Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Cell ; 184(17): 4547-4563.e17, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34314701

ABSTRACT

Frontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules. Over the following 4 months, mutant organoids accumulate splicing changes, disruption of autophagy function, and build-up of tau and P-tau-S396. By 6 months, tau-V337M organoids show specific loss of glutamatergic neurons as seen in individuals with FTD. Mutant neurons are susceptible to glutamate toxicity, which can be rescued pharmacologically by the PIKFYVE kinase inhibitor apilimod. Our results demonstrate a sequence of events that precede neurodegeneration, revealing molecular pathways associated with glutamate signaling as potential targets for therapeutic intervention in FTD.


Subject(s)
Cerebrum/pathology , ELAV-Like Protein 4/genetics , Glutamic Acid/metabolism , Mutation/genetics , Neurons/pathology , Organoids/metabolism , RNA Splicing/genetics , tau Proteins/genetics , Autophagy/drug effects , Autophagy/genetics , Biomarkers/metabolism , Body Patterning/drug effects , Body Patterning/genetics , Cell Death/drug effects , Cell Line , Humans , Hydrazones/pharmacology , Lysosomes/drug effects , Lysosomes/metabolism , Morpholines/pharmacology , Neurons/drug effects , Neurons/metabolism , Organoids/drug effects , Organoids/ultrastructure , Phosphorylation/drug effects , Pyrimidines/pharmacology , RNA Splicing/drug effects , Signal Transduction/drug effects , Stress Granules/drug effects , Stress Granules/metabolism , Synapses/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics
2.
Mol Cell ; 71(2): 256-270.e10, 2018 07 19.
Article in English | MEDLINE | ID: mdl-30029004

ABSTRACT

The RNA-binding protein HuD promotes neurogenesis and favors recovery from peripheral axon injury. HuD interacts with many mRNAs, altering both stability and translation efficiency. We generated a nucleotide resolution map of the HuD RNA interactome in motor neuron-like cells, identifying HuD target sites in 1,304 mRNAs, almost exclusively in the 3' UTR. HuD binds many mRNAs encoding mTORC1-responsive ribosomal proteins and translation factors. Altered HuD expression correlates with the translation efficiency of these mRNAs and overall protein synthesis, in a mTORC1-independent fashion. The predominant HuD target is the abundant, small non-coding RNA Y3, amounting to 70% of the HuD interaction signal. Y3 functions as a molecular sponge for HuD, dynamically limiting its recruitment to polysomes and its activity as a translation and neuron differentiation enhancer. These findings uncover an alternative route to the mTORC1 pathway for translational control in motor neurons that is tunable by a small non-coding RNA.


Subject(s)
ELAV-Like Protein 4/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Motor Neurons/physiology , RNA, Small Untranslated/genetics , 3' Untranslated Regions , ATP Binding Cassette Transporter, Subfamily B, Member 2 , Animals , Cell Line , ELAV-Like Protein 4/metabolism , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Motor Neurons/metabolism , Neurogenesis/genetics , Polyribosomes/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Untranslated/metabolism
3.
Int J Mol Sci ; 24(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37569576

ABSTRACT

The RNA-binding protein HuD has been shown to play a crucial role in gene regulation in the nervous system and is involved in various neurological and psychiatric diseases. In this study, through the creation of an interaction network on HuD and its potential targets, we identified a strong association between HuD and several diseases of the nervous system. Specifically, we focused on the relationship between HuD and the brain-derived neurotrophic factor (BDNF), whose protein is implicated in several neuronal diseases and is involved in the regulation of neuronal development, survival, and function. To better investigate this relationship and given that we previously demonstrated that folic acid (FA) is able to directly bind HuD itself, we performed in vitro experiments in neuron-like human SH-SY5Y cells in the presence of FA, also known to be a pivotal environmental factor influencing the nervous system development. Our findings show that FA exposure results in a significant increase in both HuD and BDNF transcripts and proteins after 2 and 4 h of treatment, respectively. Similar data were obtained after 2 h of FA incubation followed by 2 h of washout. This increase was no longer detected upon 24 h of FA exposure, probably due to a signaling shutdown mechanism. Indeed, we observed that following 24 h of FA exposure HuD is methylated. These findings indicate that FA regulates BDNF expression via HuD and suggest that FA can behave as an epigenetic modulator of HuD in the nervous system acting via short- and long-term mechanisms. Finally, the present results also highlight the potential of BDNF as a therapeutic target for specific neurological and psychiatric diseases.


Subject(s)
Brain-Derived Neurotrophic Factor , Neuroblastoma , Humans , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , ELAV Proteins/genetics , ELAV Proteins/metabolism , ELAV-Like Protein 4/genetics , Neuroblastoma/metabolism , Neurons/metabolism
4.
Stem Cells ; 39(4): 458-466, 2021 04.
Article in English | MEDLINE | ID: mdl-33442906

ABSTRACT

Development of the retina is regulated by growth factors, such as insulin-like growth factors 1 and 2 (IGF-1/2), which coordinate proliferation, differentiation, and maturation of the neuroepithelial precursors cells. In the circulation, IGF-1/2 are transported by the insulin growth factor binding proteins (IGFBPs) family members. IGFBPs can impact positively and negatively on IGF-1, by making it available or sequestering IGF-1 to or from its receptor. In this study, we investigated the expression of IGFBPs and their role in the generation of human retinal organoids from human pluripotent stem cells, showing a dynamic expression pattern suggestive of different IGFBPs being used in a stage-specific manner to mediate IGF-1 functions. Our data show that IGF-1 addition to culture media facilitated the generation of retinal organoids displaying the typical laminated structure and photoreceptor maturation. The organoids cultured in the absence of IGF-1, lacked the typical laminated structure at the early stages of differentiation and contained significantly less photoreceptors and more retinal ganglion cells at the later stages of differentiation, confirming the positive effects of IGF-1 on retinal lamination and photoreceptor development. The organoids cultured with the IGFBP inhibitor (NBI-31772) and IGF-1 showed lack of retinal lamination at the early stages of differentiation, an increased propensity to generate horizontal cells at mid-stages of differentiation and reduced photoreceptor development at the later stages of differentiation. Together these data suggest that IGFBPs enable IGF-1's role in retinal lamination and photoreceptor development in a stage-specific manner.


Subject(s)
Insulin-Like Growth Factor Binding Proteins/genetics , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor I/genetics , Organoids/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Pluripotent Stem Cells/metabolism , Catechols/pharmacology , Cell Differentiation/drug effects , ELAV-Like Protein 3/genetics , ELAV-Like Protein 3/metabolism , ELAV-Like Protein 4/genetics , ELAV-Like Protein 4/metabolism , Gene Expression Regulation , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Insulin-Like Growth Factor Binding Proteins/antagonists & inhibitors , Insulin-Like Growth Factor Binding Proteins/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/pharmacology , Insulin-Like Growth Factor II/metabolism , Isoquinolines/pharmacology , Ki-67 Antigen/genetics , Ki-67 Antigen/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Organoids/cytology , Organoids/drug effects , Photoreceptor Cells, Vertebrate/cytology , Photoreceptor Cells, Vertebrate/drug effects , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Recoverin/genetics , Recoverin/metabolism , Signal Transduction , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , gamma-Synuclein/genetics , gamma-Synuclein/metabolism
5.
Anticancer Drugs ; 33(1): e370-e380, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34419957

ABSTRACT

The dysregulation of glycolysis regardless of oxygen availability is one of the major characteristics of cancer cells. While the drug resistance of ovarian cancer cells has been extensively studied, the molecular mechanism of anticancer drug resistance under low-glucose conditions remains unknown. In this study, we investigated the pathway mediating drug resistance under low-glucose conditions by examining the relationship between embryonic lethal abnormal vision Drosophila homolog-like (ELAVL) protein and glycolysis-related enzymes. Ovarian cancer cells resistant to 2.5 nM paclitaxel were exposed to low-glucose media for 2 weeks, and the expression levels of ELAVL2, ELAVL4, glycolytic enzymes, and drug resistance-related proteins were elevated to levels comparable to those in cells resistant to 100 nM paclitaxel. Gene silencing of ELAVL2/4 using small interfering RNA prevented the upregulation of glycolysis-related enzymes, reduced lactate production, and sensitized 2.5 nM paclitaxel-resistant ovarian cancer cells to anticancer agents under hypoglycemic conditions. Furthermore, pharmacological inhibition of glycolytic enzymes with 2-deoxyglucose, a specific inhibitor of glycolysis, triggered caspase-dependent apoptosis, reduced lactate generation, and blocked the expression of drug resistance-related proteins under low-glucose conditions. These results suggest that the level of ELAVL2/4 is responsible for the development of chemoresistance through activation of the glycolysis pathway under glucose deprivation conditions.


Subject(s)
Drug Resistance, Neoplasm/genetics , ELAV-Like Protein 2/genetics , ELAV-Like Protein 4/genetics , Glycolysis/genetics , Ovarian Neoplasms/genetics , Antineoplastic Agents/pharmacology , Caspases/metabolism , Cell Line, Tumor , Female , Glucose/metabolism , Humans , Lactic Acid/metabolism , Ovarian Neoplasms/pathology , Paclitaxel/pharmacology
6.
Int J Mol Sci ; 23(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36498933

ABSTRACT

The main goal of this review is to provide an updated overview of the involvement of the RNA-binding protein (RBP) HuD, encoded by the ELAVL4 gene, in nervous system development, maintenance, and function, and its emerging role in nervous system diseases. A particular focus is on recent studies reporting altered HuD levels, or activity, in disease models and patients. Substantial evidence suggests HuD involvement in Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). Interestingly, while possible disease-causing mutations in the ELAVL4 gene remain elusive, a common theme in these diseases seems to be the altered regulation of HuD at multiple steps, including post-transcriptional and post-translational levels. In turn, the changed activity of HuD can have profound implications for its target transcripts, which are overly stabilized in case of HuD gain of function (as proposed in PD and ALS) or reduced in case of decreased HuD binding (as suggested by some studies in AD). Moreover, the recent discovery that HuD is a component of pathological cytoplasmic inclusion in both familial and sporadic ALS patients might help uncover the common molecular mechanisms underlying such complex diseases. We believe that deepening our understanding of the involvement of HuD in neurodegeneration could help developing new diagnostic and therapeutic tools.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , ELAV-Like Protein 4 , Parkinson Disease , Humans , Alzheimer Disease/genetics , Amyotrophic Lateral Sclerosis/genetics , ELAV-Like Protein 4/genetics , RNA-Binding Proteins/genetics , Parkinson Disease/genetics
7.
Neurobiol Dis ; 148: 105211, 2021 01.
Article in English | MEDLINE | ID: mdl-33271327

ABSTRACT

The neuronal RNA-binding protein (RBP) HuD plays an important role in brain development, synaptic plasticity and neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's (AD). Bioinformatics analysis of the human SOD1 mRNA 3' untranslated region (3'UTR) demonstrated the presence of HuD binding adenine-uridine (AU)-rich instability-conferring elements (AREs). Using differentiated SH-SY5Y cells along with brain tissues from sporadic amyotrophic lateral sclerosis (sALS) patients, we assessed HuD-dependent regulation of SOD1 mRNA. In vitro binding and mRNA decay assays demonstrate that HuD specifically binds to SOD1 ARE motifs promoting mRNA stabilization. In SH-SY5Y cells, overexpression of full-length HuD increased SOD1 mRNA and protein levels while a dominant negative form of the RBP downregulated its expression. HuD regulation of SOD1 mRNA was also found to be oxidative stress (OS)-dependent, as shown by the increased HuD binding and upregulation of this mRNA after H2O2 exposure. This treatment also induced a shift in alternative polyadenylation (APA) site usage in SOD1 3'UTR, increasing the levels of a long variant bearing HuD binding sites. The requirement of HuD for SOD1 upregulation during oxidative damage was validated using a specific siRNA that downregulated HuD protein levels to 36% and prevented upregulation of SOD1 and 91 additional genes. In the motor cortex from sALS patients, we found increases in SOD1 and HuD mRNAs and proteins, accompanied by greater HuD binding to this mRNA as confirmed by RNA-immunoprecipitation (RIP) assays. Altogether, our results suggest a role of HuD in the post-transcriptional regulation of SOD1 expression during ALS pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , ELAV-Like Protein 4/genetics , Gene Expression Regulation/genetics , Motor Cortex/metabolism , Neuroblastoma/metabolism , Neurons/metabolism , Oxidative Stress/genetics , Superoxide Dismutase-1/genetics , Amyotrophic Lateral Sclerosis/metabolism , Cell Line, Tumor , ELAV-Like Protein 4/metabolism , Humans , RNA, Messenger/metabolism , Superoxide Dismutase-1/metabolism
8.
Molecules ; 26(10)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064652

ABSTRACT

The neuronal Hu/ELAV-like proteins HuB, HuC and HuD are a class of RNA-binding proteins that are crucial for proper development and maintenance of the nervous system. These proteins bind to AU-rich elements (AREs) in the untranslated regions (3'-UTRs) of target mRNAs regulating mRNA stability, transport and translation. In addition to these cytoplasmic functions, Hu proteins have been implicated in alternative splicing and alternative polyadenylation in the nucleus. The purpose of this study was to identify transcriptome-wide effects of HuD deletion on both of these nuclear events using RNA sequencing data obtained from the neocortex of Elavl4-/- (HuD KO) mice. HuD KO affected alternative splicing of 310 genes, including 17 validated HuD targets such as Cbx3, Cspp1, Snap25 and Gria2. In addition, deletion of HuD affected polyadenylation of 53 genes, with the majority of significantly altered mRNAs shifting towards usage of proximal polyadenylation signals (PAS), resulting in shorter 3'-UTRs. None of these genes overlapped with those showing alternative splicing events. Overall, HuD KO had a greater effect on alternative splicing than polyadenylation, with many of the affected genes implicated in several neuronal functions and neuropsychiatric disorders.


Subject(s)
Alternative Splicing/genetics , ELAV-Like Protein 4/genetics , Neocortex/metabolism , Polyadenylation/genetics , Animals , ELAV-Like Protein 4/metabolism , Exons/genetics , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Biochem Biophys Res Commun ; 530(1): 266-272, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32828297

ABSTRACT

Glucagon is a peptide hormone generated by pancreatic α cells. It is the counterpart of insulin and plays an essential role in the regulation of blood glucose level. Therefore, a tight regulation of glucagon levels is pivotal to maintain homeostasis of blood glucose. However, little is known about the mechanisms regulating glucagon biosynthesis. In this study, we demonstrate that the RNA-binding protein HuD regulates glucagon expression in pancreatic α cells. HuD was found in α cells from mouse pancreatic islet and mouse glucagonoma αTC1 cell line. Ribonucleoprotein immunoprecipitation analysis, followed by RT-qPCR showed the association of HuD with glucagon mRNA. Knockdown of HuD resulted in a reduction in both proglucagon expression and cellular glucagon level by decreasing its de novo synthesis. Reporter analysis using the EGFP reporter containing 3' untranslated region (3'UTR) of glucagon mRNA showed that HuD regulates proglucagon expression via its 3'UTR. In addition, the relative level of glucagon in the islets and plasma was lower in HuD knockout (KO) mice compared to age-matched control mice. Taken together, these results suggest that HuD is a novel factor regulating the biosynthesis of proglucagon in pancreatic α cells.


Subject(s)
ELAV-Like Protein 4/metabolism , Glucagon-Secreting Cells/metabolism , Proglucagon/metabolism , Animals , Biosynthetic Pathways , Cell Line , Cell Line, Tumor , Down-Regulation , ELAV-Like Protein 4/genetics , Gene Knockdown Techniques , Glucagon-Secreting Cells/cytology , Mice , Proglucagon/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
Am J Hum Genet ; 99(5): 1086-1105, 2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27745833

ABSTRACT

This study establishes PYROXD1 variants as a cause of early-onset myopathy and uses biospecimens and cell lines, yeast, and zebrafish models to elucidate the fundamental role of PYROXD1 in skeletal muscle. Exome sequencing identified recessive variants in PYROXD1 in nine probands from five families. Affected individuals presented in infancy or childhood with slowly progressive proximal and distal weakness, facial weakness, nasal speech, swallowing difficulties, and normal to moderately elevated creatine kinase. Distinctive histopathology showed abundant internalized nuclei, myofibrillar disorganization, desmin-positive inclusions, and thickened Z-bands. PYROXD1 is a nuclear-cytoplasmic pyridine nucleotide-disulphide reductase (PNDR). PNDRs are flavoproteins (FAD-binding) and catalyze pyridine-nucleotide-dependent (NAD/NADH) reduction of thiol residues in other proteins. Complementation experiments in yeast lacking glutathione reductase glr1 show that human PYROXD1 has reductase activity that is strongly impaired by the disease-associated missense mutations. Immunolocalization studies in human muscle and zebrafish myofibers demonstrate that PYROXD1 localizes to the nucleus and to striated sarcomeric compartments. Zebrafish with ryroxD1 knock-down recapitulate features of PYROXD1 myopathy with sarcomeric disorganization, myofibrillar aggregates, and marked swimming defect. We characterize variants in the oxidoreductase PYROXD1 as a cause of early-onset myopathy with distinctive histopathology and introduce altered redox regulation as a primary cause of congenital muscle disease.


Subject(s)
Cell Nucleus/genetics , Distal Myopathies/genetics , Genetic Variation , Myopathies, Structural, Congenital/genetics , Oxidoreductases/genetics , Amino Acid Sequence , Animals , COS Cells , Cell Nucleus/metabolism , Chlorocebus aethiops , Cohort Studies , Creatine Kinase/genetics , Creatine Kinase/metabolism , Cytoplasm/metabolism , Distal Myopathies/pathology , ELAV-Like Protein 4/genetics , ELAV-Like Protein 4/metabolism , Female , Flavoproteins/metabolism , Gene Deletion , Genome-Wide Association Study , Glutathione Reductase/genetics , Glutathione Reductase/metabolism , HEK293 Cells , Humans , Male , Muscle, Skeletal/pathology , Mutation, Missense , Myopathies, Structural, Congenital/pathology , Oxidoreductases/metabolism , Pedigree , Protein Conformation , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Zebrafish/genetics
11.
J Cell Sci ; 130(21): 3650-3662, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28871047

ABSTRACT

HuD protein (also known as ELAVL4) has been shown to stabilize mRNAs with AU-rich elements (ARE) in their 3' untranslated regions (UTRs), including Gap43, which has been linked to axon growth. HuD also binds to neuritin (Nrn1) mRNA, whose 3'UTR contains ARE sequences. Although the Nrn1 3'UTR has been shown to mediate its axonal localization in embryonic hippocampal neurons, it is not active in adult dorsal root ganglion (DRG) neurons. Here, we asked why the 3'UTR is not sufficient to mediate the axonal localization of Nrn1 mRNA in DRG neurons. HuD overexpression increases the ability of the Nrn1 3'UTR to mediate axonal localizing in DRG neurons. HuD binds directly to the Nrn1 ARE with about a two-fold higher affinity than to the Gap43 ARE. Although the Nrn1 ARE can displace the Gap43 ARE from HuD binding, HuD binds to the full 3'UTR of Gap43 with higher affinity, such that higher levels of Nrn1 are needed to displace the Gap43 3'UTR. The Nrn1 3'UTR can mediate a higher level of axonal localization when endogenous Gap43 is depleted from DRG neurons. Taken together, our data indicate that endogenous Nrn1 and Gap43 mRNAs compete for binding to HuD for their axonal localization and activity of the Nrn1 3'UTR.


Subject(s)
3' Untranslated Regions , Axons/metabolism , ELAV-Like Protein 4/metabolism , GAP-43 Protein/metabolism , Neurons/metabolism , Neuropeptides/metabolism , Animals , Axons/ultrastructure , Base Sequence , Binding, Competitive , ELAV-Like Protein 4/genetics , GAP-43 Protein/genetics , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Ganglia, Spinal/metabolism , Ganglia, Spinal/ultrastructure , Gene Expression Regulation, Developmental , Hippocampus/metabolism , Hippocampus/ultrastructure , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/ultrastructure , Neuropeptides/genetics , Primary Cell Culture , Protein Binding , Rats , Rats, Sprague-Dawley , Response Elements , Signal Transduction
12.
Stat Med ; 38(13): 2353-2363, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30706509

ABSTRACT

Detecting the association between a set of variants and a phenotype of interest is the first and important step in genetic and genomic studies. Although it attracted a large amount of attention in the scientific community and several related statistical approaches have been proposed in the literature, powerful and robust statistical tests are still highly desired and yet to be developed in this area. In this paper, we propose a powerful and robust association test, which combines information from each individual single-nucleotide polymorphisms based on sequential independent burden tests. We compare the proposed approach with some popular tests through a comprehensive simulation study and real data application. Our results show that, in general, the new test is more powerful; the gain in detecting power can be substantial in many situations, compared to other methods.


Subject(s)
Genetic Association Studies , Models, Statistical , Polymorphism, Single Nucleotide , Computer Simulation , ELAV-Like Protein 4/genetics , Genotype , Glaucoma, Open-Angle/ethnology , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/prevention & control , Humans , Multicenter Studies as Topic , Phenotype , Randomized Controlled Trials as Topic
13.
J Pathol ; 246(2): 231-243, 2018 10.
Article in English | MEDLINE | ID: mdl-30014466

ABSTRACT

For the majority of patients diagnosed with pancreatic neuroendocrine tumors (NETs), there is significant malignant potential with a poor prognosis; however, the molecular abnormalities and pathogenesis of pancreatic NETs have not been firmly established. Here, we report that loss of expression of the RNA-binding protein HuD correlates with low p27Kip1 (p27) levels and poor prognosis in pancreatic NETs. HuD expression was frequently lost in many human pancreatic NETs, and these pancreatic NETs showed aggressive clinicopathological phenotypes with low p27 levels, increased tumor size, higher World Health Organization grade and pT stage of the tumor, and the presence of angioinvasion. Furthermore, loss of HuD was an independent, progression-free prognostic factor in multivariate survival analysis. However, the level of HuR, a member of the same Hu protein family as HuD, was not significantly correlated with pancreatic NET size and progression. Mechanistically, HuD enhanced p27 mRNA translation by interacting with both the 5'-untranslated region (UTR) and the 3'-UTR of p27 mRNA, and consequently suppressed cell cycle progression and tumor growth. In addition, HuD competed with miR-30a-3p for binding to the 3'-UTR of p27 mRNA, suggesting an interplay between HuD and miR-30a-3p in controlling p27 translation. Our results identify HuD as a pivotal suppressor of pancreatic NET growth, and suggest that HuD has potential value as a prognostic factor of pancreatic NETs. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Neuroendocrine/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , ELAV-Like Protein 4/metabolism , Pancreatic Neoplasms/metabolism , 3' Untranslated Regions , 5' Untranslated Regions , Adult , Aged , Animals , Binding Sites , Biomarkers, Tumor/genetics , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/mortality , Carcinoma, Neuroendocrine/pathology , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p27/genetics , Down-Regulation , ELAV-Like Protein 4/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mice, Inbred BALB C , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Middle Aged , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Phenotype , Progression-Free Survival , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Signal Transduction , Time Factors , Tumor Burden
14.
Int J Mol Sci ; 20(8)2019 Apr 22.
Article in English | MEDLINE | ID: mdl-31013625

ABSTRACT

The neuron-specific Elav-like Hu RNA-binding proteins were described to play an important role in neuronal differentiation and plasticity by ensuring the post-transcriptional control of RNAs encoding for various proteins. Although Elav-like Hu proteins alterations were reported in diabetes or neuropathy, little is known about the regulation of neuron-specific Elav-like Hu RNA-binding proteins in sensory neurons of dorsal root ganglia (DRG) due to the diabetic condition. The goal of our study was to analyze the gene and protein expression of HuB, HuC, and HuD in DRG sensory neurons in diabetes. The diabetic condition was induced in CD-1 adult male mice with single-intraperitoneal injection of streptozotocin (STZ, 150 mg/kg), and 8-weeks (advanced diabetes) after induction was quantified the Elav-like proteins expression. Based on the glycemia values, we identified two types of responses to STZ, and mice were classified in STZ-resistant (diabetic resistant, glycemia < 260 mg/dL) and STZ-sensitive (diabetic, glycemia > 260 mg/dL). Body weight measurements indicated that 8-weeks after STZ-induction of diabetes, control mice have a higher increase in body weight compared to the diabetic and diabetic resistant mice. Moreover, after 8-weeks, diabetic mice (19.52 ± 3.52 s) have longer paw withdrawal latencies in the hot-plate test than diabetic resistant (11.36 ± 1.92 s) and control (11.03 ± 1.97 s) mice, that correlates with the installation of warm hypoalgesia due to the diabetic condition. Further on, we evidenced the decrease of Elav-like gene expression in DRG neurons of diabetic mice (Elavl2, 0.68 ± 0.05 fold; Elavl3, 0.65 ± 0.01 fold; Elavl4, 0.53 ± 0.07 fold) and diabetic resistant mice (Ealvl2, 0.56 ± 0.07 fold; Elavl3, 0.32 ± 0.09 fold) compared to control mice. Interestingly, Elav-like genes have a more accentuated downregulation in diabetic resistant than in diabetic mice, although hypoalgesia was evidenced only in diabetic mice. The Elav-like gene expression changes do not always correlate with the Hu protein expression changes. To detail, HuB is upregulated and HuD is downregulated in diabetic mice, while HuB, HuC, and HuD are downregulated in diabetic resistant mice compared to control mice. To resume, we demonstrated HuD downregulation and HuB upregulation in DRG sensory neurons induced by diabetes, which might be correlated with altered post-transcriptional control of RNAs involved in the regulation of thermal hypoalgesia condition caused by the advanced diabetic neuropathy.


Subject(s)
ELAV-Like Protein 2/genetics , ELAV-Like Protein 3/genetics , ELAV-Like Protein 4/genetics , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Gene Expression Regulation , Sensory Receptor Cells/metabolism , Animals , Biomarkers , Blood Glucose , Body Weight , Diabetes Mellitus, Experimental , ELAV-Like Protein 2/metabolism , ELAV-Like Protein 3/metabolism , ELAV-Like Protein 4/metabolism , Ganglia, Spinal/physiopathology , Immunohistochemistry , Mice , RNA-Binding Proteins
15.
J Neurosci ; 37(48): 11559-11571, 2017 11 29.
Article in English | MEDLINE | ID: mdl-29061699

ABSTRACT

Motoneurons establish a critical link between the CNS and muscles. If motoneurons do not develop correctly, they cannot form the required connections, resulting in movement defects or paralysis. Compromised development can also lead to degeneration because the motoneuron is not set up to function properly. Little is known, however, regarding the mechanisms that control vertebrate motoneuron development, particularly the later stages of axon branch and dendrite formation. The motoneuron disease spinal muscular atrophy (SMA) is caused by low levels of the survival motor neuron (SMN) protein leading to defects in vertebrate motoneuron development and synapse formation. Here we show using zebrafish as a model system that SMN interacts with the RNA binding protein (RBP) HuD in motoneurons in vivo during formation of axonal branches and dendrites. To determine the function of HuD in motoneurons, we generated zebrafish HuD mutants and found that they exhibited decreased motor axon branches, dramatically fewer dendrites, and movement defects. These same phenotypes are present in animals expressing low levels of SMN, indicating that both proteins function in motoneuron development. HuD binds and transports mRNAs and one of its target mRNAs, Gap43, is involved in axonal outgrowth. We found that Gap43 was decreased in both HuD and SMN mutants. Importantly, transgenic expression of HuD in motoneurons of SMN mutants rescued the motoneuron defects, the movement defects, and Gap43 mRNA levels. These data support that the interaction between SMN and HuD is critical for motoneuron development and point to a role for RBPs in SMA.SIGNIFICANCE STATEMENT In zebrafish models of the motoneuron disease spinal muscular atrophy (SMA), motor axons fail to form the normal extent of axonal branches and dendrites leading to decreased motor function. SMA is caused by low levels of the survival motor neuron (SMN) protein. We show in motoneurons in vivo that SMN interacts with the RNA binding protein, HuD. Novel mutants reveal that HuD is also necessary for motor axonal branch and dendrite formation. Data also revealed that both SMN and HuD affect levels of an mRNA involved in axonal growth. Moreover, expressing HuD in SMN-deficient motoneurons can rescue the motoneuron development and motor defects caused by low levels of SMN. These data support that SMN:HuD complexes are essential for normal motoneuron development and indicate that mRNA handling is a critical component of SMA.


Subject(s)
ELAV-Like Protein 4/genetics , ELAV-Like Protein 4/metabolism , Motor Neurons/physiology , RNA, Messenger/physiology , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Animals , Animals, Genetically Modified , Axons/physiology , Dendrites/genetics , Dendrites/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Zebrafish
16.
J Biol Chem ; 292(8): 3466-3480, 2017 02 24.
Article in English | MEDLINE | ID: mdl-28077579

ABSTRACT

Pancreatic beta cell failure is the central event leading to diabetes. Beta cells share many phenotypic traits with neurons, and proper beta cell function relies on the activation of several neuron-like transcription programs. Regulation of gene expression by alternative splicing plays a pivotal role in brain, where it affects neuronal development, function, and disease. The role of alternative splicing in beta cells remains unclear, but recent data indicate that splicing alterations modulated by both inflammation and susceptibility genes for diabetes contribute to beta cell dysfunction and death. Here we used RNA sequencing to compare the expression of splicing-regulatory RNA-binding proteins in human islets, brain, and other human tissues, and we identified a cluster of splicing regulators that are expressed in both beta cells and brain. Four of them, namely Elavl4, Nova2, Rbox1, and Rbfox2, were selected for subsequent functional studies in insulin-producing rat INS-1E, human EndoC-ßH1 cells, and in primary rat beta cells. Silencing of Elavl4 and Nova2 increased beta cell apoptosis, whereas silencing of Rbfox1 and Rbfox2 increased insulin content and secretion. Interestingly, Rbfox1 silencing modulates the splicing of the actin-remodeling protein gelsolin, increasing gelsolin expression and leading to faster glucose-induced actin depolymerization and increased insulin release. Taken together, these findings indicate that beta cells share common splicing regulators and programs with neurons. These splicing regulators play key roles in insulin release and beta cell survival, and their dysfunction may contribute to the loss of functional beta cell mass in diabetes.


Subject(s)
Insulin-Secreting Cells/cytology , RNA-Binding Proteins/metabolism , Alternative Splicing , Animals , Apoptosis , Cell Line , Cell Survival , Cells, Cultured , ELAV-Like Protein 4/genetics , ELAV-Like Protein 4/metabolism , Gene Expression Regulation , Glucose/metabolism , Humans , Insulin/metabolism , Insulin-Secreting Cells/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA-Binding Proteins/genetics , Rats
17.
Proc Natl Acad Sci U S A ; 112(36): E4995-5004, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26305964

ABSTRACT

The mammalian embryonic lethal abnormal vision (ELAV)-like protein HuD is a neuronal RNA-binding protein implicated in neuronal development, plasticity, and diseases. Although HuD has long been associated with neuronal development, the functions of HuD in neural stem cell differentiation and the underlying mechanisms have gone largely unexplored. Here we show that HuD promotes neuronal differentiation of neural stem/progenitor cells (NSCs) in the adult subventricular zone by stabilizing the mRNA of special adenine-thymine (AT)-rich DNA-binding protein 1 (SATB1), a critical transcriptional regulator in neurodevelopment. We find that SATB1 deficiency impairs the neuronal differentiation of NSCs, whereas SATB1 overexpression rescues the neuronal differentiation phenotypes resulting from HuD deficiency. Interestingly, we also discover that SATB1 is a transcriptional activator of HuD during NSC neuronal differentiation. In addition, we demonstrate that NeuroD1, a neuronal master regulator, is a direct downstream target of SATB1. Therefore, HuD and SATB1 form a positive regulatory loop that enhances NeuroD1 transcription and subsequent neuronal differentiation. Our results here reveal a novel positive feedback network between an RNA-binding protein and a transcription factor that plays critical regulatory roles in neurogenesis.


Subject(s)
ELAV-Like Protein 4/metabolism , Feedback, Physiological , Matrix Attachment Region Binding Proteins/metabolism , Neurogenesis , Animals , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Binding Sites/genetics , Blotting, Western , Cell Differentiation , Cells, Cultured , ELAV-Like Protein 4/genetics , Lateral Ventricles/cytology , Lateral Ventricles/metabolism , Male , Matrix Attachment Region Binding Proteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Molecular Sequence Data , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurons/cytology , Neurons/metabolism , Olfactory Bulb/cytology , Olfactory Bulb/metabolism , Protein Binding , RNA Interference , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction
18.
Biochim Biophys Acta ; 1859(4): 675-85, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26945853

ABSTRACT

Although triglyceride (TG) accumulation in the pancreas leads to ß-cell dysfunction and raises the chance to develop metabolic disorders such as type 2 diabetes (T2DM), the molecular mechanisms whereby intracellular TG levels are regulated in pancreatic ß cells have not been fully elucidated. Here, we present evidence that the RNA-binding protein HuD regulates TG production in pancreatic ß cells. Mouse insulinoma ßTC6 cells stably expressing a small hairpin RNA targeting HuD (shHuD) (ßTC6-shHuD) contained higher TG levels compared to control cells. Moreover, downregulation of HuD resulted in a decrease in insulin-induced gene 1 (INSIG1) levels but not in the levels of sterol regulatory element-binding protein 1c (SREBP1c), a key transcription factor for lipid production. We identified Insig1 mRNA as a direct target of HuD by using ribonucleoprotein immunoprecipitation (RIP) and biotin pulldown analyses. By associating with the 3'-untranslated region (3'UTR) of Insig1 mRNA, HuD promoted INSIG1 translation; accordingly, HuD downregulation reduced while ectopic HuD expression increased INSIG1 levels. We further observed that HuD downregulation facilitated the nuclear localization of SREBP1c, thereby increasing the transcriptional activity of SREBP1c and the expression of target genes involved in lipogenesis; likewise, we observed lower INSIG1 levels in the pancreatic islets of HuD-null mice. Taken together, our results indicate that HuD functions as a novel repressor of lipid synthesis in pancreatic ß cells.


Subject(s)
Diabetes Mellitus, Type 2/genetics , ELAV-Like Protein 4/metabolism , Insulin-Secreting Cells/metabolism , RNA-Binding Proteins/metabolism , Triglycerides/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , ELAV-Like Protein 4/genetics , Humans , Insulin/metabolism , Insulin-Secreting Cells/pathology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , RNA-Binding Proteins/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
19.
Pharmacol Res ; 111: 23-33, 2016 09.
Article in English | MEDLINE | ID: mdl-27238228

ABSTRACT

Nucleoside reverse transcriptase inhibitors (NRTIs) are key components of HIV/AIDS treatment to reduce viral load. However, antiretroviral toxic neuropathy has become a common peripheral neuropathy among HIV/AIDS patients leading to discontinuation of antiretroviral therapy, for which the underlying pathogenesis is uncertain. This study examines the role of neurofilament (NF) proteins in the spinal dorsal horn, DRG and sciatic nerve after NRTI neurotoxicity in mice treated with zalcitabine (2',3'-dideoxycitidine; ddC). ddC administration up-regulated NF-M and pNF-H proteins with no effect on NF-L. The increase of pNF-H levels was counteracted by the silencing of HuD, an RNA binding protein involved in neuronal development and differentiation. Sciatic nerve sections of ddC exposed mice showed an increased axonal caliber, concomitantly to a pNF-H up-regulation. Both events were prevented by HuD silencing. pNF-H and HuD colocalize in DRG and spinal dorsal horn axons. However, the capability of HuD to bind NF mRNA was not demonstrated, indicating the presence of an indirect mechanism of control of NF expression by HuD. RNA immunoprecipitation experiments showed the capability of HuD to bind the BDNF mRNA and the administration of an anti-BDNF antibody prevented pNF-H increase. These data indicate the presence of a HuD - BDNF - NF-H pathway activated as a regenerative response to the axonal damage induced by ddC treatment to counteract the antiretroviral neurotoxicity. Since analgesics clinically used to treat neuropathic pain are ineffective on antiretroviral neuropathy, a neuroregenerative strategy might represent a new therapeutic opportunity to counteract neurotoxicity and avoid discontinuation or abandon of NRTI therapy.


Subject(s)
Anti-Retroviral Agents , ELAV-Like Protein 4/metabolism , Neurofilament Proteins/metabolism , Sensory Receptor Cells/metabolism , Zalcitabine , Animals , Antibodies/pharmacology , Brain-Derived Neurotrophic Factor/antagonists & inhibitors , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , ELAV-Like Protein 4/genetics , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Gene Silencing , Male , Mice , Neuroprotective Agents/pharmacology , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/metabolism , Protein Kinase C/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sciatic Nerve/metabolism , Sciatic Nerve/pathology , Sciatic Neuropathy/chemically induced , Sciatic Neuropathy/genetics , Sciatic Neuropathy/metabolism , Sciatic Neuropathy/prevention & control , Sensory Receptor Cells/pathology , Signal Transduction , Spinal Cord/metabolism , Spinal Cord/pathology , Up-Regulation
20.
Biochimie ; 221: 20-26, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38244852

ABSTRACT

The RNA-binding protein HuD/ELAVL4 is essential for neuronal development and synaptic plasticity by governing various post-transcriptional processes of target mRNAs, including stability, translation, and localization. We previously showed that the linker region and poly(A)-binding domain of HuD play a pivotal role in promoting translation and inducing neurite outgrowth. In addition, we found that HuD interacts exclusively with the active form of Akt1, through the linker region. Although this interaction is essential for neurite outgrowth, HuD is not a substrate for Akt1, raising questions about the dynamics between HuD-mediated translational stimulation and its association with active Akt1. Here, we demonstrate that active Akt1 interacts with the cap-binding complex via HuD. We identify key amino acids in linker region of HuD responsible for Akt1 interaction, leading to the generation of two point-mutated HuD variants: one that is incapable of binding to Akt1 and another that can interact with Akt1 regardless of its phosphorylation status. In vitro translation assays using these mutants reveal that HuD-mediated translation stimulation is independent of its binding to Akt1. In addition, it is evident that the interaction between HuD and active Akt1 is essential for HuD-induced neurite outgrowth, whereas a HuD mutant capable of binding to any form of Akt1 leads to aberrant neurite development. Collectively, our results revisit the understanding of the HuD-Akt1 interaction in translation and suggest that this interaction contributes to HuD-mediated neurite outgrowth via a unique molecular mechanism distinct from translation regulation.


Subject(s)
ELAV-Like Protein 4 , Neurons , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-akt/metabolism , ELAV-Like Protein 4/metabolism , ELAV-Like Protein 4/genetics , Humans , Animals , Neurons/metabolism , Neurons/cytology , Cell Differentiation , HEK293 Cells , Protein Binding , Phosphorylation , Mice , Neurogenesis , Rats , Neurites/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL