-Eclampsia/metabolism , Pre-Eclampsia/immunology , Pregnancy , Female , Animals , Galectins/metabolism , Macrophages/metabolism , Macrophages/immunology , Macrophages/pathology , Mice , Humans , Decidua/metabolism , Decidua/pathology , Mice, Knockout , Uterus/metabolism , Uterus/blood supply , Disease Models, Animal , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Retrospective Studies , Mice, Inbred C57BL , CD11 AntigensABSTRACT
Chorioamnionitis generates prostaglandin (PG) E2 and F2α, promoting fetal membrane rupture, cervical ripening, and uterine contractions. 15-Hydroxyprostaglandin dehydrogenase (HPGD) contributes to pregnancy maintenance by inactivating PGs. Herein, the role of decidual cells in the regulation of HPGD expression at the maternal-fetal interface was investigated. HPGD immunostaining was primarily detected in anchoring villi and choriodecidual extravillous trophoblasts (EVTs) during pregnancy. Chorionic EVTs adjacent to the decidua parietalis exhibited significantly higher HPGD levels than those adjacent to the amnion. HPGD histologic score levels were significantly lower in choriodecidua from chorioamnionitis versus gestational age-matched controls (means ± SEM, 132.6 ± 3.8 versus 31.2 ± 7.9; P < 0.05). Conditioned media supernatant (CMS) from in vitro decidualized term decidual cells (TDCs) up-regulated HPGD levels in differentiated EVTs, primary trophoblasts, and HTR8/SVneo cells. However, CMS from 5 µg/mL lipopolysaccharide or 10 ng/mL IL-1ß pretreated TDC cultures down-regulated HPGD levels in HTR8/SVneo cultures. Similarly, direct treatment of HTR8/SVneo with lipopolysaccharide or IL-1ß significantly reduced HPGD levels versus control (P < 0.05) but not in TDC-CMS pretreated HTR8/SVneo cultures. Collectively, these results uncover a novel decidual cell-mediated paracrine mechanism that stimulates levels of trophoblastic HPGD, whose function is to inactivate labor-inducing PGs, thereby promoting uterine quiescence during pregnancy. However, infectious/inflammatory stimuli in decidual cells cause a paracrine inhibition of trophoblastic HPGD expression, increasing PGE2/PGF2α levels, thereby contributing to preterm birth.
Subject(s)
Decidua , Hydroxyprostaglandin Dehydrogenases , Trophoblasts , Humans , Female , Trophoblasts/metabolism , Decidua/metabolism , Pregnancy , Hydroxyprostaglandin Dehydrogenases/metabolism , Culture Media, Conditioned/pharmacology , Inflammation/pathology , Inflammation/metabolism , Chorioamnionitis/pathology , Chorioamnionitis/metabolism , Lipopolysaccharides/pharmacology , Dinoprostone/metabolismABSTRACT
Acute graft-versus-host disease (GVHD) is a frequent and potentially life-threatening complication following allogeneic hematopoietic cell transplantation (HCT). Mesenchymal stromal cells (MSCs), rare precursors found in all body tissues, possess immunosuppressive properties and can inhibit alloreactivity both in vitro and in vivo. Two decades ago, we introduced bone marrow-derived (BM) MSCs as a novel therapy for acute GVHD. While some patients responded to BM-MSCs, the response was not universal. Commercially available BM-MSCs are now used for acute GVHD treatment in Canada, Japan, and New Zealand. The fetus is protected from the mother's immune system by the placenta, and our research found that placenta-derived decidua stromal cells (DSCs) offer a stronger immunosuppressive effect than other sources of stromal cells. Safety studies in rabbits, rats, mice, and humans have shown negligible or no side effects from BM-MSCs or DSCs. In a phase I/II trial for severe acute GVHD, we treated 21 patients (median age, 49 years; range 1.6-72 years) with severe biopsy-proven gastrointestinal acute GVHD. The median cell dose of DSCs was 1.2 × 106 (range 0.9-2.9) cells/kg body weight, with a median of 2 (range 1-6) infusions given 1 week apart. The cell viability of DSCs was 93% (range, 69%-100%), and the median cell passage number was 4 (range, 2-4). All patients responded, with a complete response of acute GVHD in 11 patients and partial response in 10 and 1-year survival of 81%. Randomized trials are needed to prove the superiority of DSCs compared to ruxolitinib and/or other novel immunosuppressive therapies.
Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Female , Humans , Mice , Middle Aged , Rabbits , Rats , Acute Disease , Decidua , Graft vs Host Disease/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Immunosuppressive Agents , Stromal Cells , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Aged , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as TopicABSTRACT
During early pregnancy in mice, the establishment of uterine receptivity and endometrial decidualization require the extensive proliferation and differentiation of endometrial epithelial cells or stromal cells. Pin1 has been suggested to act as a molecular 'timer' of the cell cycle and is involved in the regulation of cellular proliferation and differentiation by binding many cell-cycle regulatory proteins. However, its physiological role during early pregnancy is still not fully understood. Here, we employed immunohistochemistry to determine the spatiotemporal pattern of Pin1 expression during early pregnancy. We found that Pin1 was mainly localized in subluminal stromal cells on day 4, in the decidual zone on days 5 to 8 of pregnancy and in artificial decidualization. Using a uterine stromal cell culture system, we found that progesterone, but not estrogen, induced the expression of Pin1 in a progesterone receptor-dependent manner. Inhibition of Pin1 in the uterus leads to impaired embryo implantation and decidualization in mice. Notably, a decrease in Pin1 activation affected the functional execution of several implantation- or decidualization-related factors. These findings provide new evidence for a previously unknown function of Pin1 in mediating embryo implantation and decidualization during successful pregnancy establishment and maintenance.
Subject(s)
Decidua , Embryo Implantation , NIMA-Interacting Peptidylprolyl Isomerase , Uterus , Animals , Female , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Embryo Implantation/physiology , Mice , Pregnancy , Decidua/metabolism , Decidua/cytology , Uterus/metabolism , Uterus/cytology , Progesterone/metabolism , Stromal Cells/metabolism , Receptors, Progesterone/metabolism , Cells, Cultured , Endometrium/metabolism , Endometrium/cytologyABSTRACT
Recurrent spontaneous abortion (RSA) is a common pregnancy-related disorder. Cbl proto-oncogene like 1 (CBLL1) is an E3 ubiquitin ligase, which has been reported to vary with the menstrual cycle in the endometrium. However, whether CBLL1 is involved in the occurrence and development of RSA remains unclear. This study aimed to investigate the effects of CBLL1 on RSA. We analyzed the expression of CBLL1 in the decidua of RSA patients, as well as its functional effects on cellular senescence, oxidative stress, and proliferation of human endometrial stromal cells (HESCs). RNA sequencing was employed to identify a key downstream target gene regulated by CBLL1. We found that CBLL1 was upregulated in the decidua of RSA patients. Additionally, overexpression of CBLL1 promoted HESC senescence, increased oxidative stress levels, and inhibited proliferation. Phosphatase and tensin homolog located on chromosome 10 (PTEN) was identified as one of the important downstream target genes of CBLL1. In vivo experiments demonstrated that CBLL1 overexpression in the endometrium caused higher embryo absorption rate in mice. Consequently, elevated CBLL1 expression is a potential cause of RSA, representing a novel therapeutic target for RSA.
Subject(s)
Abortion, Habitual , Cellular Senescence , Endometrium , PTEN Phosphohydrolase , Stromal Cells , Adult , Animals , Female , Humans , Mice , Pregnancy , Abortion, Habitual/metabolism , Abortion, Habitual/genetics , Abortion, Habitual/pathology , Cell Proliferation , Decidua/metabolism , Decidua/pathology , Endometrium/metabolism , Endometrium/pathology , Oxidative Stress , Proto-Oncogene Mas , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Stromal Cells/metabolismABSTRACT
Endometriosis (EMs)-related infertility commonly has decreased endometrial receptivity and normal decidualization is the basis for establishing and maintaining endometrial receptivity. However, the potential molecular regulatory mechanisms of impaired endometrial decidualization in patients with EMs have not been fully clarified. We confirmed the existence of reduced endometrial receptivity in patients with EMs by scanning electron microscopy and quantitative real-time PCR. Here we identified an lncRNA, named BMPR1B-AS1, which is significantly downregulated in eutopic endometrium in EMs patients and plays an essential role in decidual formation. Furthermore, RNA pull-down, mass spectrometry, RNA immunoprecipitation, and rescue analyses revealed that BMPR1B-AS1 positively regulates decidual formation through interaction with the RNA-binding protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Downregulation of IGF2BP2 led to a decreased stability of BMPR1B-AS1 and inhibition of activation of the SMAD1/5/9 pathway, an inhibitory effect which diminished decidualization in human endometrial stromal cells (hESCs) decidualization. In conclusion, our identified a novel regulatory mechanism in which the IGF2BP2-BMPR1B-AS1-SMAD1/5/9 axis plays a key role in the regulation of decidualization, providing insights into the potential link between abnormal decidualization and infertility in patients with EMs, which will be of clinical significance for the management and treatment of infertility in patients with EMs.
Subject(s)
Endometriosis , RNA, Long Noncoding , RNA-Binding Proteins , Adult , Female , Humans , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Morphogenetic Protein Receptors, Type I/genetics , Decidua/metabolism , Decidua/pathology , Endometriosis/metabolism , Endometriosis/genetics , Endometriosis/pathology , Endometrium/metabolism , Endometrium/pathology , Infertility, Female/metabolism , Infertility, Female/genetics , Infertility, Female/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction , Stromal Cells/metabolism , Smad Proteins , Young AdultABSTRACT
Immunological tolerance toward the semiallogeneic fetus is one of many maternal adaptations required for a successful pregnancy. T cells are major players of the adaptive immune system and balance tolerance and protection at the maternal-fetal interface; however, their repertoire and subset programming are still poorly understood. Using emerging single-cell RNA sequencing technologies, we simultaneously obtained transcript, limited protein, and receptor repertoire at the single-cell level, from decidual and matched maternal peripheral human T cells. The decidua maintains a tissue-specific distribution of T cell subsets compared with the periphery. We find that decidual T cells maintain a unique transcriptome programming, characterized by restraint of inflammatory pathways by overexpression of negative regulators (DUSP, TNFAIP3, ZFP36) and expression of PD-1, CTLA-4, TIGIT, and LAG3 in some CD8 clusters. Finally, analyzing TCR clonotypes demonstrated decreased diversity in specific decidual T cell populations. Overall, our data demonstrate the power of multiomics analysis in revealing regulation of fetal-maternal immune coexistence.
Subject(s)
Decidua , Proteogenomics , Pregnancy , Female , Humans , T-Lymphocyte Subsets , Transcriptome , FetusABSTRACT
During human pregnancy the chorion (fetal) lines decidua (maternal) creating the feto-maternal interface. Despite their proximity, resident decidual immune cells remain quiescent during gestation and do not invade the chorion. Infection and infiltration of activated immune cells toward the chorion are often associated with preterm birth. However, the mechanisms that maintain choriodecidual immune homeostasis or compromise immune barrier functions remain unclear. To understand these processes, a two-chamber microphysiological system (MPS) was created to model the human choriodecidual immune interface under normal and infectious conditions in vitro. This MPS has outer (fetal chorion trophoblast cells) and inner chambers (maternal decidual + CD45+ cells [70:30 ratio]) connected by microchannels. Decidual cells were treated with LPS to mimic maternal infection, followed by immunostaining for HLA-DR and HLA-G, immune panel screening by imaging cytometry by time of flight, and immune regulatory factors IL-8 and IL-10, soluble HLA-G, and progesterone (ELISA). LPS induced a proinflammatory phenotype in the decidua characterized by a decrease in HLA-DR and an increase in IL-8 compared with controls. LPS treatment increased the influx of immune cells into the chorion, indicative of chorionitis. Cytometry by time of flight characterized immune cells in both chambers as active NK cells and neutrophils, with a decrease in the abundance of nonproinflammatory cytokine-producing NK cells and T cells. Conversely, chorion cells increased progesterone and soluble HLA-G production while maintaining HLA-G expression. These results highlight the utility of MPS to model choriodecidual immune cell infiltration and determine the complex maternal-fetal crosstalk to regulate immune balance during infection.