Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.120
Filter
Add more filters

Publication year range
1.
Anal Chem ; 95(18): 7178-7185, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37102678

ABSTRACT

Membrane proteins are vital in the human proteome for their cellular functions and make up a majority of drug targets in the U.S. However, characterizing their higher-order structures and interactions remains challenging. Most often membrane proteins are studied in artificial membranes, but such artificial systems do not fully account for the diversity of components present in cell membranes. In this study, we demonstrate that diethylpyrocarbonate (DEPC) covalent labeling mass spectrometry can provide binding site information for membrane proteins in living cells using membrane-bound tumor necrosis factor α (mTNFα) as a model system. Using three therapeutic monoclonal antibodies that bind TNFα, our results show that residues that are buried in the epitope upon antibody binding generally decrease in DEPC labeling extent. Additionally, serine, threonine, and tyrosine residues on the periphery of the epitope increase in labeling upon antibody binding because of a more hydrophobic microenvironment that is created. We also observe changes in labeling away from the epitope, indicating changes to the packing of the mTNFα homotrimer, compaction of the mTNFα trimer against the cell membrane, and/or previously uncharacterized allosteric changes upon antibody binding. Overall, DEPC-based covalent labeling mass spectrometry offers an effective means of characterizing structure and interactions of membrane proteins in living cells.


Subject(s)
Membrane Proteins , Tyrosine , Humans , Diethyl Pyrocarbonate/chemistry , Mass Spectrometry/methods , Cell Membrane , Protein Binding
2.
Anal Chem ; 94(2): 1003-1010, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34962759

ABSTRACT

In this work, we use diethylpyrocarbonate (DEPC)-based covalent labeling together with LC-MS/MS analysis to distinguish the two sidechain tautomers of histidine residues in peptides and proteins. From labeling experiments on model peptides, we demonstrate that DEPC reacts equally with both tautomeric forms to produce chemically different products with distinct dissociation patterns and LC retention times, allowing the ratios of the two tautomers to be determined in peptides and proteins. Upon measuring the tautomer ratios of several histidine residues in myoglobin, we find good agreement with previous 2D NMR data on this protein. Because our DEPC labeling/MS approach is simpler, faster, and more precise than 2D NMR, our method will be a valuable way to determine how protein structure enforces histidine sidechain tautomerization. Because the tautomeric state of histidine residues is often important for protein structure and function, the ability of DEPC labeling/MS to distinguish histidine tautomers should equip researchers with a tool to understand the histidine residue structure and function more deeply in proteins.


Subject(s)
Histidine , Tandem Mass Spectrometry , Chromatography, Liquid , Diethyl Pyrocarbonate/chemistry , Isomerism
3.
Anal Chem ; 94(2): 1052-1059, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34932327

ABSTRACT

Antigen-antibody epitope mapping is essential for understanding binding mechanisms and developing new protein therapeutics. In this study, we investigate diethylpyrocarbonate (DEPC) covalent labeling-mass spectrometry as a means of analyzing antigen-antibody interactions using the well-characterized model system of TNFα in complex with three different antibodies. Results show that residues buried in the epitope undergo substantial decreases in labeling, as expected. Interestingly, serine, threonine, and tyrosine residues at the edges of the epitope undergo unexpected increases in labeling. The increased labeling of these weakly nucleophilic residues is caused by the formation of hydrophobic pockets upon antibody binding that presumably increase local DEPC concentrations. Residues that are distant from the epitope generally do not undergo changes in labeling extent; however, some that do change experience variations in their local microenvironment due to side-chain reorganization or stabilization of the TNFα trimer that occurs upon binding. Overall, DEPC labeling of antigen-antibody complexes is found to depend on both changes in solvent exposure and changes to the residue microenvironment.


Subject(s)
Threonine , Tyrosine , Diethyl Pyrocarbonate/chemistry , Epitope Mapping , Mass Spectrometry/methods
4.
Anal Chem ; 93(23): 8188-8195, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34061512

ABSTRACT

Diethylpyrocarbonate (DEPC) labeling analyzed with mass spectrometry can provide important insights into higher order protein structures. It has been previously shown that neighboring hydrophobic residues promote a local increase in DEPC concentration such that serine, threonine, and tyrosine residues are more likely to be labeled despite low solvent exposure. In this work, we developed a Rosetta algorithm that used the knowledge of labeled and unlabeled serine, threonine, and tyrosine residues and assessed their local hydrophobic environment to improve protein structure prediction. Additionally, DEPC-labeled histidine and lysine residues with higher relative solvent accessible surface area values (i.e., more exposed) were scored favorably. Application of our score term led to reductions of the root-mean-square deviations (RMSDs) of the lowest scoring models. Additionally, models that scored well tended to have lower RMSDs. A detailed tutorial describing our protocol and required command lines is included. Our work demonstrated the considerable potential of DEPC covalent labeling data to be used for accurate higher order structure determination.


Subject(s)
Proteins , Tyrosine , Diethyl Pyrocarbonate , Histidine , Mass Spectrometry
5.
Anal Chem ; 91(23): 15248-15254, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31664819

ABSTRACT

Hydrogen-deuterium exchange (HDX) mass spectrometry (MS) and covalent labeling (CL) MS are typically considered to be complementary methods for protein structural analysis, because one probes the protein backbone, while the other probes side chains. For protein-ligand interactions, we demonstrate in this work that the two labeling techniques can provide synergistic structural information about protein-ligand binding when reagents like diethylpyrocarbonate (DEPC) are used for CL because of the differences in the reaction rates of DEPC and HDX. Using three model protein-ligand systems, we show that the slower time scale for DEPC labeling makes it only sensitive to changes in solvent accessibility and insensitive to changes in protein structural fluctuations, whereas HDX is sensitive to changes in both solvent accessibility and structural fluctuations. When used together, the two methods more clearly reveal binding sites and ligand-induced changes to structural fluctuations that are distant from the binding site, which is more comprehensive information than either technique alone can provide. We predict that these two methods will find widespread usage together for more deeply understanding protein-ligand interactions.


Subject(s)
Diethyl Pyrocarbonate/chemistry , Hydrogen Deuterium Exchange-Mass Spectrometry , Proteins/chemistry , Ligands , Models, Molecular
6.
Anal Chem ; 91(13): 8516-8523, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31150223

ABSTRACT

Covalent labeling with mass spectrometry is increasingly being used for the structural analysis of proteins. Diethylpyrocarbonate (DEPC) is a simple to use, commercially available covalent labeling reagent that can readily react with a range of nucleophilic residues in proteins. We find that in intact proteins weakly nucleophilic side chains (Ser, Thr, and Tyr) can be modified by DEPC in addition to other residues such as His, Lys, and Cys, providing very good structural resolution. We hypothesize that the microenvironment around these side chains, as formed by a protein's higher order structure, tunes their reactivity such that they can be labeled. To test this hypothesis, we compare DEPC labeling reactivity of Ser, Thr, and Tyr residues in intact proteins with peptide fragments from the same proteins. Results indicate that these residues almost never react with DEPC in free peptides, supporting the hypothesis that a protein's local microenvironment tunes the reactivity of these residues. From a close examination of the structural features near the reactive residues, we find that nearby hydrophobic residues are essential, suggesting that the enhanced reactivity of certain Ser, Thr, and Tyr residues occurs due to higher local concentrations of DEPC.


Subject(s)
Diethyl Pyrocarbonate/chemistry , Human Growth Hormone/analysis , Peptide Fragments/analysis , Ubiquitin/analysis , beta 2-Microglobulin/analysis , Human Growth Hormone/chemistry , Humans , Mass Spectrometry , Peptide Fragments/chemistry , Protein Conformation , Serine/chemistry , Threonine/chemistry , Tyrosine/chemistry , Ubiquitin/chemistry , beta 2-Microglobulin/chemistry
7.
J Biol Inorg Chem ; 24(1): 117-135, 2019 02.
Article in English | MEDLINE | ID: mdl-30523412

ABSTRACT

The CuA center is the initial electron acceptor in cytochrome c oxidase, and it consists of two copper ions bridged by two cysteines and ligated by two histidines, a methionine, and a carbonyl in the peptide backbone of a nearby glutamine. The two ligating histidines are of particular interest as they may influence the electronic and redox properties of the metal center. To test for the presence of reactive ligating histidines, a portion of cytochrome c oxidase from the bacteria Thermus thermophilus that contains the CuA site (the TtCuA protein) was treated with the chemical modifier diethyl pyrocarbonate (DEPC) and the reaction followed through UV-visible, circular dichroism, and electron paramagnetic resonance spectroscopies at pH 5.0-9.0. A mutant protein (H40A/H117A) with the non-ligating histidines removed was similarly tested. Introduction of an electron-withdrawing DEPC-modification onto the ligating histidine 157 of TtCuA increased the reduction potential by over 70 mV, as assessed by cyclic voltammetry. Results from both proteins indicate that DEPC reacts with one of the two ligating histidines, modification of a ligating histidine raises the reduction potential of the CuA site, and formation of the DEPC adduct is reversible at room temperature. The existence of the reactive ligating histidine suggests that this residue may play a role in modulating the electronic and redox properties of TtCuA through kinetically-controlled proton exchange with the solvent. Lack of reactivity by the metalloproteins Sco and azurin, both of which contain a mononuclear copper center, indicate that reactivity toward DEPC is not a characteristic of all ligating histidines.


Subject(s)
Bacterial Proteins/chemistry , Diethyl Pyrocarbonate/chemistry , Electron Transport Complex IV/chemistry , Histidine/chemistry , Thermus thermophilus/chemistry , Bacterial Proteins/metabolism , Copper/chemistry , Copper/metabolism , Diethyl Pyrocarbonate/metabolism , Electron Transport Complex IV/metabolism , Histidine/metabolism , Models, Molecular , Oxidation-Reduction , Thermus thermophilus/enzymology , Thermus thermophilus/metabolism
8.
Biochim Biophys Acta ; 1860(4): 719-26, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26777153

ABSTRACT

BACKGROUND: The misfolding of human islet amyloid polypeptide (hIAPP) is an important pathological factor on the onset of type 2 diabetes. A number of studies have been focused on His(18), the only histidine of hIAPP, whose imidazole ring and the protonation state might impact hIAPP amyloid formation, but the exact mechanism remains unclear. METHODS: We used diethylpyrocarbonate (DEPC) to specifically modify His(18) and obtained mono-ethyloxyformylated hIAPP (DMI). Thioflavin T based fluorescence, transmission electronic microscopy, circular dichroism spectroscopy, fluorescence dye leakage, Fourier transform infrared spectroscopy and replica-exchange molecular dynamics (REMD) simulation were applied to study the impact of DEPC-modification on hIAPP amyloid formation. RESULTS: After an ethyl-acetate group was introduced to the His(18) of hIAPP by diethylpyrocarbonate (DEPC) modification, the pH dependent hIAPP fibrillation went to the opposite order and the number of intra-molecular hydrogen bonds decreased, while the possibility of His(18) participating in the formation of α-helical structures increased. Furthermore, the membrane-peptide interaction and ion-peptide interaction were both impaired. CONCLUSIONS: The intramolecular hydrogen bond formation by His(18) and the possibility of His(18) participating in the formation of α-helical structures greatly modulated the manner of hIAPP amyloid formation. The imidazole ring directly participates in the hIAPP-membrane/ion interaction. GENERAL SIGNIFICANCE: DEPC modification is an alternative approach to investigate the role of the imidazole ring during amyloid formation.


Subject(s)
Diethyl Pyrocarbonate/chemistry , Imidazoles/chemistry , Islet Amyloid Polypeptide/chemistry , Molecular Dynamics Simulation , Multiprotein Complexes/chemistry , Thiazoles/chemistry , Benzothiazoles , Humans , Islet Amyloid Polypeptide/genetics , Islet Amyloid Polypeptide/metabolism , Protein Structure, Secondary
9.
Biochim Biophys Acta Biomembr ; 1859(3): 377-387, 2017 03.
Article in English | MEDLINE | ID: mdl-28011176

ABSTRACT

In search for new effective uncouplers of oxidative phosphorylation, we studied 4-aryl amino derivatives of a fluorescent group 7-nitrobenz-2-oxa-1,3-diazol (NBD). In our recent work (Denisov et al., Bioelectrochemistry, 2014), NBD-conjugated alkyl amines (NBD-Cn) were shown to exhibit uncoupling activity. It was concluded that despite a pKa value being about 10, the expected hindering of the uncoupling activity could be overcome by insertion of an alkyl chain. There is evidence in the literature that the introduction of an aryl substituent in the 4-amino NBD group shifts the pKa to neutral values. Here we report the data on the properties of a number of 4-arylamino derivatives of NBD, namely, alkylphenyl-amino-NBD (Cn-phenyl-NBD) with varying alkyl chain Cn. By measuring the electrical current across planar bilayer lipid membrane, the protonophoric activity of Cn-phenyl-NBD at neutral pH grew monotonously from C1- to C6-phenyl-NBD. All of these compounds increased the respiration rate and reduced the membrane potential of isolated rat liver mitochondria. Importantly, the uncoupling action of C6- and C4-phenyl-NBD was partially reversed by glutamate, diethyl pyrocarbonate (DEPC), 6-ketocholestanol, and carboxyatractyloside, thus pointing to the involvement of membrane proteins in the uncoupling activity of Cn-phenyl-NBD in mitochondria. The pronounced recoupling effect of DEPC, an inhibitor of an aspartate-glutamate carrier (AGC), and that of its substrates for the first time highlighted AGC participation in the action of potent uncouplers on mitochondria. C6-phenyl-NBD produced strong antimicrobial effect on Bacillus subtilis, which manifested itself in cell membrane depolarization and suppression of bacterial growth at submicromolar concentrations.


Subject(s)
Anti-Bacterial Agents/pharmacology , Membrane Proteins/chemistry , Oxadiazoles/chemistry , Oxidative Phosphorylation/drug effects , Amino Acid Transport Systems, Acidic/chemistry , Amino Acid Transport Systems, Acidic/metabolism , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Antiporters/chemistry , Antiporters/metabolism , Bacillus subtilis/drug effects , Diethyl Pyrocarbonate/chemistry , Diethyl Pyrocarbonate/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Membrane Potentials/drug effects , Membrane Proteins/metabolism , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Oxadiazoles/metabolism , Oxadiazoles/pharmacology , Rats
10.
Anal Chem ; 89(3): 1459-1468, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28208298

ABSTRACT

Mass spectrometry (MS) has become an indispensable tool for investigating the architectures and dynamics of macromolecular assemblies. Here we show that covalent labeling of solvent accessible residues followed by their MS-based identification yields modeling restraints that allow mapping the location and orientation of subunits within protein assemblies. Together with complementary restraints derived from cross-linking and native MS, we built native-like models of four heterocomplexes with known subunit structures and compared them with available X-ray crystal structures. The results demonstrated that covalent labeling followed by MS markedly increased the predictive power of the integrative modeling strategy enabling more accurate protein assembly models. We applied this strategy to the F-type ATP synthase from spinach chloroplasts (cATPase) providing a structural basis for its function as a nanomotor. By subjecting the models generated by our restraint-based strategy to molecular dynamics (MD) simulations, we revealed the conformational states of the peripheral stalk and assigned flexible regions in the enzyme. Our strategy can readily incorporate complementary chemical labeling strategies and we anticipate that it will be applicable to many other systems providing new insights into the structure and function of protein complexes.


Subject(s)
Chloroplast Proton-Translocating ATPases/analysis , Tandem Mass Spectrometry/methods , Area Under Curve , Chloroplasts/enzymology , Chromatography, High Pressure Liquid , Crystallography, X-Ray , Diethyl Pyrocarbonate/chemistry , Molecular Dynamics Simulation , Protein Subunits/analysis , ROC Curve , Spinacia oleracea/enzymology
11.
Yeast ; 34(9): 359-370, 2017 09.
Article in English | MEDLINE | ID: mdl-28556381

ABSTRACT

Zygosaccharomyces bailii is a non-Saccharomyces budding yeast known as one of the most aggressive food spoilage microorganisms, often isolated as a contaminant during wine fermentation, as well as from many acidic, high-sugar and canned foods. The spoilage ability relies on the yeast's unique feature of tolerating the most common preservatives such as sulphite, dimethyl dicarbonate, acetic acid and sorbic acid. Therefore, many studies have focused on the description of this peculiar tolerance with the aim of developing preventative measures against Z. bailii food spoilage. These studies demonstrated the involvement of diverse molecular and physiological mechanisms in the yeast resistance, comprising detoxification of preservatives, adaptation of the cytoplasmic pH and modulation of the cell wall/membrane composition. At the same time, the described traits unveiled Z. bailii as a novel potential workhorse for industrial bioprocesses. Here we present the yeast Z. bailii starting from important aspects of its robustness and concluding with the exploitation of its potential in biotechnology. Overall, the article describes Z. bailii from different perspectives, converging in presenting it as one of the most interesting species of the Saccharomycotina subphylum. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Drug Resistance, Fungal , Food Contamination/prevention & control , Food Preservatives/pharmacology , Zygosaccharomyces/drug effects , Acetic Acid/pharmacology , Adaptation, Physiological , Diethyl Pyrocarbonate/analogs & derivatives , Diethyl Pyrocarbonate/pharmacology , Fermentation , Food, Preserved/microbiology , Hydrogen-Ion Concentration , Sorbic Acid/pharmacology , Sulfites/pharmacology , Wine/microbiology , Zygosaccharomyces/genetics , Zygosaccharomyces/metabolism
12.
Biochemistry ; 54(28): 4285-96, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26098795

ABSTRACT

Early stage oligomer formation of the huntingtin protein may be driven by self-association of the 17-residue amphipathic α-helix at the protein's N-terminus (Nt17). Oligomeric structures have been implicated in neuronal toxicity and may represent important neurotoxic species in Huntington's disease. Therefore, a residue-specific structural characterization of Nt17 is crucial to understanding and potentially inhibiting oligomer formation. Native electrospray ion mobility spectrometry-mass spectrometry (IMS-MS) techniques and molecular dynamics simulations (MDS) have been applied to study coexisting monomer and multimer conformations of Nt17, independent of the remainder of huntingtin exon 1. MDS suggests gas-phase monomer ion structures comprise a helix-turn-coil configuration and a helix-extended-coil region. Elongated dimer species comprise partially helical monomers arranged in an antiparallel geometry. This stacked helical bundle may represent the earliest stages of Nt17-driven oligomer formation. Nt17 monomers and multimers have been further probed using diethylpyrocarbonate (DEPC). An N-terminal site (N-terminus of Threonine-3) and Lysine-6 are modified at higher DEPC concentrations, which led to the formation of an intermediate monomer structure. These modifications resulted in decreased extended monomer ion conformers, as well as a reduction in multimer formation. From the MDS experiments for the dimer ions, Lys6 residues in both monomer constituents interact with Ser16 and Glu12 residues on adjacent peptides; therefore, the decrease in multimer formation could result from disruption of these or similar interactions. This work provides a structurally selective model from which to study Nt17 self-association and provides critical insight toward Nt17 multimerization and, possibly, the early stages of huntingtin exon 1 aggregation.


Subject(s)
Nerve Tissue Proteins/chemistry , Diethyl Pyrocarbonate/chemistry , Humans , Huntingtin Protein , Lysine/chemistry , Mass Spectrometry , Molecular Dynamics Simulation , Peptides/chemistry , Protein Conformation , Protein Multimerization , Protein Stability , Protein Structure, Secondary , Threonine/chemistry
13.
Biochemistry ; 54(40): 6274-83, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26426430

ABSTRACT

C4'-oxidized (C4-AP) and C5'-oxidized abasic sites (DOB) that are produced following abstraction of a hydrogen atom from the DNA backbone reversibly form cross-links selectively with dA opposite a 3'-adjacent nucleotide, despite the comparable proximity of an opposing dA. A previous report on UvrABC incision of DNA substrates containing stabilized analogues of the ICLs derived from C4-AP and DOB also indicated that the latter is repaired more readily by nucleotide excision repair [Ghosh, S., and Greenberg, M. M. (2014) Biochemistry 53, 5958-5965]. The source for selective cross-link formation was probed by comparing the reactivity of ICL analogues of C4-AP and DOB that mimic the preferred and disfavored cross-links with that of reagents that indirectly detect distortion by reacting with the nucleobases. The disfavored C4-AP and DOB analogues were each more reactive than the corresponding preferred cross-link substrates, suggesting that the latter are more stable, which is consistent with selective ICL formation. In addition, the preferred DOB analogue is more reactive than the respective C4-AP ICL, which is consistent with its more efficient incision by UvrABC. The conclusions drawn from the chemical probing experiments are corroborated by UV melting studies. The preferred ICLs exhibit melting temperatures higher than those of the corresponding disfavored isomers. These studies suggest that oxidized abasic sites form reversible interstrand cross-links with dA opposite the 3'-adjacent thymidine because these products are more stable and the thermodynamic preference is reflected in the transition states for their formation.


Subject(s)
DNA/chemistry , Base Sequence , DNA/genetics , DNA Damage , DNA Repair , Diethyl Pyrocarbonate/chemistry , Hydroxyl Radical/chemistry , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , Nucleic Acid Denaturation , Oxidants/chemistry , Oxidation-Reduction , Potassium Permanganate/chemistry
14.
Anal Chem ; 87(20): 10627-34, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26399599

ABSTRACT

Protein therapeutics are rapidly transforming the pharmaceutical industry. Unlike for small molecule therapeutics, current technologies are challenged to provide the rapid, high-resolution analyses of protein higher order structures needed to ensure drug efficacy and safety. Consequently, significant attention has turned to developing new methods that can quickly, accurately, and reproducibly characterize the three-dimensional structure of protein therapeutics. In this work, we describe a method that uses diethylpyrocarbonate (DEPC) labeling and mass spectrometry to detect three-dimensional structural changes in therapeutic proteins that have been exposed to degrading conditions. Using ß2-microglobulin, immunoglobulin G1, and human growth hormone as model systems, we demonstrate that DEPC labeling can identify both specific protein regions that mediate aggregation and those regions that undergo more subtle structural changes upon mishandling of these proteins. Importantly, DEPC labeling is able to provide information for up to 30% of the surface residues in a given protein, thereby providing excellent structural resolution. Given the simplicity of the DEPC labeling chemistry and the relatively straightforward mass spectral analysis of DEPC-labeled proteins, we expect this method should be amenable to a wide range of protein therapeutics and their different formulations.


Subject(s)
Diethyl Pyrocarbonate/chemistry , Growth Hormone/chemistry , Immunoglobulin G/chemistry , beta 2-Microglobulin/chemistry , Humans , Mass Spectrometry , Models, Molecular , Molecular Structure
15.
J Biol Inorg Chem ; 19(7): 1121-35, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24916128

ABSTRACT

Rieske and Rieske-type proteins are electron transport proteins involved in key biological processes such as respiration, photosynthesis, and detoxification. They have a [2Fe-2S] cluster ligated by two cysteines and two histidines. A series of mutations, L135E, L135R, L135A, and Y158F, of the Rieske protein from Thermus thermophilus has been produced which probe the effects of the neighboring residues, in the second sphere, on the dynamics of cluster reduction and the reactivity of the ligating histidines. These properties were probed using titrations and modifications with diethyl pyrocarbonate (DEPC) at various pH values monitored using UV-Visible and circular dichroism spectrophotometry. These results, along with results from EPR studies, provide information on ligating histidine modification and rate of reduction of each of the mutant proteins. L135R, L135A, and Y158F react with DEPC similarly to wild type, resulting in modified protein with a reduced [2Fe-2S] cluster in <90 min, whereas L135E requires >15 h under the same conditions. Thus, the negative charge slows down the rate of reduction and provides an explanation as to why negatively charged residues are rarely, if ever, found in the equivalent position of other Rieske and Rieske-type proteins.


Subject(s)
Bacterial Proteins/metabolism , Diethyl Pyrocarbonate/metabolism , Electron Transport Complex III/metabolism , Thermus thermophilus/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Electron Transport Complex III/chemistry , Electron Transport Complex III/genetics , Kinetics , Models, Molecular , Molecular Sequence Data , Oxidation-Reduction , Point Mutation , Sequence Alignment , Thermus thermophilus/chemistry , Thermus thermophilus/genetics
16.
Bull Exp Biol Med ; 156(6): 829-32, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24824709

ABSTRACT

We compared antibacterial activity of various extracts of two licorice subspecies against Staphylococcus aureus, Escherichia coli, and Bacillus subtilis. Diethyl carbonate extracts of Glycyrrhiza glabra root from Astrakhan region (Russia) exhibited maximum activity against the test microbial strains; activity of Astrakhan licorice was superior among 50% ethanol extracts from Astrakhan (Russia) and Calabria (Italy). Antibacterial activity is directly proportional to the content of glycyrrhizin and 18ß-glycyrrhetinic acid in the extracts. According to preliminary data, the content of these chemical components in Glycyrrhiza glabra root from Astrakhan region is higher than in licorice growing in Italy, which is presumably related to climate and geographic characteristics of Astrakhan region.


Subject(s)
Anti-Bacterial Agents/pharmacology , Glycyrrhiza/chemistry , Plant Extracts/analysis , Plant Roots/chemistry , Anti-Bacterial Agents/analysis , Bacillus subtilis/drug effects , Diethyl Pyrocarbonate/analogs & derivatives , Escherichia coli/drug effects , Ethanol , Glycyrrhetinic Acid/analogs & derivatives , Glycyrrhetinic Acid/chemistry , Glycyrrhetinic Acid/pharmacology , Glycyrrhiza/genetics , Glycyrrhizic Acid/chemistry , Glycyrrhizic Acid/pharmacology , Italy , Molecular Structure , Plant Extracts/pharmacology , Russia , Staphylococcus aureus/drug effects
17.
J Am Soc Mass Spectrom ; 35(5): 1030-1039, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38581471

ABSTRACT

Diethylpyrocarbonate (DEPC) covalent labeling-mass spectrometry (CL-MS) has been extensively utilized to study protein structure and interactions owing to its ease of use, commercial availability, and broad labeling of nucleophilic residues. During typical CL-MS experiments with DEPC, the extent of labeling is kept low to avoid any structural perturbations resulting from covalent modification of the protein. In this study, we demonstrate that proteins can be labeled more extensively via DEPC and still provide accurate structural information. To show this, we modeled labeling kinetics over a range of DEPC concentrations and used molecular dynamics simulations to investigate the molecular-level effects of extensive labeling on the protein structure. Our results indicate that higher extents of DEPC labeling do not significantly perturb the protein structure and can lead to improved precision, detectability of labeled peptides, and protein structural resolution. Furthermore, higher extents of labeling enable better identification of protein-ligand binding sites where lower extents of modification provide ambiguous results.


Subject(s)
Diethyl Pyrocarbonate , Mass Spectrometry , Molecular Dynamics Simulation , Proteins , Diethyl Pyrocarbonate/chemistry , Proteins/chemistry , Mass Spectrometry/methods , Protein Conformation , Binding Sites , Kinetics
18.
J Am Soc Mass Spectrom ; 35(10): 2272-2275, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39208253

ABSTRACT

Nucleic acids are important biomolecules that facilitate numerous cellular functions and have in recent years become promising candidates for treating disease. Consequently, there is a need for methods to characterize protein interactions with these molecules. Here, we demonstrate that diethylpyrocarbonate (DEPC) covalent labeling-mass spectrometry (CL-MS) can provide structural information for protein-nucleic acid binding by characterizing the binding sites of two DNA aptamers specific to thrombin. Reductions in thrombin labeling are observed at the pair's binding interfaces. Furthermore, we find that binding of the aptamers causes changes in labeling at residues in the thrombin active site and known exosites for each aptamer, showcasing the sensitivity of DEPC CL-MS to significant allosteric changes.


Subject(s)
Aptamers, Nucleotide , Diethyl Pyrocarbonate , Mass Spectrometry , Protein Binding , Thrombin , Diethyl Pyrocarbonate/chemistry , Diethyl Pyrocarbonate/metabolism , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Binding Sites , Thrombin/chemistry , Thrombin/metabolism , Mass Spectrometry/methods , Models, Molecular , Humans
19.
Chem Biol Interact ; 394: 110992, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38579923

ABSTRACT

Histidine residues 44 and 48 in yeast alcohol dehydrogenase (ADH) bind to the coenzymes NAD(H) and contribute to catalysis. The individual H44R and H48Q substitutions alter the kinetics and pH dependencies, and now the roles of other ionizable groups in the enzyme were studied in the doubly substituted H44R/H48Q ADH. The substitutions make the enzyme more resistant to inactivation by diethyl pyrocarbonate, modestly improve affinity for coenzymes, and substantially decrease catalytic efficiencies for ethanol oxidation and acetaldehyde reduction. The pH dependencies for several kinetic parameters are shifted from pK values for wild-type ADH of 7.3-8.1 to values for H44R/H48Q ADH of 8.0-9.6, and are assigned to the water or alcohol bound to the catalytic zinc. It appears that the rate of binding of NAD+ is electrostatically favored with zinc-hydroxide whereas binding of NADH is faster with neutral zinc-water. The pH dependencies of catalytic efficiencies (V/EtKm) for ethanol oxidation and acetaldehyde reduction are similarly controlled by deprotonation and protonation, respectively. The substitutions make an enzyme that resembles the homologous horse liver H51Q ADH, which has Arg-47 and Gln-51 and exhibits similar pK values. In the wild-type ADHs, it appears that His-48 (or His-51) in the proton relay systems linked to the catalytic zinc ligands modulate catalytic efficiencies.


Subject(s)
Alcohol Dehydrogenase , Catalytic Domain , Histidine , Saccharomyces cerevisiae , Acetaldehyde/metabolism , Acetaldehyde/chemistry , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/chemistry , Amino Acid Substitution , Diethyl Pyrocarbonate/chemistry , Diethyl Pyrocarbonate/pharmacology , Ethanol/metabolism , Histidine/metabolism , Histidine/chemistry , Hydrogen-Ion Concentration , Kinetics , NAD/metabolism , Oxidation-Reduction , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Zinc/metabolism , Zinc/chemistry
20.
Biochim Biophys Acta ; 1818(3): 679-88, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22085541

ABSTRACT

Cytochrome (cyt) b(561) proteins are dihaem-containing membrane proteins, belonging to the CYBASC (cytochrome-b(561)-ascorbate-reducible) family, and are proposed to be involved in ascorbate recycling and/or the facilitation of iron absorption. Here, we present the heterologous production of two cyt b(561) paralogs from Arabidopsis thaliana (Acytb(561)-A, Acytb(561)-B) in Escherichia coli and Pichia pastoris, their purification, and initial characterisation. Spectra indicated that Acytb(561)-A resembles the best characterised member of the CYBASC family, the cytochrome b(561) from adrenomedullary chromaffin vesicles, and that Acytb(561)-B is atypical compared to other CYBASC proteins. Haem oxidation-reduction midpoint potential (E(M)) values were found to be fully consistent with ascorbate oxidation activities and Fe(3+)-chelates reductase activities. The ascorbate dependent reduction and protein stability of both paralogs were found to be sensitive to alkaline pH values as reported for the cytochrome b(561) from chromaffin vesicles. For both paralogs, ascorbate-dependent reduction was inhibited and the low-potential haem E(M) values were affected significantly by incubation with diethyl pyrocarbonate (DEPC) in the absence of ascorbate. Modification with DEPC in the presence of ascorbate left the haem E(M) values unaltered compared to the unmodified proteins. However, ascorbate reduction was inhibited. We concluded that the ascorbate-binding site is located near the low-potential haem with the Fe(3+)-chelates reduction-site close to the high-potential haem. Furthermore, inhibition of ascorbate oxidation by DEPC treatment occurs not only by lowering the haem E(M) values but also by an additional modification affecting ascorbate binding and/or electron transfer. Analytical gel filtration experiments suggest that both cyt b(561) paralogs exist as homodimers.


Subject(s)
Arabidopsis Proteins/biosynthesis , Arabidopsis/enzymology , Cytochrome b Group/biosynthesis , Escherichia coli , Fungal Proteins/biosynthesis , Pichia/enzymology , Recombinant Proteins/biosynthesis , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Ascorbic Acid/chemistry , Cytochrome b Group/chemistry , Cytochrome b Group/genetics , Diethyl Pyrocarbonate/chemistry , Electron Transport , Fungal Proteins/chemistry , Fungal Proteins/genetics , Gene Expression , Heme/chemistry , Oxidation-Reduction , Pichia/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL