Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.072
Filter
Add more filters

Publication year range
1.
J Biol Chem ; 299(6): 104791, 2023 06.
Article in English | MEDLINE | ID: mdl-37156396

ABSTRACT

Radical S-adenosyl-l-methionine (SAM) enzymes are ubiquitous in nature and carry out a broad variety of difficult chemical transformations initiated by hydrogen atom abstraction. Although numerous radical SAM (RS) enzymes have been structurally characterized, many prove recalcitrant to crystallization needed for atomic-level structure determination using X-ray crystallography, and even those that have been crystallized for an initial study can be difficult to recrystallize for further structural work. We present here a method for computationally engineering previously observed crystallographic contacts and employ it to obtain more reproducible crystallization of the RS enzyme pyruvate formate-lyase activating enzyme (PFL-AE). We show that the computationally engineered variant binds a typical RS [4Fe-4S]2+/+ cluster that binds SAM, with electron paramagnetic resonance properties indistinguishable from the native PFL-AE. The variant also retains the typical PFL-AE catalytic activity, as evidenced by the characteristic glycyl radical electron paramagnetic resonance signal observed upon incubation of the PFL-AE variant with reducing agent, SAM, and PFL. The PFL-AE variant was also crystallized in the [4Fe-4S]2+ state with SAM bound, providing a new high-resolution structure of the SAM complex in the absence of substrate. Finally, by incubating such a crystal in a solution of sodium dithionite, the reductive cleavage of SAM is triggered, providing us with a structure in which the SAM cleavage products 5'-deoxyadenosine and methionine are bound in the active site. We propose that the methods described herein may be useful in the structural characterization of other difficult-to-resolve proteins.


Subject(s)
Acetyltransferases , S-Adenosylmethionine , Acetyltransferases/chemistry , Acetyltransferases/metabolism , Catalytic Domain , Crystallization , Dithionite , Electron Spin Resonance Spectroscopy , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Methionine/metabolism , Oxidation-Reduction , S-Adenosylmethionine/metabolism
2.
Anal Chem ; 96(19): 7723-7729, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38695281

ABSTRACT

Accurate detection of labile analytes through activity based fluorogenic sensing is meaningful but remains a challenge because of nonrapid reaction kinetic. Herein, we present a signaling reporter engineering strategy to accelerate azoreduction reaction by positively charged fluorophore promoted unstable anion recognition for rapidly sensing sodium dithionite (Na2S2O4), a kind of widespread used but harmful inorganic reducing agent. Its quick decomposition often impedes application reliability of traditional fluorogenic probes in real samples because of their slow responses. In this work, four azo-based probes with different charged fluorophores (positive, zwitterionic, neutral, and negative) were synthesized and compared. Among of them, with sequestration effect of positively charged anthocyanin fluorophore for dithionite anion via electrostatic attraction, the cationic probe Azo-Pos displayed ultrafast fluorogenic response (∼2 s) with the fastest response kinetic (kpos' = 0.373 s-1) that is better than other charged ones (kzwi' = 0.031 s-1, kneu' = 0.013 s-1, kneg' = 0.003 s-1). Azo-Pos was demonstrated to be capable to directly detect labile Na2S2O4 in food samples and visualize the presence of Na2S2O4 in living systems in a timely fashion. This new probe has potential as a robust tool to fluorescently monitor excessive food additives and biological invasion of harmful Na2S2O4. Moreover, our proposed accelerating strategy would be versatile to develop more activity-based sensing probes for quickly detecting other unstable analytes of interest.


Subject(s)
Fluorescent Dyes , Fluorescent Dyes/chemistry , Humans , Dithionite/chemistry , Azo Compounds/chemistry , Kinetics
3.
Environ Sci Technol ; 57(28): 10231-10241, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37418593

ABSTRACT

Structural Fe in clay minerals is an important, potentially renewable source of electron equivalents for contaminant reduction, yet our knowledge of how clay mineral Fe reduction pathways and Fe reduction extent affect clay mineral Fe(II) reactivity is limited. Here, we used a nitroaromatic compound (NAC) as a reactive probe molecule to assess the reactivity of chemically reduced (dithionite) and Fe(II)-reduced nontronite across a range of reduction extents. We observed biphasic transformation kinetics for all nontronite reduction extents of ≥5% Fe(II)/Fe(total) regardless of the reduction pathway, indicating that two Fe(II) sites of different reactivities form in nontronite at environmentally relevant reduction extents. At even lower reduction extents, Fe(II)-reduced nontronite completely reduced the NAC whereas dithionite-reduced nontronite could not. Our 57Fe Mössbauer spectroscopy, ultraviolet-visible spectroscopy, and kinetic modeling results suggest that the highly reactive Fe(II) entities likely comprise di/trioctahedral Fe(II) domains in the nontronite structure regardless of the reduction mechanism. However, the second Fe(II) species, of lower reactivity, varies and for Fe(II)-reacted NAu-1 likely comprises Fe(II) associated with an Fe-bearing precipitate formed during electron transfer from aqueous to nontronite Fe. Both our observation of biphasic reduction kinetics and the nonlinear relationship of rate constant and clay mineral reduction potential EH have major implications for contaminant fate and remediation.


Subject(s)
Ferrous Compounds , Minerals , Clay , Dithionite , Oxidation-Reduction , Minerals/chemistry , Ferrous Compounds/chemistry , Ferric Compounds/chemistry
4.
Ecotoxicol Environ Saf ; 259: 115047, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37220705

ABSTRACT

It is of great scientific and practical importance to explore the mechanisms of accelerated degradation of Hexachlorobenzene (HCB) in soil. Both iron oxide and dithionite may promote the reductive dechlorination of HCB, but their effects on the microbial community and the biotic and abiotic mechanisms behind it remain unclear. This study investigated the effects of goethite, dithionite, and their interaction on microbial community composition and structure, and their potential contribution to HCB dechlorination in a paddy soil to reveal the underlying mechanism. The results showed that goethite addition alone did not significantly affect HCB dechlorination because the studied soil lacked iron-reducing bacteria. In contrast, dithionite addition significantly decreased the HCB contents by 44.0-54.9%, while the coexistence of dithionite and goethite further decreased the HCB content by 57.9-69.3%. Random Forest analysis suggested that indicator taxa (Paenibacillus, Acidothermus, Haliagium, G12-WMSP1, and Frankia), Pseudomonas, richness and Shannon's index of microbial community, and immobilized Fe content were dominant driving factors for HCB dechlorination. The dithionite addition, either with or without goethite, accelerated HCB anaerobic dechlorination by increasing microbial diversity and richness as well as the relative abundance of the above specific bacterial genera. When goethite and dithionite coexist, sulfidation of goethite with dithionite could remarkably increase FeS formation and then further promote HCB dechlorination rates. Overall, our results suggested that the combined application of goethite and dithionite could be a practicable strategy for the remediation of HCB contaminated soil.


Subject(s)
Soil Pollutants , Soil , Soil/chemistry , Hexachlorobenzene , Dithionite/metabolism , Soil Pollutants/analysis , Bacteria/metabolism
5.
J Membr Biol ; 255(1): 123-127, 2022 02.
Article in English | MEDLINE | ID: mdl-34694464

ABSTRACT

Determining the topology of membrane-inserted proteins and peptides often relies upon indirect fluorescent measurements. One such technique uses NBD, an environmentally sensitive fluorophore that can be covalently linked to proteins. Relative to a hydrophilic environment, NBD in a hydrophobic environment shows an increase in emission intensity and a shift to shorter wavelengths. To gain further insight, NBD fluorescence can be chemically quenched using dithionite. As dithionite is an anion, it is only expected to penetrate the outer leaflet interfacial region and should be excluded from the hydrocarbon core, the inner leaflet, and the lumen of LUV. This assumption holds at neutral pH, where a large number of NBD/dithionite experiments are carried out. Here, we report control experiments in which LUV were directly labeled with NBD-PE to assess dithionite quenching in acidic conditions. Results showed that at acidic pH, dithionite moved more freely across the bilayer to quench the inner leaflet. For the buffer conditions used, dithionite exhibited a sharp change in behavior between pH 5.5 and 6.0. Therefore, in acidic conditions, dithionite could not differentiate in which leaflet the NBD resided.


Subject(s)
Fluorescent Dyes , Membrane Proteins , Dithionite/chemistry , Dithionite/metabolism , Fluorescence , Lipid Bilayers/chemistry , Peptides
6.
Microvasc Res ; 140: 104297, 2022 03.
Article in English | MEDLINE | ID: mdl-34890690

ABSTRACT

Angiogenesis caused by acute vascular occlusion occurs in various ischemic diseases. The in vitro tube formation assay by endothelial cells is a rapid, quantitative method for drug discovery on angiogenesis. Tube formation assay on Matrigel has been widely used to identify the angiogenesis, however, there are some problems to limit its application. In this study, we found for the first time that sodium dithionite (SD) could induce endothelial cell tube formation without Matrigel under hypoxia condition. To further verify our findings, the angiogenesis related proteins and mRNA at different time points after tube formation were measured both in primary human large-vessel endothelial cell (HUVECs) and murine microvascular endothelial cell line (Bend.3). In conclusion, compared with traditional tube formation on Matrigel, the novel model exhibits the following advantages: (1) Combination oxygen glucose deprivation with sodium dithionite (OGD-SD) model is operated more easily than traditional tube formation. (2) OGD-SD can be used for not only cell imaging, but also immunofluorescence, protein extraction and gene analysis. (3) OGD-SD is more applicable to acute hypoxia model of endothelial cell in vitro. (4) OGD-SD may be more suitable to identify molecular mechanism of compound that intervenes processes of pro-tube formation, tube formation and tube disconnection.


Subject(s)
Endothelial Cells/pathology , Human Umbilical Vein Endothelial Cells/pathology , Neovascularization, Pathologic , Neovascularization, Physiologic , Angiogenic Proteins/genetics , Angiogenic Proteins/metabolism , Animals , Biological Assay , Cell Hypoxia , Cell Line , Cell Movement , Dithionite/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Gene Expression Regulation , Glucose/deficiency , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mice , Neovascularization, Physiologic/drug effects , Signal Transduction
7.
Langmuir ; 38(11): 3480-3492, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35261245

ABSTRACT

Supramolecular materials that respond to external triggers are being extensively utilized in developing spatiotemporal control in biomedical applications ranging from drug delivery to diagnostics. The present article describes the development of self-assembled vesicles in 1:9 (v/v), tetrahydrofuran (THF)-water by naphthalimide-based azo moiety containing amphiphile (NI-Azo) where azo moiety would act as the stimuli-responsive junction. The self-assembly of NI-Azo took place through H-type of aggregation. Microscopic and spectroscopic analyses confirmed the formation of supramolecular vesicles with a dimension of 200-250 nm. Azo (-N═N-) moiety is known to get reduced to amine derivatives in the presence of the azoreductase enzyme, which is overexpressed in the hypoxic microenvironment. The absorbance intensity of this characteristic azo (-N═N-) moiety of NI-Azo (1:9 (v/v), THF-water) at 458 nm got diminished in the presence of both extracellular and intracellular bacterial azoreductase extracted from Escherichia coli bacteria. The same observation was noted in the presence of sodium dithionite (mimic of azoreductase), indicating that azoreductase/sodium dithionite induced azo bond cleavage of NI-Azo, which was confirmed by matrix-assisted laser desorption ionization time-of-flight spectrometric data of the corresponding aromatic amine fragments. The anticancer drug, curcumin, was encapsulated inside NI-Azo vesicles that successfully killed B16F10 cells (cancer cells) in CoCl2-induced hypoxic environment owing to the azoreductase-responsive release of drug. The cancer cell killing efficiency by curcumin-loaded NI-Azo vesicles in the hypoxic condition was 2.15-fold higher than that of the normoxic environment and 2.4-fold higher compared to that of native curcumin in the hypoxic condition. Notably, cancer cell killing efficiency of curcumin-loaded NI-Azo vesicles was 4.5- and 1.9-fold higher than that of noncancerous NIH3T3 cells in normoxic and hypoxic environments, respectively. Cell killing was found to be primarily through the early apoptotic pathway.


Subject(s)
Curcumin , Naphthalimides , Amines , Animals , Azo Compounds/chemistry , Curcumin/pharmacology , Dithionite , Hypoxia , Mice , NIH 3T3 Cells , Water
8.
BMC Endocr Disord ; 22(1): 250, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36258207

ABSTRACT

BACKGROUND: NADPH oxidase 1 (Nox1), which is highly expressed in the colon, is thought to play a potential role in host defense as a physical and innate immune barrier against commensal or pathogenic microbes in the gastrointestinal epithelium. Diabetes can be caused by several biological factors, including insulin resistance is one of them. Alloxan is widely used to induce insulin-dependent diabetes in experimental animals. Alloxan increases the generation of reactive oxygen species as a result of metabolic reactions in the body, along with a massive increase in cytosolic calcium concentration. METHODS: Using a universal method, a superoxide radical (О2-)-thermostable associate between NADPH-containing lipoprotein (NLP) and NADPH oxidase (Nox)- NLP-Nox was isolated and purified from the small intestine (SI) of control (C) and alloxan-induced diabetic (AD) albino rats. RESULTS: In comparison to the C indices, in AD in the SI, an increase in the specific content of NLP-Nox associate and a decrease in the stationary concentration of produced О2- in liquid phase (in solution) and gas phase (during blowing by oxygen of the NLP-Nox solution) were observed. The NLP-Nox of SI associate in C and AD rats produced О2- by an immediate mechanism, using NLP as a substrate. The phenomenon of the hiding of the optical absorption maxima of the Nox in oxidized states at pH10,5 was observed in the composition of these SI associates of the C and AD rat groups. The characteristic absorption maxima of the «hidden¼ Nox were observed under these conditions after reduction by potassium dithionite. CONCLUSION: Thus, at AD, the decrease in the stationary concentration of produced О2- in the solution and gas phase was compensated for by an increase in the specific amount of associate. In addition,  the decrease in the stationary concentration of produced О2- by NLP-Nox associates at AD can be linked to a decrease in the level of NADPH in NLP-Nox composition. This could be used as a new mechanism of AD pathogenesis.


Subject(s)
Diabetes Mellitus, Experimental , Insulins , Animals , Alloxan , Calcium , Dithionite , Intestine, Small/metabolism , Lipoproteins , NADP/metabolism , NADPH Oxidase 1 , NADPH Oxidases/metabolism , Oxygen , Potassium , Reactive Oxygen Species/metabolism , Superoxides/metabolism , Rats
9.
Environ Res ; 205: 112430, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34843722

ABSTRACT

Carbon neutrality has been received more attention and emerged in wastewater treatment processes. Due to the development of treating technologies with the rising of new-emerging pollutants, the coupled chemical processes also should remain current for the goal of carbon-neutral operation. Among of those updated strategies, several advanced oxidation processes (AOPs) based on dithionite (DTN, S2O42-), a common water treatment agent, have been established for refractory organic contaminations removal. However, in terms of DTN detection, the traditional formol-titration method has several application limits including the low detection sensitivity and high consumption of formaldehyde. In this study, compared with traditional method, a low energy consumption technology has been developed based on the potassium ferricyanide with the carbon consumption decreasing by about 5 times. Moreover, detection limit of DTN (mmol/L level) also was lower than the titration method. The method was established based on the fact that every 1 mol of DTN can react with 2 mol [Fe(CN)6]3- under alkaline condition. According to that potassium ferricyanide (K3 [Fe(CN)6]) has the maximum absorption at 419 nm wavelength, a fitting equation based on the linear relationship between the absorbance variation of K3 [Fe(CN)6] and DTN amount in the ranges of 0-30 µmol with the detection limit of 0.6 µmol was established with the determination coefficient of 0.99935. It was found that there was no obvious influence of the ubiquitous foreign species with the amount lower than 6 mM, 4 mM, 6 mM, 4 mM and 1 mg/L for Cl-, HCO3-, NO3-, SO42- and NOM, respectively. Moreover, methanol and tert-butanol were employed to verify the influence of the presence of organic matters on the determination of DTN and no impact was observed in this study. The proposed method provides a new way for DTN detection with stable and countable performance in the related AOPs with the low electric energy and carbon source consumption and high detection efficiency.


Subject(s)
Ferricyanides , Technology , Dithionite , Oxidation-Reduction , Spectrophotometry/methods
10.
J Environ Manage ; 321: 116034, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36027733

ABSTRACT

In this study, dithionite (DTN) was used to degrade Tetrabromobisphenol A (TBBPA), a widely applied brominated flame retardants, under anaerobic conditions with the reaction terminator of nitrate. The optimization of reaction parameters including TBBPA concentration, DTN concentration and pH value were conducted by response surface methodology (RSM) based on central composite design (CCD). The degradation process could be simulated accurately by a quadratic model with the correlation coefficient R2 of 0.9550. The interaction between pH and DTN concentration was significant with the p-value of 0.0017. Moreover, the maximum TBBPA removal was 87.6 ± 3.2% and obtained at TBBPA concentration of 2.00 µM, the DTN concentration of 322.31 µM, and the pH of 6.14 under anaerobic conditions. It was found that the factors influenced TBBPA removal followed the order: pH > DTN concentration > TBBPA concentration. The major active products from DTN are SO32- and S2O32-. In addition, different inhibitions of natural water matrix including chloride, bicarbonate, sulfide and humic acid on TBBPA degradation had been confirmed. According to the identified six intermediates via gas chromatography-mass spectrometry (GC-MS), two steps of the degradation pathways were speculated, including the breakage of C-Br bond and C-C bond. This study provides a convenient way to degrade TBBPA.


Subject(s)
Flame Retardants , Polybrominated Biphenyls , Anaerobiosis , Dithionite , Flame Retardants/metabolism , Polybrominated Biphenyls/chemistry , Polybrominated Biphenyls/metabolism
11.
Environ Geochem Health ; 44(10): 3515-3526, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34622414

ABSTRACT

Shale-derived soils have higher clay, organic matter, and secondary Fe oxide content than other bedrock types, all of which can sequester Hg. However, shales also can be Hg-rich due to their marine formation. The objectives of this study were to determine the concentration and phase partitioning of Hg in seven upland weathering profiles from New York to Tennessee USA and use geochemical normalization techniques to estimate the extent of Hg inheritance from weathering of shale bedrock or sequestration of atmospheric Hg. Total Hg concentrations in unweathered shale ranged from 3 to 94 ng/g. Total Hg concentrations decreased with depth in the Ultisols and Alfisols, with total Hg concentrations ranging from 18 to 265 ng/g. Across all shale soils and rocks, the oxidizable fraction of Hg (15% H2O2 extraction) comprised a large portion of the total Hg at 68% ± 8%. This fraction was dominated by organic matter as confirmed with positive correlations between Hg and %LOI, but could also be impacted by Hg sulfides. Across all sites, the reducible fraction of Hg (citrate-bicarbonate-dithionite extraction) was only 10% ± 4% of the total Hg on average. Thus, secondary Fe oxides did not contain a significant portion of Hg, as commonly observed in tropical soils. Although colder sites had a higher organic matter and sequestered more Hg, τ values for Hg indexed to Ti suggest that atmospheric deposition, such as pollution sources in Ohio River Valley, drove the highest enrichment of Hg along the transect. These results demonstrate that shale-derived soils have a net accumulation and retention of atmospheric Hg, primarily through stabilization by organic matter.


Subject(s)
Mercury , Soil Pollutants , Bicarbonates , Citrates , Clay , Dithionite , Environmental Monitoring , Hydrogen Peroxide , Mercury/analysis , Minerals , New York , Soil/chemistry , Soil Pollutants/analysis , Sulfides , Tennessee
12.
J Am Chem Soc ; 143(43): 18159-18171, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34668697

ABSTRACT

[FeFe] hydrogenases are highly active enzymes for interconverting protons and electrons with hydrogen (H2). Their active site H-cluster is formed of a canonical [4Fe-4S] cluster ([4Fe-4S]H) covalently attached to a unique [2Fe] subcluster ([2Fe]H), where both sites are redox active. Heterolytic splitting and formation of H2 takes place at [2Fe]H, while [4Fe-4S]H stores electrons. The detailed catalytic mechanism of these enzymes is under intense investigation, with two dominant models existing in the literature. In one model, an alternative form of the active oxidized state Hox, named HoxH, which forms at low pH in the presence of the nonphysiological reductant sodium dithionite (NaDT), is believed to play a crucial role. HoxH was previously suggested to have a protonated [4Fe-4S]H. Here, we show that HoxH forms by simple addition of sodium sulfite (Na2SO3, the dominant oxidation product of NaDT) at low pH. The low pH requirement indicates that sulfur dioxide (SO2) is the species involved. Spectroscopy supports binding at or near [4Fe-4S]H, causing its redox potential to increase by ∼60 mV. This potential shift detunes the redox potentials of the subclusters of the H-cluster, lowering activity, as shown in protein film electrochemistry (PFE). Together, these results indicate that HoxH and its one-electron reduced counterpart Hred'H are artifacts of using a nonphysiological reductant, and not crucial catalytic intermediates. We propose renaming these states as the "dithionite (DT) inhibited" states Hox-DTi and Hred-DTi. The broader potential implications of using a nonphysiological reductant in spectroscopic and mechanistic studies of enzymes are highlighted.


Subject(s)
Biocatalysis , Dithionite/chemistry , Hydrogenase/chemistry , Iron-Sulfur Proteins/chemistry , Reducing Agents/chemistry , Algal Proteins/chemistry , Bacterial Proteins/chemistry , Chlamydomonas reinhardtii/enzymology , Clostridium/enzymology , Desulfovibrio desulfuricans/enzymology , Hydrogen/chemistry , Oxidation-Reduction , Sulfites/chemistry , Sulfur Dioxide/chemistry
13.
J Am Chem Soc ; 143(25): 9314-9319, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34154323

ABSTRACT

All radical S-adenosylmethionine (radical-SAM) enzymes, including the noncanonical radical-SAM enzyme diphthamide biosynthetic enzyme Dph1-Dph2, require at least one [4Fe-4S](Cys)3 cluster for activity. It is well-known in the radical-SAM enzyme community that the [4Fe-4S](Cys)3 cluster is extremely air-sensitive and requires strict anaerobic conditions to reconstitute activity in vitro. Thus, how such enzymes function in vivo in the presence of oxygen in aerobic organisms is an interesting question. Working on yeast Dph1-Dph2, we found that consistent with the known oxygen sensitivity, the [4Fe-4S] cluster is easily degraded into a [3Fe-4S] cluster. Remarkably, the small iron-containing protein Dph3 donates one Fe atom to convert the [3Fe-4S] cluster in Dph1-Dph2 to a functional [4Fe-4S] cluster during the radical-SAM enzyme catalytic cycle. This mechanism to maintain radical-SAM enzyme activity in aerobic environments is likely general, and Dph3-like proteins may exist to keep other radical-SAM enzymes functional in aerobic environments.


Subject(s)
Histidine/analogs & derivatives , Iron-Sulfur Proteins/metabolism , Repressor Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Dithionite/metabolism , Histidine/biosynthesis , Iron/chemistry , Iron-Sulfur Proteins/chemistry , Peptide Elongation Factor 2/metabolism , Repressor Proteins/chemistry , S-Adenosylmethionine/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/chemistry
14.
Bioorg Med Chem Lett ; 48: 128244, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34229054

ABSTRACT

A facile and convergent procedure for the synthesis of azobenzene-based probe was reported, which could selectively release interested proteins conducted with sodium dithionite. Besides, the cleavage efficiency is closely associated with the structural features, in which an ortho-hydroxyl substituent is necessary for reactivity. In addition, the azobenzene tag applied in the Ac4GlcNAz-labled proteins demonstrated high efficiency and selectivity in comparison with Biotin-PEG4-Alkyne, which provides a useful platform for enrichment of any desired bioorthogonal proteomics.


Subject(s)
Acetylglucosamine/metabolism , Alkynes/metabolism , Azides/metabolism , Dithionite/metabolism , N-Acetylglucosaminyltransferases/metabolism , Acetylglucosamine/chemistry , Alkynes/chemistry , Azides/chemistry , Cycloaddition Reaction , Dithionite/chemical synthesis , Dithionite/chemistry , Molecular Structure , N-Acetylglucosaminyltransferases/chemistry , Proteomics
15.
Photosynth Res ; 143(3): 301-314, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31933173

ABSTRACT

Auracyanin (Ac) is a blue copper protein that mediates the electron transfer between Alternative Complex III (ACIII) and downstream electron acceptors in both fort chains of filamentous anoxygenic phototrophs. Here, we extracted and purified the air-oxidized RfxAc from the photoheterotrophically grown Roseiflexus castenholzii, and we illustrated the structural basis underlying its electron transferring features. Spectroscopic and enzymatic analyses demonstrated the reduction of air-oxidized RfxAc by the ACIII upon oxidation of menaquinol-4 and menaquinol-7. Crystal structures of the air-oxidized and Na-dithionite-reduced RfxAc at 2.2 and 2.0 Å resolutions, respectively, showed that the copper ions are coordinated by His77, His146, Cys141, and Met151 in minor different geometries. The Cu1-Sδ bond length increase of Met151, and the electron density Fourier differences at Cu1 and His77 demonstrated their essential roles in the dithionite-induced reduction. Structural comparisons further revealed that the RfxAc contains a Chloroflexus aurantiacus Ac-A-like copper binding pocket and a hydrophobic patch surrounding the exposed edge of His146 imidazole, as well as an Ac-B-like Ser- and Thr-rich polar patch located at a different site on the surface. These spectroscopic and structural features allow RfxAc to mediate electron transfers between the ACIII and redox partners different from those of Ac-A and Ac-B. These results provide a structural basis for further investigating the electron transfer and energy transformation mechanism of bacterial photosynthesis, and the diversity and evolution of electron transport chains.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Chloroflexi/metabolism , Copper/metabolism , Metalloproteins/chemistry , Metalloproteins/metabolism , Photosynthesis , Amino Acid Sequence , Bacterial Proteins/isolation & purification , Binding Sites , Copper/chemistry , Dithionite/pharmacology , Electron Transport/drug effects , Hydrophobic and Hydrophilic Interactions , Metalloproteins/isolation & purification , Models, Molecular , Naphthols/pharmacology , Oxidation-Reduction , Photosynthesis/drug effects , Solvents/chemistry , Structural Homology, Protein , Structure-Activity Relationship
16.
J Chem Phys ; 153(13): 135101, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33032403

ABSTRACT

This study focuses on assessing the possible impact of changes in hemoglobin (Hb) oxygenation on the state of water in its hydration shell as it contributes to red blood cell deformability. Microwave Dielectric Spectroscopy (MDS) was used to monitor the changes in interactions between water molecules and Hb, the number of water molecules in the protein hydration shell, and the dynamics of pre-protein water in response to the transition of Hb from the tense (T) to the relaxed (R) state, and vice versa. Measurements were performed for Hb solutions of different concentrations (5 g/dl-30 g/dl) in phosphate-buffered saline buffer. Cole-Cole parameters of the main water relaxation peak in terms of interactions of water molecules (dipole-dipole/ionic dipole) during the oxygenation-deoxygenation cycle were used to analyze the obtained data. The water mobility-represented by α as a function of ln τ-differed dramatically between the R (oxygenated) state and the T (deoxygenated) state of Hb at physiologically relevant concentrations (30 g/dl-35 g/dl or 4.5 mM-5.5 mM). At these concentrations, oxygenated hemoglobin was characterized by substantially lower mobility of water in the hydration shell, measured as an increase in relaxation time, compared to deoxyhemoglobin. This change indicated an increase in red blood cell cytosolic viscosity when cells were oxygenated and a decrease in viscosity upon deoxygenation. Information provided by MDS on the intraerythrocytic water state of intact red blood cells reflects its interaction with all of the cytosolic components, making these measurements powerful predictors of the changes in the rheological properties of red blood cells, regardless of the cause.


Subject(s)
Oxyhemoglobins/chemistry , Water/chemistry , Dielectric Spectroscopy , Dithionite/chemistry , Humans , Microwaves , Oxidation-Reduction , Protein Conformation , Viscosity
17.
Mikrochim Acta ; 187(8): 481, 2020 08 02.
Article in English | MEDLINE | ID: mdl-32743681

ABSTRACT

A new fluorescence turn-on sensing platform has been developed applicable for sensitive profiling of multiple chemical and biological analytes, using azobenzene-quantum dot as a new stimuli-responsive optical nanoprobe. An azobenzene-carrying compound bis [4, 4'-(dithiophenyl azo)-1, 3-benzenediamine] (DTPABDA) is for the first time reported to be used for conjugation with CdSe/ZnS core/shell quantum dots (QDs) via the ligand exchange reaction. Due to the photo-induced electron-transfer (PET) effect, the electron-withdrawing azobenzene groups of DTPABDA can significantly cause the photoluminescence (PL) of QDs quenched. The QDs' PL can be subsequently reignited by the removal of azo moiety cleavable through three types of specific reactions: the dithionite reduction, hypochlorite oxidation, and azoreductase enzymatic catalysis, respectively. By monitoring of reaction-induced recovery of FL signals at 560 nm with an excitation of 450 nm, such azobenzene-QDs conjugates served as a new nanoprobe enabling the fluorescence turn-on sensing of dithionite, hypochlorite, and azoreductase with high sensitivity, broad linear range, and good selectivity. The successful detection of target analytes in real samples reveals the potential of our method in practical applications, such as biosensing, environmental and industrial monitoring. Graphical abstract A new stimuli-responsive fluorescence probe is reported for the sensitive detection of sodium dithionite, hypochlorite, and azoreductase. The probe consists of QDs with an azobenzene-carrying compound as a ligand. The fluorescence of QDs could be quenched by the azo group and subsequently recovered via the removal of azo group by these three compounds, resulting in the "turn-on" sensing of these compounds with high sensitivity, broad linear range, and good selectivity. The successful detection of azoreductase in serum samples reveals the practical use of this method.


Subject(s)
Dithionite/analysis , Fluorescent Dyes/chemistry , Hypochlorous Acid/analysis , Nitroreductases/blood , Quantum Dots/chemistry , Azo Compounds/chemical synthesis , Azo Compounds/chemistry , Cadmium Compounds/chemistry , Cadmium Compounds/radiation effects , Fluorescent Dyes/chemical synthesis , Humans , Light , Limit of Detection , Proof of Concept Study , Quantum Dots/radiation effects , Selenium Compounds/chemistry , Selenium Compounds/radiation effects , Spectrometry, Fluorescence/methods , Sulfides/chemistry , Sulfides/radiation effects , Zinc Compounds/chemistry , Zinc Compounds/radiation effects
18.
Anal Biochem ; 585: 113400, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31437428

ABSTRACT

In this short note we describe the conversion of the widely used fluorescence quenching azo-dyes DABCYL and HABA to fluorophores. The dyes were conjugated to the proteins RNase and human serum albumin (HSA) and subsequently reduced using sodium dithionite (Na2S2O4), thus forming amine-containing fluorophores. Since this chemical reaction can be applied to any azo-containing quencher compound, a great variety of substances can be readily obtained synthetically. This approach provides a promising tool in the use of fluorescence-based investigations of biomolecular interactions.


Subject(s)
Azo Compounds/chemistry , Fluorescent Dyes/chemistry , p-Dimethylaminoazobenzene/analogs & derivatives , Amino Acid Sequence , Binding Sites , Dithionite/chemistry , Fluorescence Resonance Energy Transfer , Humans , Molecular Structure , Oxidation-Reduction , Protein Binding , Ribonucleases/chemistry , Serum Albumin/chemistry , Structure-Activity Relationship , p-Dimethylaminoazobenzene/chemistry
19.
Can J Physiol Pharmacol ; 97(10): 980-988, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31136722

ABSTRACT

The degree and duration of chemical hypoxia induced by sodium dithionite (Na2S2O4) have not been reported. It is not yet clear how much reduction in the O2 concentration (physical hypoxia) can lead to hypoxia in cultured cardiomyocytes. In this study, oxygen microelectrodes were used to measure changes in the O2 concentration in media containing different concentrations of Na2S2O4. Then, hypoxic effects of 0.8, 1.0, and 2.0 mM Na2S2O4 or 1%, 3%, and 5% O2 in cultured cardiomyocytes from neonatal rats were observed and compared. The results showed that the O2 concentration failed to remain constant by Na2S2O4 treatment during the 180-minute observation period. Only the 2.0 mM Na2S2O4 group significantly increased the expression of hypoxia-inducible factor 1α (HIF-1α) and hypoxic responses. Notably, 3% O2 only significantly increased the expression of HIF-1α in cardiomyocytes, while 1% O2 not only increased the expression of HIF-1α but also increased the apoptotic rate in cardiomyocytes. These results suggest that Na2S2O4 is not suitable for establishing a hypoxic model in cultured neonatal rat cardiomyocytes, and neonatal rat cardiomyocytes cultured at or below 1% O2 induced significant hypoxic effects, which can be used as a starting O2 concentration for establishing a hypoxic cell model.


Subject(s)
Culture Media/metabolism , Dithionite/pharmacology , Myocytes, Cardiac/physiology , Oxygen/metabolism , Animals , Animals, Newborn , Cell Hypoxia/drug effects , Cell Hypoxia/physiology , Cells, Cultured , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Myocytes, Cardiac/drug effects , Primary Cell Culture/methods , Rats
20.
Int J Mol Sci ; 20(14)2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31373299

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), such as naphthalene, are potential health risks due to their carcinogenic and mutagenic effects. Bacteria from the genus Rhodococcus are able to metabolise a wide variety of pollutants such as alkanes, aromatic compounds and halogenated hydrocarbons. A naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038 has been characterised for the first time, using electron paramagnetic resonance (EPR) spectroscopy and UV-Vis spectrophotometry. In the native state, the EPR spectrum of naphthalene 1,2-dioxygenase (NDO) is formed of the mononuclear high spin Fe(III) state contribution and the oxidised Rieske cluster is not visible as EPR-silent. In the presence of the reducing agent dithionite a signal derived from the reduction of the [2Fe-2S] unit is visible. The oxidation of the reduced NDO in the presence of O2-saturated naphthalene increased the intensity of the mononuclear contribution. A study of the "peroxide shunt", an alternative mechanism for the oxidation of substrate in the presence of H2O2, showed catalysis via the oxidation of mononuclear centre while the Rieske-type cluster is not involved in the process. Therefore, the ability of these enzymes to degrade recalcitrant aromatic compounds makes them suitable for bioremediative applications and synthetic purposes.


Subject(s)
Biodegradation, Environmental , Dioxygenases/metabolism , Environmental Pollutants/metabolism , Multienzyme Complexes/metabolism , Naphthalenes/metabolism , Rhodococcus/enzymology , Rhodococcus/metabolism , Dithionite/chemistry , Electron Spin Resonance Spectroscopy , Hydrogen Peroxide/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL