Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Biochem Biophys Res Commun ; 731: 150388, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39024974

ABSTRACT

The poor healing characteristics of diabetic foot ulcers are partially attributed to diabetes-induced pro-inflammatory wounds. Our previous study reported that both miR-146a-5p and miR-200b-3p decrease endothelial inflammation in human aortic endothelial cells and db/db diabetic mice. Although miR-146a-5p has been reported to improve diabetic wound healing, the role of miR-200b-3p is not clear. This study compared the roles of these miRNAs in diabetic wound healing. Two 8-mm full-thickness wounds were created in 12-week-old male db/db mice on the left and right back. After surgery, 100 ng miR-146a-5p, miR-200b-3p, or miR-negative control (NC) was injected in each wound. Full-thickness skin samples were harvested from mice at the 14th day for real-time polymerase chain reaction and immunohistochemistry analyses. At the 14th day, the miR-200b-3p group showed better wound healing and greater granulation tissue thickness than the miR-146a-5p group. The miR-200b-3p group showed a significant decrease of IL-6 and IL-1ß gene expression and a significant increase of Col3α1 gene expression compared to those in the miR-NC group. The miR-200b-3p group had the lowest gene expression of TGF-ß1, followed by the miR-146a-5p and miR-NC groups. Our findings suggest that the miR-200b-3p group had better healing characteristics than the other two groups. Immunohistochemical staining revealed that CD68 immunoreactivity was significantly decreased in both the miR-146a-5p and miR-200b-3p groups compared with that in the miR-NC group. In addition, CD31 immunoreactivity was significantly higher in the miR-200b-3p group than in the miR-146a-5p group. In conclusion, these results suggest that miR-200b-3p is more effective than miR-146a-5p in promoting diabetic wound healing through its anti-inflammatory and pro-angiogenic effects.


Subject(s)
MicroRNAs , Wound Healing , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Wound Healing/genetics , Male , Mice , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Diabetic Foot/genetics , Diabetic Foot/metabolism , Diabetic Foot/pathology , Neovascularization, Physiologic/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Antigens, CD/genetics , Antigens, CD/metabolism , Skin/metabolism , Skin/pathology , Inflammation/genetics , Inflammation/pathology , Inflammation/metabolism , Mice, Inbred C57BL , CD68 Molecule
2.
Biochem Biophys Res Commun ; 722: 150149, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38788355

ABSTRACT

OBJECTIVE: The objective of this study was to examine the potential of USP7 as a target for senolytic therapy and to investigate the molecular mechanism by which its inhibitor selectively induced apoptosis in senescent HDF and enhanced DFU wound healing. METHODS: Clinical samples of DFU were collected to detect the expression of USP7 and aging-related proteins using immunohistochemistry and Western blot. In addition, ß-galactosidase staining, qPCR, flow cytometry, ROS and MMP kits, and Western blot were used to analyze the biological functions of P5091 on senescence, cycle, and apoptosis. RNAseq was employed to further analyze the molecular mechanism of P5091. Finally, the DFU rat model was established to evaluate the effect of P5091 on wound healing. RESULTS: The expression of USP7 and p21 were increased in DFU clinical samples. After treatment with d-glucose (30 mM, 7 days), ß-galactosidase staining was deepened, proliferation rate decreased. USP7 inhibitors (P5091) could reduce the release of SASP factors, activate the production of ROS, and reduce MMP. In addition, it induced apoptosis and selectively clears senescent cells through the p53 signaling pathway. Finally, P5091 can improve diabetic wound healing in rats. CONCLUSION: This study clarified the molecular mechanism of USP7 inhibitor (P5091) selectively inducing apoptosis of high glucose senescent HDF cells. This provides a new senolytics target and experimental basis for promoting DFU wound healing.


Subject(s)
Cellular Senescence , Signal Transduction , Tumor Suppressor Protein p53 , Ubiquitin-Specific Peptidase 7 , Wound Healing , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Animals , Wound Healing/drug effects , Tumor Suppressor Protein p53/metabolism , Humans , Cellular Senescence/drug effects , Signal Transduction/drug effects , Rats , Male , Diabetic Foot/drug therapy , Diabetic Foot/metabolism , Diabetic Foot/pathology , Apoptosis/drug effects , Rats, Sprague-Dawley , Fibroblasts/drug effects , Fibroblasts/metabolism , Reactive Oxygen Species/metabolism , Cells, Cultured , Thiophenes
3.
J Transl Med ; 22(1): 643, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982516

ABSTRACT

BACKGROUND: Diabetic foot ulcer (DFU) is the most devastating complication of diabetes mellitus (DM) and plays a major role in disability and death in DM patients. NADH: ubiquinone oxidoreductase subunit B5 (NDUFB5) plays an important role in maintaining mitochondrial respiration, but whether it is involved in regulating the progression of advanced glycation end products (AGEs)-mediated DFU is still unclear. METHODS: Firstly, the role of AGEs on cell viability, migration, and mitochondrial respiration in human umbilical vein endothelial cells (HUVECs) was explored in vitro. Next, NDUFB5 expression was detected in human samples and AGEs-treated HUVECs, and NDUFB5's effect on AGEs-induced HUVECs injury and skin wound in diabetic mice was further clarified. In addition, the role of m6A modification mediated by methyltransferase-like 3 (METTL3) in regulating NDUFB5 expression and AGEs-induced HUVECs injury was investigated. RESULTS: NDUFB5 promoted cell viability, migration, and mitochondrial respiration in AGEs-treated HUVECs, whereas mitochondrial fusion promoter M1 facilitated cell viability, migration, and mitochondrial oxiadative respiration in NDUFB5 knockdown HUVECs. Meanwhile, NDUFB5 promotes skin wound healing in diabetic mice. Besides, METTL3-mediated m6A modification and insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) enhanced NDUFB5 expression in HUVECs. Furthermore, METTL3 promoted cell viability, migration, and mitochondrial respiration in AGEs-treated HUVECs by increasing NDUFB5. CONCLUSION: METTL3-mediated NDUFB5 m6A modification inhibits AGEs-induced cell injury in HUVECs. METTL3 and NDUFB5 might serve as potential targets for DFU therapy in the future.


Subject(s)
Cell Movement , Diabetic Foot , Human Umbilical Vein Endothelial Cells , Methyltransferases , Mitochondria , Wound Healing , Animals , Humans , Male , Mice , Cell Respiration , Cell Survival , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Diabetic Foot/pathology , Diabetic Foot/metabolism , Glycation End Products, Advanced/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Methyltransferases/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism
4.
Diabet Med ; 41(9): e15388, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38934613

ABSTRACT

AIM: The objective was to investigate the specific role and the regulatory mechanism of vascular endothelial growth factor (VEGF) during wound healing in diabetic foot ulcer (DFU). METHODS: Streptozotocin-induced diabetic rats were used to establish a DFU animal model. VEGF and Axitinib (a specific inhibitor of VEGFR) were used for treatment in vivo. The wounds at different time points were imaged and histological analysis of the wounds were performed by haematoxylin and eosin (H&E) staining and Masson's trichrome staining. Immunohistochemical staining was conducted to examine CD31 and eNOS expression in the wounds. Immunofluorescence assay and quantitative real-time PCR were performed to examine macrophage markers. In addition, THP-1 was differentiated to macrophages, and then treated with interleukin (IL)-4 to induce M2 macrophages, followed by VEGF treatment. The conditional medium (CM) from VEGF-mediated macrophages were collected to culture human dermal fibroblasts (HDFs). Cell viability and migration were measured by Cell Counting Kit (CCK)-8, wound-healing and Transwell assays, respectively. RESULTS: VEGF treatment remarkably accelerated wound healing of DFU rats. VEGF promoted collagen deposition and elevated CD31 and eNOS expression, confirming the pro-angiogenesis of VEGF around diabetic wound in rats. Meanwhile, VEGF restricted pro-inflammatory cytokines and increased F4/80 and CD206 expression, highlighting the activated macrophages and enhanced M2 macrophages following VEGF treatment in diabetic wounds of DFU rats. However, Axitinib exerted an opposite function to VEGF in DFU rats. Moreover, VEGF directly promoted macrophage polarization toward M2 phenotype in vitro, and the CM from VEGF-mediated M2 macrophages markedly promoted HDFs proliferation, migration and collagen deposition. CONCLUSION: VEGF might accelerate the wound healing of DFU through promoting M2 macrophage polarization and fibroblast migration.


Subject(s)
Axitinib , Diabetes Mellitus, Experimental , Diabetic Foot , Macrophages , Vascular Endothelial Growth Factor A , Wound Healing , Animals , Diabetic Foot/metabolism , Diabetic Foot/pathology , Wound Healing/drug effects , Wound Healing/physiology , Rats , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Vascular Endothelial Growth Factor A/metabolism , Macrophages/metabolism , Male , Axitinib/pharmacology , Axitinib/therapeutic use , Humans , Rats, Sprague-Dawley , Macrophage Activation/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Cell Movement/drug effects , Indazoles/pharmacology , Indazoles/therapeutic use
5.
Wound Repair Regen ; 32(4): 464-474, 2024.
Article in English | MEDLINE | ID: mdl-38656652

ABSTRACT

Recent evidence has implicated the role of microRNA-146a (miR-146a) in regulating inflammatory responses. In the present study, we investigated the role of miRNA-146a in the progression of diabetic foot ulcer (DFU) in type 2 diabetes mellitus patients (T2DM) and studied its correlation with stress mediators such as Endoplasmic Reticulum (ER) and oxidative stress. Ninety subjects were enrolled and evenly distributed among three groups: Controls (n = 30), T2DM without complications (n = 30) and T2DM with foot ulcers (n = 30). Subsequently, each group was further subdivided based on the University of Texas classification. Peripheral blood was collected from all the study subjects, while tissue biopsies were taken only from DFU patients. Total RNA from both PBMCs and wound tissues were isolated using miRNA isolation kit and qPCR was performed to check the expression of miR-146a, ER stress and oxidative stress markers. Our findings revealed a significant decrease in miR-146a expression among T2DM patients with Grade 2 and Grade 3 DFUs compared with those with Grade 0 and Grade 1 DFUs. Notably, inflammatory genes regulated by miR-146a, including TRAF6, IRAK-1 and ADAM, were all upregulated in T2DM patients with Grade 2 and Grade 3 DFUs. Moreover, reduced miR-146a levels were correlated with increased markers of ER stress and oxidative stress in Grade 2 and Grade 3 DFU patients. Furthermore, our in vitro experiment using mouse 3T3 fibroblasts demonstrated a downregulation of miR-146a following induction of hyperglycaemia, ER stress and oxidative stress in these cells. These findings suggest a potential link between diminished miR-146a expression and heightened oxidative and ER stress in T2DM patients with more severe grades of DFUs. Our results imply that targeting miR-146a may hold therapeutic promise for managing disease progression in DFU patients, as it could help alleviate oxidative and ER stress associated with diabetic complications.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Foot , Disease Progression , Endoplasmic Reticulum Stress , Inflammation , MicroRNAs , Oxidative Stress , Humans , Diabetic Foot/metabolism , Diabetic Foot/pathology , MicroRNAs/metabolism , MicroRNAs/genetics , Male , Female , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Middle Aged , Inflammation/metabolism , Animals , Mice , Aged
6.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 79-84, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39097892

ABSTRACT

The main objective of this work was to investigate the mechanism of Astragalus aqueous extract ulcer healing in diabetic foot model rats through the hypoxia-inducible factor 1-alpha (HIF-1ɑ)/vascular endothelial growth factor (VEGF) signalling pathway. Fifty specific-pathogen-free male Sprague Dawley rats were divided into blank (A), model control (B), Astragalus extract (C) and mupirocin (D) treatment groups. Group A received a regular diet, whereas the other groups received a high-fat/high-sugar diet and intraperitoneal streptozotocin injections to induce diabetes. Diabetic foot ulcers were created via skin excision. Subsequently, ulcers were debrided daily. Groups B, C and D received wet saline gauze, wet gauze with Astragalus extract and gauze with mupirocin, respectively, on the affected area. Group A received no treatment. After 14 days, the rats were assessed for ulcer healing and general condition. Immunohistochemistry was used to detect HIF-1ɑ and VEGF levels in the dorsalis pedis artery, and ELISA was used to determine serum IL-6 and CRP levels. The results revealed that Groups C and D had significantly faster ulcer healing compared with Group B (p < 0.01), and ulcer healing was faster in Group C than in Group D (p < 0.01). Group C exhibited notably higher HIF-1ɑ and VEGF protein expression levels compared with Groups B and D (p < 0.01). IL-6 and CRP expression levels in Groups C and D were significantly lower than those in Group B (p < 0.01). In summary, Astragalus aqueous extract effectively treats diabetic foot ulcers by up-regulating HIF-1ɑ and VEGF expression, activating the HIF-1ɑ/VEGF pathway, improving local tissue ischaemia and hypoxia, promoting collateral circulation and enhancing dorsalis pedis artery formation, thereby accelerating ulcer repair in diabetic rats.


Subject(s)
Astragalus Plant , Diabetic Foot , Hypoxia-Inducible Factor 1, alpha Subunit , Plant Extracts , Rats, Sprague-Dawley , Signal Transduction , Vascular Endothelial Growth Factor A , Wound Healing , Animals , Diabetic Foot/drug therapy , Diabetic Foot/metabolism , Male , Vascular Endothelial Growth Factor A/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Signal Transduction/drug effects , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Astragalus Plant/chemistry , Wound Healing/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Rats , Interleukin-6/metabolism , Interleukin-6/blood , C-Reactive Protein/metabolism
7.
Int J Mol Sci ; 25(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125660

ABSTRACT

Colostrum is gaining popularity in cosmetic products. The present study compared the composition and selected biological properties of colostrum from Polish sheep (colostrum 1) and Swiss sheep (colostrum 2), particularly those that can affect healthy or diseased skin. The antioxidant activity of the colostrums was measured using ABTS and DPPH assays. The effect on the proliferation of human skin fibroblasts, neonatal epidermal keratinocytes, and human diabetic fibroblast (dHF) cells isolated from diabetic foot ulcers was also assayed in vitro by MTT and Presto Blue tests, respectively. The colostrum simulated dHF cell proliferation by up to 115.4%. The highest used concentration of colostrum 1 stimulated normal fibroblast proliferation by 191.2% (24 h) and 222.2% (48 h). Both colostrums inhibited epidermal keratinocyte viability. The influence of the colostrums on the expression of genes related to proliferation (Ki67) and immune response (IL-6, PTGS-2, TSG-6) in dHF cells were compared. Colostrum 1 increased the rate of wound closure (scar test). Analysis of total fat, protein and fatty acid content found the Polish colostrum to be a richer source of fat than the Swiss colostrum, which contained a larger amount of protein. Both colostrums exhibit properties that suggest they could be effective components in cosmetic or medicinal formulations for skin care, especially supporting its regeneration, rejuvenation, and wound healing.


Subject(s)
Cell Proliferation , Colostrum , Fibroblasts , Keratinocytes , Skin Care , Colostrum/chemistry , Animals , Sheep , Humans , Cell Proliferation/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Keratinocytes/drug effects , Keratinocytes/metabolism , Skin Care/methods , Antioxidants/pharmacology , Female , Wound Healing/drug effects , Skin/metabolism , Cell Survival/drug effects , Pregnancy , Administration, Topical , Diabetic Foot/therapy , Diabetic Foot/drug therapy , Diabetic Foot/metabolism , Cells, Cultured
8.
J Diabetes Complications ; 38(1): 108671, 2024 01.
Article in English | MEDLINE | ID: mdl-38154217

ABSTRACT

AIMS: Growing preclinical and clinical evidence has suggested the potential method of umbilical cord mesenchymal stem cell (UCMSC) therapy for diabetic foot. Thus, the authors provided an outline of the application of UCMSCs in the treatment of diabetic foot and further summarized the roles and mechanisms of this therapy. DATA SYNTHESIS: With no time limitations, the authors searched the Web of Science, Cochrane Central Register of Controlled Trials, and PubMed (MEDLINE) databases. 14 studies were included, including 9 preclinical experiments and 5 clinical trials (3 RCTs and 2 single-arm trials). CONCLUSIONS: The UCMSCs are of great efficacy and safety, and function mainly by reducing inflammation, regulating immunity, promoting growth factors, and enhancing the functions of vascular endothelial cells, fibroblasts, and keratinocytes. As a result, ulcer healing-related biological processes ensue, which finally lead to diabetic foot ulcer healing and clinical symptom improvement. UCMSC treatment enhances diabetic foot ulcer healing and has a safety profile. They function mainly by modulating immunity, promoting growth factor secretion, and enhancing cellular functions. More well-designed preclinical and clinical studies are needed to provide the most optimal protocol, the comprehensive molecular mechanisms, as well as to further evaluate the efficiency and safety profile of UCMSC treatment in diabetic foot patients.


Subject(s)
Diabetic Foot , Mesenchymal Stem Cells , Humans , Diabetic Foot/metabolism , Endothelial Cells , Wound Healing
9.
Curr Pharm Des ; 30(6): 448-467, 2024.
Article in English | MEDLINE | ID: mdl-38343057

ABSTRACT

BACKGROUND: Chuang-Ling-Ye (CLY) has been clinically proven to be an effective Chinese medicine for the treatment of diabetic foot ulcers (DFU). OBJECTIVES: This study aimed to investigate the possible mechanism of CLY in relation to DFU using network pharmacology and molecular docking. MATERIALS AND METHODS: Firstly, relevant targets of CLY against DFU were obtained from TCMSP, Swiss Target Prediction database and GEO database. Then, topological analysis was employed by Cytoscape to screen the top 6 core active ingredients and the top 8 hub targets. Furthermore, the OmicShare Tools were applied for gene ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis. Finally, the results of network pharmacology were verified by molecular docking method. RESULTS: CLY has 61 active compounds and 361 targets after de-duplication, and the top 8 hub targets were EGFR, TP53, CCND1, IL-1B, CREBBP, AR, PTGS2 and PGR. GO enrichment analysis is mainly related to signal transducer activity, receptor activity, and molecular transducer activity. KEGG pathway analysis indicated that these shared targets were primarily focused on AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway, IL-17 signaling pathway, and JAK-STAT signaling pathway. Molecular docking results showed that physciondiglucoside, 2-cinnamoyl-glucose and kinobeon A were well bound with EGFR, IL-1B, AR and PTGS2. CONCLUSION: This study demonstrated that CLY has anti-oxidative stress and anti-inflammatory effects in the treatment of DFU through various constituents, multiple targets, and multiple pathways, which provides a valuable point of reference for future investigations on CLY.


Subject(s)
Diabetic Foot , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Diabetic Foot/drug therapy , Diabetic Foot/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Humans , Medicine, Chinese Traditional
10.
Sci Rep ; 14(1): 14120, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898068

ABSTRACT

Diabetic foot ulcer (DFU) is a leading cause of high-level amputation in DM patients, with a low wound healing rate and a high incidence of infection. Vascular endothelial growth factor (VEGF) plays an important role in diabetes mellitus (DM) related complications. This study aims to explore the VEGF expression and its predictive value for prognosis in DFU, in order to provide basis for the prevention of DFU related adverse events. We analyzed 502 patients, with 328 in healing group and 174 in non-healing/recurrent group. The general clinical data and laboratory indicators of patients were compared through Spearman correlation analysis, ROC analysis and logistic regression analysis. Finally, the independent risk factors for adverse prognosis in DFU patients were confirmed. Spearman analysis reveals a positive correlation between the DFU healing rate and ABI, VEGF in wound tissue, and positive rate of VEGF expression, and a negative correlation with DM duration, FPG, HbA1c, TC, Scr, BUN, and serum VEGF. Further logistic regression analysis finds that the DM duration, FPG, HbA1c, ABI, serum VEGF, VEGF in wound tissue, and positive rate of VEGF expression are the independent risk factors for adverse prognosis in DFU (p < 0.05). DM duration, FPG, HbA1c, ABI, serum VEGF, VEGF in wound tissue, and positive rate of VEGF expression are the independent risk factors for prognosis in DFU patients. Patients with these risk factors should be screened in time, which is of great significance to prevent DFU related adverse events and improve outcomes.


Subject(s)
Diabetic Foot , Vascular Endothelial Growth Factor A , Wound Healing , Humans , Diabetic Foot/metabolism , Male , Female , Risk Factors , Prognosis , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/blood , Middle Aged , Aged
11.
Immun Inflamm Dis ; 12(4): e1233, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38577990

ABSTRACT

OBJECTIVE: To observe the expression of inflammatory factors and autophagy-related proteins in granulation tissue of diabetic foot ulcer (DFU) patients and analyze their relationship with infection. METHODS: This is a retrospective cohort study. One hundred and fifty-two patients with DFU in our hospital from July 2020 to March 2022 were selected as the DFU group, including 98 cases in infection stage group and 54 cases in infection control group. The patients were further graded as the mild (51 cases), the moderate (65 cases), and the severe infection group (36 cases) according to the Wagner grading criteria. Sixty-seven patients with foot burns during the same period were selected as the control group. The distribution of pathogenic bacteria on the ulcer surface was examined using fully automated bacterial analyzer. The expression of inflammatory factors (procalcitonin [PCT], tumor necrosis factor-α [TNF-α], and interleukin-6 [IL-6]) was valued by real-time fluorescence quantitative PCR (qRT-PCR). Protein expression was measured by immunohistochemistry (IHC). The correlation was analyzed by Pearson. RESULTS: The surface infection of DFU patients was mostly induced by gram-negative and gram-positive bacteria, with Pseudomonas aeruginosa predominating among the Gram-negative bacteria and Staphylococcus aureus among the gram-positive bacteria. The infection stage group had higher content of PCT, TNF-α, and IL-6 and lower content of Beclin-1 and LC3 than the infection control group (p < .001). The levels of PCT, TNF-α, and IL-6 in the DFU patients with cardiovascular events were higher than those in the nonoccurrence group (p < .001). Glycated hemoglobin in patients with DFU was positively correlated with PCT, TNF-α, and IL-6 levels (p < .05), and negatively correlated with Beclin-1 and LC3 levels (p < .001). CONCLUSION: P. aeruginosa and S. aureus were predominant bacterial in DFU infections. Inflammatory factor and autophagy protein expression were closely correlated with the degree of infection.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Humans , Diabetic Foot/metabolism , Diabetic Foot/microbiology , Diabetic Foot/pathology , Tumor Necrosis Factor-alpha , Retrospective Studies , Interleukin-6 , Staphylococcus aureus , Beclin-1/genetics , Bacteria , Granulation Tissue/metabolism , Granulation Tissue/pathology , Autophagy
12.
Sci Adv ; 10(26): eadj2020, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38924411

ABSTRACT

Chronic wounds are a common and costly complication of diabetes, where multifactorial defects contribute to dysregulated skin repair, inflammation, tissue damage, and infection. We previously showed that aspects of the diabetic foot ulcer microbiota were correlated with poor healing outcomes, but many microbial species recovered remain uninvestigated with respect to wound healing. Here, we focused on Alcaligenes faecalis, a Gram-negative bacterium that is frequently recovered from chronic wounds but rarely causes infection. Treatment of diabetic wounds with A. faecalis accelerated healing during early stages. We investigated the underlying mechanisms and found that A. faecalis treatment promotes reepithelialization of diabetic keratinocytes, a process that is necessary for healing but deficient in chronic wounds. Overexpression of matrix metalloproteinases in diabetes contributes to failed epithelialization, and we found that A. faecalis treatment balances this overexpression to allow proper healing. This work uncovers a mechanism of bacterial-driven wound repair and provides a foundation for the development of microbiota-based wound interventions.


Subject(s)
Alcaligenes faecalis , Keratinocytes , Matrix Metalloproteinases , Wound Healing , Alcaligenes faecalis/metabolism , Animals , Keratinocytes/metabolism , Keratinocytes/microbiology , Humans , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Diabetic Foot/microbiology , Diabetic Foot/pathology , Diabetic Foot/metabolism , Mice , Re-Epithelialization , Male
13.
Aging (Albany NY) ; 16(8): 6883-6897, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38613800

ABSTRACT

BACKGROUND: Diabetic foot ulcers (DFUs) pose a serious long-term threat because of elevated mortality and disability risks. Research on its biomarkers is still, however, very limited. In this paper, we have effectively identified biomarkers linked with macrophage excretion in diabetic foot ulcers through the application of bioinformatics and machine learning methodologies. These findings were subsequently validated using external datasets and animal experiments. Such discoveries are anticipated to offer novel insights and approaches for the early diagnosis and treatment of DFU. METHODS: In this work, we used the Gene Expression Omnibus (GEO) database's datasets GSE68183 and GSE80178 as the training dataset to build a gene model using machine learning methods. After that, we used the training and validation sets to validate the model (GSE134431). On the model genes, we performed enrichment analysis using both gene set variant analysis (GSVA) and gene set enrichment analysis (GSEA). Additionally, the model genes were subjected to immunological association and immune function analyses. RESULTS: In this study, PROS1 was identified as a potential key target associated with macrophage efflux in DFU by machine learning and bioinformatics approaches. Subsequently, the key biomarker status of PROS1 in DFU was also confirmed by external datasets. In addition, PROS1 also plays a key role in macrophage exudation in DFU. This gene may be associated with macrophage M1, CD4 memory T cells, naïve B cells, and macrophage M2, and affects IL-17, Rap1, hedgehog, and JAK-STAT signaling pathways. CONCLUSIONS: PROS1 was identified and validated as a biomarker for DFU. This finding has the potential to provide a target for macrophage clearance of DFU.


Subject(s)
Diabetic Foot , Machine Learning , Macrophages , Protein S , Humans , Biomarkers/metabolism , Computational Biology , Diabetic Foot/genetics , Diabetic Foot/metabolism , Efferocytosis , Macrophages/metabolism , Phagocytosis/genetics , Protein S/genetics
14.
Photobiomodul Photomed Laser Surg ; 42(4): 275-284, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38536106

ABSTRACT

Background: Impaired angiogenesis is a significant factor contributing to delayed healing in diabetic foot ulcers (DFUs) due to inadequate oxygenation. Objective: This study aimed to investigate the impact of photobiomodulation (PBM) using a Ga-As laser on the release of serum hypoxia-inducible factor 1-α (HIF-1α), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor-2, and nitric oxide (NO) in diabetic patients with DFUs. Materials and methods: In this double-blind RCT, a total of 30 patients with grade II DFUs were enrolled. The patients were randomly divided into two groups: the PBM (n = 15) and the placebo (n = 15). In the PBM group, a Ga-As laser (904 nm, 2 J/cm2, 90 W) was given for 3 days/week for 4 weeks (11 sessions). In the placebo group, the power was turned off. Both groups received similar standard wound care. Before and after interventions, the levels of serum HIF-1α, VEGF, NO, and sVEGFR-2 were measured. In addition, the percentage decrease in the wound surface area (%DWSA) was measured. Results: Following the intervention, the results revealed that the PBM group had significantly lower levels of VEGF than the placebo group (p = 0.005). The %DWSA was significantly higher in the PBM group compared to the placebo group (p = 0.003). Moreover, VEGF showed a significant negative correlation with %DWSA (p < 0.001). Conclusions: The observed decrease in serum levels of VEGF and an increase in %DWSA, compared to the placebo group, suggests that PBM effectively improves angiogenesis. Furthermore, the significant correlation found between VEGF levels and %DWSA emphasizes the importance of evaluating wound surface in patients as a dependable indicator of enhanced wound angiogenesis. Clinical Trial Registration: NCT02452086.


Subject(s)
Diabetic Foot , Hypoxia-Inducible Factor 1, alpha Subunit , Low-Level Light Therapy , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-2 , Wound Healing , Humans , Diabetic Foot/radiotherapy , Diabetic Foot/therapy , Diabetic Foot/metabolism , Male , Female , Double-Blind Method , Middle Aged , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/blood , Vascular Endothelial Growth Factor Receptor-2/metabolism , Wound Healing/radiation effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Aged , Nitric Oxide/metabolism , Nitric Oxide/blood
15.
Transl Res ; 270: 13-23, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38548174

ABSTRACT

BACKGROUND: Post-ischemic angiogenesis is critical for perfusion recovery and tissue repair. ELABELA (ELA) plays an essential role in embryonic heart development and vasculogenesis. However, the mechanism of ELA on post-ischemic angiogenesis is poorly characterized. METHODS: We first assessed ELA expression after hind limb ischemia (HLI) in mice. We then established a HLI model in tamoxifen-inducible endothelial-ELA-specific knockout mice (ELAECKO) and assessed the rate of perfusion recovery, capillary density, and VEGFR2 pathway. Knockdown of ELA with lentivirus or siRNA and exogenous addition of ELA peptides were employed to analyze the effects of ELA on angiogenic capacity and VEGFR2 pathway in endothelial cells in vitro. The serum levels of ELA in healthy people and patients with type 2 diabetes mellitus (T2DM) and diabetic foot ulcer (DFU) were detected by a commercial ELISA kit. RESULTS: In murine HLI models, ELA was significantly up-regulated in the ischemic hindlimb. Endothelial-specific deletion of ELA impaired perfusion recovery and angiogenesis. In physiologic conditions, no significant difference in VEGFR2 expression was found between ELAECKO mice and ELAWT mice. After ischemia, the expression of VEGFR2, p-VEGFR2, and p-AKT was significantly lower in ELAECKO mice than in ELAWT mice. In cellular experiments, the knockdown of ELA inhibited endothelial cell proliferation and tube formation, and the addition of ELA peptides promoted proliferation and tube formation. Mechanistically, ELA upregulated the expression of VEGFR2, p-VEGFR2, and p-AKT in endothelial cells under hypoxic conditions. In clinical investigations, DFU patients had significantly lower serum levels of ELA compared to T2DM patients. CONCLUSION: Our results indicated that endothelial ELA is a positive regulator of post-ischemic angiogenesis via upregulating VEGFR2 expression. Targeting ELA may be a potential therapeutic option for peripheral arterial diseases.


Subject(s)
Hindlimb , Ischemia , Mice, Knockout , Neovascularization, Physiologic , Up-Regulation , Vascular Endothelial Growth Factor Receptor-2 , Animals , Vascular Endothelial Growth Factor Receptor-2/metabolism , Ischemia/metabolism , Ischemia/genetics , Humans , Mice , Hindlimb/blood supply , Male , Diabetes Mellitus, Type 2/metabolism , Mice, Inbred C57BL , Diabetic Foot/metabolism , Diabetic Foot/genetics , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Angiogenesis
16.
PLoS One ; 19(7): e0307205, 2024.
Article in English | MEDLINE | ID: mdl-39037979

ABSTRACT

BACKGROUND: Diabetic foot ulcers (DFUs), a serious complication of diabetes, are associated with abnormal extracellular protein (EP) metabolism. The identification of key EPs and their regulatory networks is crucial for the understanding of DFU formation and development of effective treatments. In this study, a large-scale bioinformatics analysis was conducted to identify potential therapeutic targets and experimental validation was performed to ensure the reliability and biological relevance of the findings. METHODS: Due to the comprehensive profiling of DFU samples provided by the GSE80178 dataset, we initially selected it to derive differentially expressed genes (DEGs) associated with DFU. Subsequently, utilizing the UniProt database and annotated EP list from the Human Protein Atlas annotation database, we screened for extracellular protein-related differentially expressed genes (EP-DEGs) due to their crucial role in the pathogenesis and healing of DFU. We examined EP-DEG pathway enrichment and protein-protein interaction networks, analyzed paired full-thickness skin tissue samples from 24 patients with DFUs and healthy controls, and performed polymerase chain reaction (PCR) experiments to validate candidate genes. Ultimately, we constructed a transcription factor (TF)-microRNA (miRNA)-hub gene co-regulatory network to explore upstream and downstream regulatory connections based on validated DEGs. RESULTS: Four crucial candidate genes (FMOD, LUM, VCAN, and S100A12) were identified and verified via PCR analysis. The TF-miRNA-hub EP-DEG regulatory network contained the pivotal TFs TRIM28 and STAT3 and the miRNAs hsa-mir-20a-5p, hsa-miR-21, and hsa-miR-203. CONCLUSION: The findings of this study advance our understanding of the pathology of DFU by defining key roles of specific EPs and elucidating a comprehensive regulatory network. These insights pave the way for novel approaches to improve DFU treatment outcomes.


Subject(s)
Computational Biology , Diabetic Foot , Gene Regulatory Networks , MicroRNAs , Protein Interaction Maps , Humans , Diabetic Foot/genetics , Diabetic Foot/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Computational Biology/methods , Protein Interaction Maps/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Profiling , Male , Female
17.
PLoS One ; 19(7): e0306248, 2024.
Article in English | MEDLINE | ID: mdl-38950058

ABSTRACT

Diabetic foot ulcers (DFUs) pose a significant challenge in diabetes care. Yet, a comprehensive understanding of the underlying biological disparities between healing and non-healing DFUs remains elusive. We conducted bioinformatics analysis of publicly available transcriptome sequencing data in an attempt to elucidate these differences. Our analysis encompassed differential analysis to unveil shifts in cell composition and gene expression profiles between non-healing and healing DFUs. Cell communication alterations were explored employing the Cellchat R package. Pseudotime analysis and cytoTRACE allowed us to dissect the heterogeneity within fibroblast subpopulations. Our findings unveiled disruptions in various cell types, localized low-grade inflammation, compromised systemic antigen processing and presentation, and extensive extracellular matrix signaling disarray in non-healing DFU patients. Some of these anomalies partially reverted in healing DFUs, particularly within the abnormal ECM-receptor signaling pathway. Furthermore, we distinguished distinct fibroblast subpopulations in non-healing and healing DFUs, each with unique biological functions. Healing-associated fibroblasts exhibited heightened extracellular matrix (ECM) remodeling and a robust wound healing response, while non-healing-associated fibroblasts showed signs of cellular senescence and complement activation, among other characteristics. This analysis offers profound insights into the wound healing microenvironment, identifies pivotal cell types for DFU healing promotion, and reveals potential therapeutic targets for DFU management.


Subject(s)
Diabetic Foot , Fibroblasts , Single-Cell Analysis , Transcriptome , Wound Healing , Diabetic Foot/genetics , Diabetic Foot/pathology , Diabetic Foot/metabolism , Humans , Wound Healing/genetics , Single-Cell Analysis/methods , Fibroblasts/metabolism , Fibroblasts/pathology , Extracellular Matrix/metabolism , Extracellular Matrix/genetics , Gene Expression Profiling , Signal Transduction/genetics
18.
Front Endocrinol (Lausanne) ; 15: 1326179, 2024.
Article in English | MEDLINE | ID: mdl-38774229

ABSTRACT

Aims/hypothesis: The aim of this substudy (Eudra CT No:2019-001997-27)was to assess ATB availability in patients with infected diabetic foot ulcers(IDFUs)in the context of microcirculation and macrocirculation status. Methods: For this substudy, we enrolled 23 patients with IDFU. Patients were treated with boluses of amoxicillin/clavulanic acid(AMC)(12patients) or ceftazidime(CTZ)(11patients). After induction of a steady ATB state, microdialysis was performed near the IDFU. Tissue fluid samples from the foot and blood samples from peripheral blood were taken within 6 hours. ATB potential efficacy was assessed by evaluating the maximum serum and tissue ATB concentrations(Cmax and Cmax-tissue)and the percentage of time the unbound drug tissue concentration exceeds the minimum inhibitory concentration (MIC)(≥100% tissue and ≥50%/60% tissue fT>MIC). Vascular status was assessed by triplex ultrasound, ankle-brachial and toe-brachial index tests, occlusive plethysmography comprising two arterial flow phases, and transcutaneous oxygen pressure(TcPO2). Results: Following bolus administration, the Cmax of AMC was 91.8 ± 52.5 µgmL-1 and the Cmax-tissue of AMC was 7.25 ± 4.5 µgmL-1(P<0.001). The Cmax for CTZ was 186.8 ± 44.1 µgmL-1 and the Cmax-tissue of CTZ was 18.6 ± 7.4 µgmL-1(P<0.0001). Additionally, 67% of patients treated with AMC and 55% of those treated with CTZ achieved tissue fT>MIC levels exceeding 50% and 60%, respectively. We observed positive correlations between both Cmax-tissue and AUCtissue and arterial flow. Specifically, the correlation coefficient for the first phase was r=0.42; (P=0.045), and for the second phase, it was r=0.55(P=0.01)and r=0.5(P=0.021). Conclusions: Bactericidal activity proved satisfactory in only half to two-thirds of patients with IDFUs, an outcome that appears to correlate primarily with arterial flow.


Subject(s)
Anti-Bacterial Agents , Diabetic Foot , Microcirculation , Humans , Diabetic Foot/drug therapy , Diabetic Foot/metabolism , Microcirculation/drug effects , Male , Female , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Middle Aged , Aged , Administration, Intravenous
19.
Cell Rep Med ; 5(6): 101588, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38781961

ABSTRACT

Tibial cortex transverse distraction is a surgical method for treating severe diabetic foot ulcers (DFUs), but the underlying mechanism is unclear. We show that antioxidant proteins and small extracellular vesicles (sEVs) with multiple-tissue regenerative potential are released during bone transport (BT) in humans and rats. These vesicles accumulate in diabetic wounds and are enriched with microRNAs (miRNAs) (e.g., miR-494-3p) that have high regenerative activities that improve the circulation of ischemic lower limbs while also promoting neovascularization, fibroblast migration, and nerve fiber regeneration. Deletion of miR-494-3p in rats reduces the beneficial effects of BT on diabetic wounds, while hydrogels containing miR-494-3p and reduced glutathione (GSH) effectively repair them. Importantly, the ginsenoside Rg1 can upregulate miR-494-3p, and a randomized controlled trial verifies that the regimen of oral Rg1 and GSH accelerates wound healing in refractory DFU patients. These findings identify potential functional factors for tissue regeneration and suggest a potential therapy for DFUs.


Subject(s)
Wound Healing , Animals , Wound Healing/drug effects , Humans , Rats , Male , MicroRNAs/metabolism , MicroRNAs/genetics , Extracellular Vesicles/metabolism , Rats, Sprague-Dawley , Diabetic Foot/metabolism , Diabetic Foot/pathology , Diabetes Mellitus, Experimental/metabolism , Glutathione/metabolism , Middle Aged , Regeneration/drug effects , Female , Bone and Bones/metabolism
20.
Kaohsiung J Med Sci ; 40(5): 422-434, 2024 May.
Article in English | MEDLINE | ID: mdl-38385859

ABSTRACT

Diabetic foot ulcer (DFU) is a serious complication of diabetic patients which negatively affects their foot health. This study aimed to estimate the role and mechanism of the miR-200 family in DNA damage of diabetic wound healing. Human foreskin fibroblasts (HFF-1 cells) were stimulated with high glucose (HG). Db/db mice were utilized to conduct the DFU in vivo model. Cell viability was evaluated using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assays. Superoxide dismutase activity was determined using detection kits. Reactive oxygen species determination was conducted via dichlorodihydrofluorescein-diacetate assays. Enzyme-linked immunosorbent assay was used to evaluate 8-oxo-7,8-dihydro-2'deoxyguanosine levels. Genes and protein expression were analyzed by quantitative real-time polymerase chain reaction, western blotting, or immunohistochemical analyses. Luciferase reporter gene and RNA immunoprecipitation assays determined the interaction with miR-200a/b/c-3p and GLI family zinc finger protein 2 (GLI2) or ataxia telangiectasia mutated (ATM) kinase. HG repressed cell proliferation and DNA damage repair, promoted miR-200a/b/c-3p expression, and suppressed ATM and GLI2. MiR-200a/b/c-3p inhibition ameliorated HG-induced cell proliferation and DNA damage repair repression. MiR-200a/b/c-3p targeted ATM. Then, the silenced ATM reversed the miR-200a/b/c-3p inhibition-mediated alleviative effects under HG. Next, GLI2 overexpression alleviated the HG-induced cell proliferation and DNA damage repair inhibition via miR-200a/b/c-3p. MiR-200a/b/c-3p inhibition significantly promoted DNA damage repair and wound healing in DFU mice. GLI2 promoted cell proliferation and DNA damage repair by regulating the miR-200/ATM axis to enhance diabetic wound healing in DFU.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , DNA Repair , Fibroblasts , MicroRNAs , Wound Healing , Animals , Humans , Mice , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Proliferation , Diabetic Foot/pathology , Diabetic Foot/metabolism , Diabetic Foot/genetics , DNA Damage , Fibroblasts/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction , Skin/pathology , Skin/metabolism , Wound Healing/genetics
SELECTION OF CITATIONS
SEARCH DETAIL