Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Ecol Lett ; 27(8): e14491, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39132693

ABSTRACT

Animals interact with nutrient cycles by consuming and depositing nutrients, interactions studied separately in nutritional ecology and zoogeochemistry. Recent theoretical work bridges these disciplines, highlighting that animal-driven nutrient recycling could be crucial in helping animals meet their nutritional needs. When animals exhibit site fidelity, they consistently deposit nutrients, potentially improving vegetation quality. We investigated this potential feedback by analysing changes in forage nitrogen stocks following simulated caribou calving. We found that forage nitrogen stocks increased after 2 weeks and remained elevated after 1 year, a change due to increased forage quality, not quantity. We also developed a nutrient budget within calving grounds, demonstrating that natal fluid and calf carcasses contribute substantial nitrogen subsidies. We, thus, highlight a positive zoogeochemical feedback whereby nutrients deposited during calving become bioavailable during lactation and provide evidence that site fidelity creates a biogeochemical boomerang in which animals deposit nutrients that can be reused later.


Subject(s)
Nitrogen , Animals , Female , Nitrogen/analysis , Nitrogen/metabolism , Lactation , Deer/physiology , Animal Nutritional Physiological Phenomena
2.
Proc Biol Sci ; 291(2023): 20232849, 2024 May.
Article in English | MEDLINE | ID: mdl-38775542

ABSTRACT

Recent experiments have demonstrated that carnivores and ungulates in Africa, Asia, Europe and North America fear the human 'super predator' far more than other predators. Australian mammals have been a focus of research on predator naiveté because it is suspected they show atypical antipredator responses. To experimentally test if mammals in Australia also most fear humans, we quantified the responses of four native marsupials (eastern grey kangaroo, Bennett's wallaby, Tasmanian pademelon, common brushtail possum) and introduced fallow deer to playbacks of predator (human, dog, Tasmanian devil, wolf) or non-predator control (sheep) vocalizations. Native marsupials most feared the human 'super predator', fleeing humans 2.4 times more often than the next most frightening predator (dogs), and being most, and significantly, vigilant to humans. These results demonstrate that native marsupials are not naïve to the peril humans pose, substantially expanding the taxonomic and geographic scope of the growing experimental evidence that wildlife worldwide generally perceive humans as the planet's most frightening predator. Introduced fallow deer fled humans, but not more than other predators, which we suggest may result from their being introduced. Our results point to both challenges concerning marsupial conservation and opportunities for exploiting fear of humans as a wildlife management tool.


Subject(s)
Deer , Fear , Marsupialia , Predatory Behavior , Animals , Deer/physiology , Humans , Marsupialia/physiology , Australia , Introduced Species , Wolves/physiology , Dogs , Vocalization, Animal
3.
Glob Chang Biol ; 30(4): e17286, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38660810

ABSTRACT

Anthropogenic habitat alteration and climate change are two well-known contributors to biodiversity loss through changes to species distribution and abundance; yet, disentangling the effects of these two factors is often hindered by their inherent confound across both space and time. We leveraged a contrast in habitat alteration associated with the jurisdictional boundary between two Canadian provinces to evaluate the relative effects of spatial variation in habitat alteration and climate on white-tailed deer (Odocoileus virginianus) densities. White-tailed deer are an invading ungulate across much of North America, whose expansion into Canada's boreal forest is implicated in the decline of boreal caribou (Rangifer tarandus caribou), a species listed as Threatened in Canada. We estimated white-tailed deer densities using 300 remote cameras across 12 replicated 50 km2 landscapes over 5 years. White-tailed deer densities were significantly lower in areas where winter severity was higher. For example, predicted deer densities declined from 1.83 to 0.35 deer/km2 when winter severity increased from the lowest value to the median value. There was a tendency for densities to increase with increasing habitat alteration; however, the magnitude of this effect was approximately half that of climate. Our findings suggest that climate is the primary driver of white-tailed deer populations; however, understanding the mechanisms underpinning this relationship requires further study of over-winter survival and fecundity. Long-term monitoring at the invasion front is needed to evaluate the drivers of abundance over time, particularly given the unpredictability of climate change and increasing prevalence of extreme weather events.


Subject(s)
Climate Change , Deer , Ecosystem , Animals , Deer/physiology , Population Density , Seasons , Canada , Introduced Species
4.
Ecol Appl ; 34(4): e2971, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581136

ABSTRACT

Climate change is increasing the frequency of droughts and the risk of severe wildfires, which can interact with shrub encroachment and browsing by wild ungulates. Wild ungulate populations are expanding due, among other factors, to favorable habitat changes resulting from land abandonment or land-use changes. Understanding how ungulate browsing interacts with drought to affect woody plant mortality, plant flammability, and fire hazard is especially relevant in the context of climate change and increasing frequency of wildfires. The aim of this study is to explore the combined effects of cumulative drought, shrub encroachment, and ungulate browsing on the fire hazard of Mediterranean oak woodlands in Portugal. In a long-term (18 years) ungulate fencing exclusion experiment that simulated land abandonment and management neglect, we investigated the population dynamics of the native shrub Cistus ladanifer, which naturally dominates the understory of woodlands and is browsed by ungulates, comparing areas with (no fencing) and without (fencing) wild ungulate browsing. We also modeled fire behavior in browsed and unbrowsed plots considering drought and nondrought scenarios. Specifically, we estimated C. ladanifer population density, biomass, and fuel load characteristics, which were used to model fire behavior in drought and nondrought scenarios. Overall, drought increased the proportion of dead C. ladanifer shrub individuals, which was higher in the browsed plots. Drought decreased the ratio of live to dead shrub plant material, increased total fuel loading, shrub stand flammability, and the modeled fire parameters, that is, rate of surface fire spread, fireline intensity, and flame length. However, total fuel load and fire hazard were lower in browsed than unbrowsed plots, both in drought and nondrought scenarios. Browsing also decreased the population density of living shrubs, halting shrub encroachment. Our study provides long-term experimental evidence showing the role of wild ungulates in mitigating drought effects on fire hazard in shrub-encroached Mediterranean oak woodlands. Our results also emphasize that the long-term effects of land abandonment can interact with climate change drivers, affecting wildfire hazard. This is particularly relevant given the increasing incidence of land abandonment.


Subject(s)
Droughts , Forests , Quercus , Wildfires , Animals , Quercus/physiology , Portugal , Fires , Deer/physiology , Cistaceae/physiology , Population Dynamics , Climate Change , Herbivory
5.
Ecol Appl ; 34(5): e3003, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38890813

ABSTRACT

Large terrestrial mammals increasingly rely on human-modified landscapes as anthropogenic footprints expand. Land management activities such as timber harvest, agriculture, and roads can influence prey population dynamics by altering forage resources and predation risk via changes in habitat, but these effects are not well understood in regions with diverse and changing predator guilds. In northeastern Washington state, USA, white-tailed deer (Odocoileus virginianus) are vulnerable to multiple carnivores, including recently returned gray wolves (Canis lupus), within a highly human-modified landscape. To understand the factors governing predator-prey dynamics in a human context, we radio-collared 280 white-tailed deer, 33 bobcats (Lynx rufus), 50 cougars (Puma concolor), 28 coyotes (C. latrans), and 14 wolves between 2016 and 2021. We first estimated deer vital rates and used a stage-structured matrix model to estimate their population growth rate. During the study, we observed a stable to declining deer population (lambda = 0.97, 95% confidence interval: 0.88, 1.05), with 74% of Monte Carlo simulations indicating population decrease and 26% of simulations indicating population increase. We then fit Cox proportional hazard models to evaluate how predator exposure, use of human-modified landscapes, and winter severity influenced deer survival and used these relationships to evaluate impacts on overall population growth. We found that the population growth rate was dually influenced by a negative direct effect of apex predators and a positive effect of timber harvest and agricultural areas. Cougars had a stronger effect on deer population dynamics than wolves, and mesopredators had little influence on the deer population growth rate. Areas of recent timber harvest had 55% more forage biomass than older forests, but horizontal visibility did not differ, suggesting that timber harvest did not influence predation risk. Although proximity to roads did not affect the overall population growth rate, vehicle collisions caused a substantial proportion of deer mortalities, and reducing these collisions could be a win-win for deer and humans. The influence of apex predators and forage indicates a dual limitation by top-down and bottom-up factors in this highly human-modified system, suggesting that a reduction in apex predators would intensify density-dependent regulation of the deer population owing to limited forage availability.


Subject(s)
Deer , Population Dynamics , Wolves , Animals , Deer/physiology , Wolves/physiology , Humans , Predatory Behavior , Washington , Human Activities , Coyotes/physiology , Puma/physiology , Food Chain , Ecosystem , Lynx/physiology
6.
J Anim Ecol ; 93(8): 1036-1048, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38940070

ABSTRACT

Encounters between animals occur when animals are close in space and time. Encounters are important in many ecological processes including sociality, predation and disease transmission. Despite this, there is little theory regarding the spatial distribution of encounters and no formal framework to relate environmental characteristics to encounters. The probability of encounter could be estimated with resource selection functions (RSFs) by comparing locations where encounters occurred to available locations where they may have occurred, but this estimate is complicated by the hierarchical nature of habitat selection. We developed a method to relate resources to the relative probability of encounter based on a scale-integrated habitat selection framework. This framework integrates habitat selection at multiple scales to obtain an appropriate estimate of availability for encounters. Using this approach, we related encounter probabilities to landscape resources. The RSFs describe habitat associations at four scales, home ranges within the study area, areas of overlap within home ranges, locations within areas of overlap, and encounters compared to other locations, which can be combined into a single scale-integrated RSF. We apply this method to intraspecific encounter data from two species: white-tailed deer (Odocoileus virginianus) and elk (Cervus elaphus) and interspecific encounter data from a two-species system of caribou (Rangifer tarandus) and coyote (Canis latrans). Our method produced scale-integrated RSFs that represented the relative probability of encounter. The predicted spatial distribution of encounters obtained based on this scale-integrated approach produced distributions that more accurately predicted novel encounters than a naïve approach or any individual scale alone. Our results highlight the importance of accounting for the conditional nature of habitat selection in estimating the habitat associations of animal encounters as opposed to 'naïve' comparisons of encounter locations with general availability. This method has direct relevance for testing hypotheses about the relationship between habitat and social or predator-prey behaviour and generating spatial predictions of encounters. Such spatial predictions may be vital for understanding the distribution of encounters driving disease transmission, predation rates and other population and community-level processes.


Subject(s)
Deer , Ecosystem , Animals , Deer/physiology , Models, Biological , Coyotes/physiology , Reindeer/physiology , Behavior, Animal
7.
J Anim Ecol ; 93(4): 447-459, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38348546

ABSTRACT

Predation risk is a function of spatiotemporal overlap between predator and prey, as well as behavioural responses during encounters. Dynamic factors (e.g. group size, prey availability and animal movement or state) affect risk, but rarely are integrated in risk assessments. Our work targets a system where predation risk is fundamentally linked to temporal patterns in prey abundance and behaviour. For neonatal ungulate prey, risk is defined within a short temporal window during which the pulse in parturition, increasing movement capacity with age and antipredation tactics have the potential to mediate risk. In our coyote-mule deer (Canis latrans-Odocoileus hemionus) system, leveraging GPS data collected from both predator and prey, we tested expectations of shared enemy and reproductive risk hypotheses. We asked two questions regarding risk: (A) How does primary and alternative prey habitat, predator and prey activity, and reproductive tactics (e.g. birth synchrony and maternal defence) influence the vulnerability of a neonate encountering a predator? (B) How do the same factors affect behaviour by predators relative to the time before and after an encounter? Despite increased selection for mule deer and intensified search behaviour by coyotes during the peak in mule deer parturition, mule deer were afforded protection from predation via predator swamping, experiencing reduced per-capita encounter risk when most neonates were born. Mule deer occupying rabbit habitat (Sylvilagus spp.; coyote's primary prey) experienced the greatest risk of encounter but the availability of rabbit habitat did not affect predator behaviour during encounters. Encounter risk increased in areas with greater availability of mule deer habitat: coyotes shifted their behaviour relative to deer habitat, and the pulse in mule deer parturition and movement of neonatal deer during encounters elicited increased speed and tortuosity by coyotes. In addition to the spatial distribution of prey, temporal patterns in prey availability and animal behavioural state were fundamental in defining risk. Our work reveals the nuanced consequences of pulsed availability on predation risk for alternative prey, whereby responses by predators to sudden resource availability, the lasting effects of diversionary prey and inherent antipredation tactics ultimately dictate risk.


Subject(s)
Coyotes , Deer , Animals , Rabbits , Deer/physiology , Coyotes/physiology , Ecosystem , Predatory Behavior/physiology , Equidae
8.
Dokl Biol Sci ; 517(1): 88-95, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38902556

ABSTRACT

The hair coat and hair microstructure of an adult male Hydropotes inermis from the Primorsky Krai of Russia were studied for the first time by light and scanning electron microscopy. Lack of abundant underfur, sparse hair, and a weak layering are characteristic of the species, which inhabits the temperate monsoon and tropical zones and does not need an efficient thermal protection. An alveolar and lattice medulla of the hair is similar to that of other deer, is well developed, and increases the heat-protective properties of the hair because seasonal and daily fluctuations in temperature and humidity can be significant. The cuticle pattern is similar to that of the deer tribes Alceini and Capreolini. The hair thickness and length are substantial on the back, sides, and thighs, and the coat thus provides reliable protection from mechanical damage when the water deer moves through thickets of bushes and grasses along riverbanks and swamps in its habitats. A knotty nature of hairs protects the skin from sharp outgrowths of aquatic and marsh plants.


Subject(s)
Deer , Hair , Animals , Deer/anatomy & histology , Deer/physiology , Hair/ultrastructure , Hair/anatomy & histology , Russia , Male
9.
Sci Rep ; 14(1): 10223, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702359

ABSTRACT

Animal activity reflects behavioral decisions that depend upon environmental context. Prior studies typically estimated activity distributions within few areas, which has limited quantitative assessment of activity changes across environmental gradients. We examined relationships between two response variables, activity level (fraction of each day spent active) and pattern (distribution of activity across a diel cycle) of white-tailed deer (Odocoileus virginianus), with four predictors-deer density, anthropogenic development, and food availability from woody twigs and agriculture. We estimated activity levels and patterns with cameras in 48 different 10.36-km2 landscapes across three larger regions. Activity levels increased with greater building density, likely due to heightened anthropogenic disturbance, but did not vary with food availability. In contrast, activity patterns responded to an interaction between twigs and agriculture, consistent with a functional response in habitat use. When agricultural land was limited, greater woody twig density was associated with reduced activity during night and evening. When agricultural land was plentiful, greater woody twig density was associated with more pronounced activity during night and evening. The region with the highest activity level also experienced the most deer-vehicle collisions. We highlight how studies of spatial variation in activity expand ecological insights on context-dependent constraints that affect wildlife behavior.


Subject(s)
Behavior, Animal , Deer , Ecosystem , Deer/physiology , Animals , Behavior, Animal/physiology , Agriculture/methods
10.
PLoS One ; 19(4): e0300754, 2024.
Article in English | MEDLINE | ID: mdl-38635543

ABSTRACT

Sika deer inhabiting South Korea became extinct when the last individual was captured on Jeju Island in Korea in 1920 owing to the Japanese seawater relief business, but it is believed that the same subspecies (Cervus nippon hortulorum) inhabits North Korea and the Russian Primorskaya state. In our study, mt-DNA was used to analyze the genetic resources of sika deer in the vicinity of the Korean Peninsula to restore the extinct species of continental deer on the Korean Peninsula. In addition, iSCNT was performed using cells to analyze the potential for restoration of extinct species. The somatic cells of sika deer came from tissues of individuals presumed to be Korean Peninsula sika deer inhabiting the neighboring areas of the Primorskaya state and North Korea. After sequencing 5 deer samples through mt-DNA isolation and PCR, BLAST analysis showed high matching rates for Cervus nippon hortulorum. This shows that the sika deer found near the Russian Primorsky Territory, inhabiting the region adjacent to the Korean Peninsula, can be classified as a subspecies of Cervus nippon hortulorum. The method for producing cloned embryos for species restoration confirmed that iSCNT-embryos developed smoothly when using porcine oocytes. In addition, the stimulation of endometrial cells and progesterone in the IVC system expanded the blastocyst cavity and enabled stable development of energy metabolism and morphological changes in the blastocyst. Our results confirmed that the individual presumed to be a continental deer in the Korean Peninsula had the same genotype as Cervus nippon hortulorum, and securing the individual's cell-line could restore the species through replication and produce a stable iSCNT embryo.


Subject(s)
Deer , Humans , Animals , Swine , Deer/physiology , Oocytes/chemistry , DNA, Mitochondrial/genetics , Democratic People's Republic of Korea , Republic of Korea
11.
Ecology ; 105(4): e4255, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38361248

ABSTRACT

To manage predation risk, prey navigate a dynamic landscape of fear, or spatiotemporal variation in risk perception, reflecting predator distributions, traits, and activity cycles. Prey may seek to reduce risk across this landscape using habitat at times and in places when predators are less active. In multipredator landscapes, avoiding one predator could increase vulnerability to another, making the landscape of fear difficult to predict and navigate. Additionally, humans may shape interactions between predators and prey, and induce new sources of risk. Humans can function as a shield, providing a refuge for prey from human-averse carnivores, and as a predator, causing mortality through hunting and vehicle collisions and eliciting a fear response that can exceed that of carnivores. We used telemetry data collected between 2017 and 2021 from 63 Global Positioning System-collared elk (Cervus canadensis), 42 cougars (Puma concolor), and 16 wolves (Canis lupus) to examine how elk habitat selection changed in relation to carnivores and humans in northeastern Washington, USA. Using step selection functions, we evaluated elk habitat use in relation to cougars, wolves, and humans, diel period (daytime vs. nighttime), season (summer calving season vs. fall hunting season), and habitat structure (open vs. closed habitat). The diel cycle was critical to understanding elk movement, allowing elk to reduce encounters with predators where and when they would be the largest threat. Elk strongly avoided cougars at night but had a near-neutral response to cougars during the day, whereas elk avoided wolves at all times of day. Elk generally used more open habitats where cougars and wolves were most active, rather than altering the use of habitat structure depending on the predator species. Elk avoided humans during the day and ~80% of adult female mortality was human caused, suggesting that humans functioned as a "super predator" in this system. Simultaneously, elk leveraged the human shield against wolves but not cougars at night, and no elk were confirmed to have been killed by wolves. Our results add to the mounting evidence that humans profoundly affect predator-prey interactions, highlighting the importance of studying these dynamics in anthropogenic areas.


Subject(s)
Deer , Puma , Wolves , Animals , Humans , Female , Ecosystem , Deer/physiology , Fear , Predatory Behavior/physiology
12.
BMC Ecol Evol ; 24(1): 93, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969976

ABSTRACT

The Persian fallow deer or Mesopotamian fallow Deer (Dama mesopotamica, Brook 1875), a species of significant ecological importance, had faced the threat of extinction in Iran. One conservation strategy involved the translocation of Persian deer to enclosed areas across Iran, where they were afforded protection from external threats and provided with essential care by human caretakers. While human caretakers diligently attend to their needs and mitigate external threats, climate variables may now become critical factors affecting population dynamics in enclosed areas. This study aims to assess the similarity in climate niches between the original area (Dez and Karkheh) of the Persian deer species and 11 newly enclosed areas. To achieve this, we employed climate data and ecological niche modeling (ENM) techniques to assess the variations in climate among 12 areas. We utilized the environmental equivalency test to determine whether the environmental spaces of area pairs exhibit significant differences and whether these spaces are interchangeable. Extrapolation analyses were also constructed in the next steps to explore climatic conditions in original fallow deer habitats that are non-analogous to those in other parts of Iran. Our results reveal significant disparities in climate conditions between the original and all translocated areas. Based on observations of population growth in specific enclosed areas where translocated deer populations have thrived, we hypothesize that the species may demonstrate a non-equilibrium distribution in Iran. Consequently, these new areas could potentially be regarded as part of the species' potential climate niche. Extrapolation analysis showed that for a significant portion of Iran, extrapolation predictions are highly uncertain and potentially unreliable for the translocation of Persian fallow deer. However, the primary objective of translocation efforts remains the establishment of self-sustaining populations of Persian deer capable of thriving in natural areas beyond enclosed areas, thus ensuring their long-term survival and contributing to preservation efforts. Evaluating the success of newly translocated species requires additional time, with varying levels of success observed. In cases where the growth rate of the species in certain enclosed areas falls below expectations, it is prudent to consider climate variables that may contribute to population declines. Furthermore, for future translocations, we recommend selecting areas with climate similarities to regions where the species has demonstrated growth rates.


Subject(s)
Climate , Deer , Ecosystem , Animals , Iran , Deer/physiology , Conservation of Natural Resources , Population Dynamics
13.
Sci Rep ; 14(1): 10570, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719931

ABSTRACT

The coexistence of sympatric species with similar ecological niches has been a central issue in ecology. Clarifying the daily activity patterns of sympatric wild ungulates can help understand their temporal niche differentiation and the mechanisms of coexistence, providing information for their conservation. The Baotianman National Nature Reserve in northern China is rich in wild ungulates, but little is known about the daily activity patterns of wild ungulates in the area, making it difficult to develop effective conservation strategies. We studied five representative wild ungulates (i.e. forest musk deer, Chinese goral, Reeve's muntjac, Siberian roe deer, and wild boar) of the region using camera-trapping data, focusing on the seasonal daily activity patterns and effects of seasonal grazing of domestic sheep, to reveal their coexistence based on temporal ecological niche differentiation. Comparative analyses of the seasonal daily activity showed that forest musk deer exhibited a single-peak activity in the warm season. Other ungulates exhibited multipeak activity. All five ungulates differed significantly in daily activity patterns. Notably, wild boar and Reeve's muntjac showed high overlap coefficients between the cold and warm seasons. In both cold and warm seasons, the five wild ungulates and domestic sheep displayed low overlap in their daily activity rhythms potentially indicating temporal ecological niche differentiation. The results suggest that temporal isolation might be a strategy for wild ungulates to avoid domestic sheep and reduce interspecific competition, and that temporal ecological niche differentiation potentially promoted the coexistence among the studied sympatric ungulates. This understanding may provide new insights for the development of targeted conservation strategies.


Subject(s)
Animals, Wild , Deer , Ecosystem , Seasons , Sympatry , Animals , Deer/physiology , Animals, Wild/physiology , China , Sheep/physiology
14.
PLoS One ; 19(7): e0287160, 2024.
Article in English | MEDLINE | ID: mdl-39047008

ABSTRACT

Herbivory is a fundamental ecological force in the evolution of plant physiological, morphological, and chemical attributes. In this study, we explored how browsing pressure by local deer populations affected leaf form and function in two California native tree species, Quercus agrifolia (coast live oak) and Umbellularia californica (California bay laurel). Specifically, we investigated how leaf and stem vascular attributes differed between browsed and non-browsed zones of each species. Browsing significantly altered traits such as leaf to phloem ratios and leaf area, but we observed few meaningful differences in leaf and stem anatomy between browsed and non-browsed material. We discuss these results in the context of leaf and stem adaptations to herbivory and water use efficiency and explore future research considerations for investigating leaf and stem vascular trait development with herbivore presence.


Subject(s)
Herbivory , Plant Leaves , Quercus , Quercus/physiology , Herbivory/physiology , Animals , Plant Leaves/physiology , Plant Leaves/anatomy & histology , Species Specificity , Plant Stems/physiology , Plant Stems/anatomy & histology , Deer/physiology , California
16.
Rev. biol. trop ; 62(2): 699-710, Jun.-Aug. 2014. ilus, tab
Article in Spanish | LILACS | ID: lil-715464

ABSTRACT

In Campeche state, 122 Wildlife Conservation and Management Units have been recently conformed. In these units, eventhough the white tailed deer Odocoileus virginianus thomasi is a game species, no studies on its diet have been undertaken. The objectives of this work were to estimate the botanical composition of the diet and its seasonal change, to determine forage availability, carrying capacity and stocking rate of O. virginianus thomasi. The study was conducted in the experimental unit of Colegio de Postgraduados in Campeche, Mexico, from October 2010 to May 2012. The diet was determined through microhistological analyses of the white tailed deer feces by the use of reference material. Forage availability was determined through the Adelaide´s method; the stocking rate, using the grazing pressure factor; and carrying capacity considering forage availability and 35% of utilization efficiency. In this experimental unit, the deer diet included 40 species belonging to15 families. The highest species richness ocurred during the rainy season with 29 species. However, deers preferred shrubs during all seasons, and herbaceous species during the rainy season. The diet composition, forage availability, carrying capacity and stocking rate varied throughout the year. Carrying capacity ranged from 0.04 to 1.08deer/ha. Additional studies are required to detail about the composition of the diet, habitat availability and use throughout its geographical range, and to detail on nutritional and health aspects. Rev. Biol. Trop. 62 (2): 699-710. Epub 2014 June 01.


En Campeche, México no existen estudios de la dieta de Odocoileus virginianus thomasi; a pesar de la existencia de 122 Unidades de Manejo para la Conservación de la Vida Silvestre (UMAS) en donde se realiza aprovechamiento del venado cola blanca. Los objetivos del trabajo fueron conocer la composición botánica de la dieta y su cambio estacional, la disponibilidad de forraje, la capacidad de carga y carga animal de O. virginianus thomasi. El trabajo se realizó de octubre 2010 a mayo 2012 en el Campo Experimental del Colegio de Postgraduados en Campeche, México. La composición de la dieta se determinó mediante el análisis de heces de venado y material de referencia con la técnica microhistológica; la disponibilidad de forraje se estimó con el método de Adelaide; la capacidad de carga utilizando la presión de pastoreo y la carga animal considerando el forraje disponible y 35% de eficiencia de utilización. La dieta incluyó 40 especies de 15 familias. La riqueza de especies más alta fue de 29 especies en la época de lluvia; las arbustivas fueron preferidas en las tres épocas del año y las herbáceas en la época de lluvia. La composición de la dieta, disponibilidad de forraje, la capacidad de carga y carga animal variaron a través del año. La capacidad de carga fluctuó entre 0.04 a 1.08 venados/ha.


Subject(s)
Animals , Deer/physiology , Feeding Behavior/physiology , Plants/classification , Deer/classification , Feces/chemistry , Mexico , Seasons
17.
Biol. Res ; 47: 1-6, 2014. graf, tab
Article in English | LILACS | ID: biblio-950744

ABSTRACT

BACKGROUND: Restricted space and close contact with conspecifics in captivity may be stressful for musk deer, as they are highly territorial and solitary in the wild. So we tested the effects of crowding on stress of forest musk deer (Moschus berezovskii) in heterosexual groups, using fecal cortisol analysis as a non-invasive method. 32 healthy adults during non-breeding seasons were chose as our experimental objects. Group 1 was defined as higher crowding condition, with 10-15 m²/deer (6 enclosures, 10♀ and 6♂); group 2 was defined as lower crowding condition, with 23-33 m²/deer (6 enclosures, 1010♀ and 6♂). Every enclosure contained 1 male and 3 female. These patterns had been existed for years. RESULTS: The results showed that females in lower crowding condition (217.1 ± 9.5 ug/g) had significantly higher fecal cortisol levels than those in higher crowding condition (177.2 ± 12.1 ug/g). Interestingly, crowding seemed have no effect on male fecal cortisol levels (148.1 ± 9.1 ug/g and 140.5 ± 13.3 ug/g, respectively). At both groups, cortisol was significantly lower in males than in females. CONCLUSIONS: These results showed that chronic crowding may affect stress status of captive forest musk deer. The captive environment should consider the space need for musk deer.


Subject(s)
Animals , Male , Female , Deer/physiology , Hydrocortisone/analysis , Crowding/psychology , Feces/chemistry , Seasons , Breeding , Deer/psychology , Fatty Acids, Monounsaturated , Forests , Sex Factors , Statistics, Nonparametric , Housing, Animal
18.
Rev. biol. trop ; 61(1): 243-253, Mar. 2013. ilus
Article in Spanish | LILACS | ID: lil-674076

ABSTRACT

Food habits of the white-tailed deer, Odocoileus virginianus (Artiodactyla: Cervidae) in Nanchititla Natural Park, Mexico. White-tailed deer is a species with a large behavioral plasticity and adapta- tion to different habitats, including their food habits. This study was conducted with the aim to determine the food habits of this species in the cloud (BMM) and pine-oak (BPE) forests. Deer scats and plant samples were obtained following standard methods, from Sierra Nanchititla Park in the State of Mexico, from June 1990 to May 1992. A total of 104 deer pellet-groups were collected, and histological analysis for herbivores was used and compared with stock samples of plant tissues collected from the study area. We applied the Spearman correlation and Morisita index to determine alimentary preference. The results showed that the deer consumes 79.44% of plant species from BMM and 20.56% of the BPE. There is a selectivity tendency for 12 of the 14 plant species located in the BMM, while for BPE no tendency was observed. Key species that are part of the elemental diet of the deer in these areas were: Acalypha setosa, Smilax pringlei, Psidium sartorianum and Dendropanax arborea. The consumption of plants did not differ significantly between the dry and rainy seasons in terms of biological form, however, during the dry season there is a tendency to consume trees, and by the end of the rainy season to consume herbs. The data indicate that the deer can be selective with BMM plants, while for the BPE tends to be opportunistic.


El venado cola blanca es una especie con una gran plasticidad conductual y de adaptación en diferentes hábitat. En el Parque Sierra Nanchititla en el Estado de México se realizó un estudio para determinar los hábitos alimentarios en el bosque mesófilo de montaña (BMM) y bosque de pino-encino (BPE). De junio 1990 a mayo 1992 se recolectaron 104 muestras de excremento de venado en las dos zonas de estudio. Aplicamos el índice de Morisita y la correlación de Spearman para determinar la preferencia alimentaria. Se utilizó el análisis histológico de heces fecales para herbívoros las cuales se compararon con muestras de tejidos vegetales de plantas de la zona de estudio. Los resultados muestran que consume el 79.44% de especies vegetales del BMM y 20.56% del BPE. Existe cierta tendencia en la selectividad de 12 de las 14 especies de plantas localizadas en el BMM, mientras que para el BPE no se aprecia tal tendencia. Las especies clave que for- man parte de la alimentación elemental del venado fueron: Acalypha setosa, Smilax pringlei, Psidium sartorianum y Dendropanax arborea. El consumo de plantas no varió sig- nificativamente entre la época seca y lluviosa en función de la forma biológica (X2=12, p=0.21). Sin embargo, durante la época seca existe cierta tendencia a consumir árboles y a finales de la época de lluvia a consumir hierbas (Z=1.61, p=0.95). Los datos indican que el venado puede ser selecti- vo con plantas del BMM, mientras que para el BPE tiende a ser oportunista.


Subject(s)
Animals , Conservation of Natural Resources , Deer/physiology , Feces/chemistry , Feeding Behavior/physiology , Deer/classification , Mexico , Seasons
19.
Pesqui. vet. bras ; 32(10): 1061-1066, out. 2012. ilus
Article in Portuguese | LILACS | ID: lil-654401

ABSTRACT

O tipo de alimentação depende do ambiente em que o animal se encontra, sendo este um fator responsável pela alteração da morfologia, como a estratificação e o nível de queratinização da língua, e a funcionalidade da mesma. Dentre as estruturas morfológicas funcionais da língua, as papilas vêm merecendo destaque devido a sua estreita relação com a dieta. Foram utilizadas duas espécies de cervídeos: cinco Mazama gouazoubira e duas Mazama americana, dividindo-se a língua em três partes: ápice, corpo e raiz. Analisou comparativamente a língua de duas espécies por meio de microscopia de luz e eletrônica de varredura. As papilas filiforme, fungiforme e valada apresentaram na língua das duas espécies estudadas, e com a mesma distribuição, mudando apenas a quantidade e formato de papilas filiformes no ápice lingual e a quantidade e disposição das papilas valadas na raiz da língua, fator este que pode ser ligado à dieta dos animais. . Além disto, sua distribuição é semelhante à de outras espécies de herbívoros.


The type of feeding is dependent on the environment in which the animal lives, fact that's responsible for changes in morphology such as stratification, level of keratinization and functionality. Among the functional morphological structures of the tongue the papillae are worth mentioning due to their close relation to the diet. Two Cervidae species were used, five Mazama gouazoubira and two Mazama americana. Their tongues were divided into three parts, apex, body and root, and comparatively analyzed by light and scanning electron microscopy. The filiform, fungiform and vallate papillae were present in the two species' tongue and presented the same distribution, differing only in the quantity of vallate papillae on the root of the tongue, fact that might be related to the diet. Moreover, their distribution resembles that of other herbivore species.


Subject(s)
Animals , Deer/physiology , Tongue/physiology , Taste Buds/physiology , Microscopy, Electron, Scanning/veterinary , Microscopy, Polarization/veterinary
20.
Rev. biol. trop ; 60(1): 447-457, Mar. 2012. tab
Article in Spanish | LILACS | ID: lil-657792

ABSTRACT

Odocoileus virginianus diet (Artiodactyla: Cervidae) in a temperate forest of Northern Oaxaca, Mexico. The Sierra Madre de Oaxaca region, located in the Northern state of Oaxaca, Mexico, is an area of forest ecosystems subject to high exploitation rates, although in some areas its temperate forests are conserved by indigenous community initiatives that live there. We analyzed the diet of white tailed-deer (Odocoileus virginianus) in the localities of Santa Catarina Lachatao and San Miguel Amatlán from June 1998 to August 1999. Sampling was done during both the wet and dry seasons, and included the observation of browsing traces (238 observations), microhistological analysis of deer feces (28 deer pellet-groups), and two stomach content analysis. The annual diet of white-tailed deer was composed of 42 species from 23 botanical families. The most represented families in the diet of this deer were Fagaceae, Asteraceae, Ericaceae and Fabaceae. There were significant differences in the alpha diversity of the diet during the wet and dry seasons (H’=2.957 and H’=1.832, respectively). The similarity percentage between seasons was 56%. Differences in plant species frequency were significantly higher during the wet season. Herbaceous plants made up the greatest percentage of all the species consumed. The preferred species throughout the year were Senecio sp. (shrub), Sedum dendroideum (herbaceous), Arctostaphylos pungens (shrub) and Satureja macrostema (shrub). Diet species richness was found to be lower than that observed in a tropical forest (Venezuela), tropical dry forest (Mexico) and temperate deciduous and mixed forest (Mexico), but similar to the diet species richness observed in a tropical dry forest (Costa Rica) and temperate coniferous and deciduous forests (USA).


La región de la Sierra Madre de Oaxaca, ubicada al norte del estado de Oaxaca, México, es una zona de ecosistemas con alta actividad forestal; en algunas áreas sus bosques templados son conservados por iniciativas de las comunidades indígenas que ahí habitan. Dentro de estos bosques, se analizó la dieta del venado cola blanca (Odocoileus virginianus) en San Miguel Amatlán y Santa Catarina Lachatao entre junio 1998 y agosto 1999. Se utilizó el análisis microhistológico de heces fecales, la observación de rastros de ramoneo en plantas y el análisis de contenidos estomacales. La dieta anual estuvo constituida por 42 especies de 23 familias vegetales. Las familias con el mayor número de especies fueron: Fagaceae, Asteraceae, Ericaceae y Fabaceae. La diversidad de la dieta durante la estación húmeda y seca no presentó diferencias significativas (H’= 0.918 y H’=0.867 respectivamente). El porcentaje de similitud entre ambas temporadas fue de 58%. La diferencia entre la frecuencia de aparición de las especies vegetales fue mayor en la estación húmeda. Del total de especies consumidas, el mayor porcentaje estuvo constituido por las herbáceas. Las especies preferidas a lo largo del año fueron: Sedum dendroideum (herbácea) y Satureja macrostema (arbusto). La riqueza de especies en la dieta fue menor a la observada en otras regiones con bosques tropicales y bosques mixtos, pero similar a la obtenida en un bosque tropical seco en Costa Rica y en los bosques de coníferas en Estados Unidos.


Subject(s)
Animals , Deer/physiology , Diet/classification , Feces/chemistry , Food Preferences/physiology , Food Preferences/classification , Gastrointestinal Contents , Mexico , Seasons , Trees
SELECTION OF CITATIONS
SEARCH DETAIL