Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Stem Cells ; 42(6): 554-566, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38613477

ABSTRACT

Microtia is a congenital auricle dysplasia with a high incidence and tissue engineering technology provides a promising strategy to reconstruct auricles. We previously described that the engineered cartilage constructed from microtia chondrocytes exhibited inferior levels of biochemical and biomechanical properties, which was proposed to be resulted of the decreased migration ability of microtia chondrocytes. In the current study, we found that Rho GTPase members were deficient in microtia chondrocytes. By overexpressing RhoA, Rac1, and CDC42, respectively, we further demonstrated that RhoA took great responsibility for the decreased migration ability of microtia chondrocytes. Moreover, we constructed PGA/PLA scaffold-based cartilages to verify the chondrogenic ability of RhoA overexpressed microtia chondrocytes, and the results showed that overexpressing RhoA was of limited help in improving the quality of microtia chondrocyte engineered cartilage. However, coculture of adipose-derived stem cells (ADSCs) significantly improved the biochemical and biomechanical properties of engineered cartilage. Especially, coculture of RhoA overexpressed microtia chondrocytes and ADSCs produced an excellent effect on the wet weight, cartilage-specific extracellular matrix, and biomechanical property of engineered cartilage. Furthermore, we presented that coculture of RhoA overexpressed microtia chondrocytes and ADSCs combined with human ear-shaped PGA/PLA scaffold and titanium alloy stent fabricated by CAD/CAM and 3D printing technology effectively constructed and maintained auricle structure in vivo. Collectively, our results provide evidence for the essential role of RhoA in microtia chondrocytes and a developed strategy for the construction of patient-specific tissue-engineered auricular cartilage.


Subject(s)
Chondrocytes , Coculture Techniques , Congenital Microtia , Tissue Engineering , rhoA GTP-Binding Protein , Chondrocytes/metabolism , Chondrocytes/cytology , Humans , Tissue Engineering/methods , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , Congenital Microtia/metabolism , Congenital Microtia/genetics , Ear Cartilage/cytology , Ear Cartilage/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Adipose Tissue/cytology , Adipose Tissue/metabolism , Chondrogenesis/genetics , Male , Tissue Scaffolds/chemistry , Female
2.
Tissue Eng Part C Methods ; 30(7): 314-322, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38946581

ABSTRACT

Current tissue engineering (TE) methods utilize chondrocytes primarily from costal or articular sources. Despite the robust mechanical properties of neocartilages sourced from these cells, the lack of elasticity and invasiveness of cell collection from these sources negatively impact clinical translation. These limitations invited the exploration of naturally elastic auricular cartilage as an alternative cell source. This study aimed to determine if auricular chondrocytes (AuCs) can be used for TE scaffold-free neocartilage constructs and assess their biomechanical properties. Neocartilages were successfully generated from a small quantity of primary neonatal AuCs of three minipig donors (n = 3). Neocartilage constructs had instantaneous moduli of 200.5 kPa ± 43.34 and 471.9 ± 92.8 kPa at 10% and 20% strain, respectively. TE constructs' relaxation moduli (Er) were 36.99 ± 6.47 kPa Er and 110.3 ± 16.99 kPa at 10% and 20% strain, respectively. The Young's modulus was 2.0 MPa ± 0.63, and the ultimate tensile strength was 0.619 ± 0.177 MPa. AuC-derived neocartilages contained 0.144 ± 0.011 µg collagen, 0.185 µg ± 0.002 glycosaminoglycans per µg dry weight, and 1.7e-3 µg elastin per µg dry weight. In conclusion, this study shows that AuCs can be used as a reliable and easily accessible cell source for TE of biomimetic and mechanically robust elastic neocartilage implants.


Subject(s)
Chondrocytes , Ear Cartilage , Elastic Cartilage , Tissue Engineering , Tissue Scaffolds , Animals , Tissue Engineering/methods , Chondrocytes/cytology , Chondrocytes/metabolism , Swine , Ear Cartilage/cytology , Ear Cartilage/physiology , Elastic Cartilage/cytology , Tissue Scaffolds/chemistry , Swine, Miniature , Elastic Modulus , Cells, Cultured , Tensile Strength
3.
Int. j. morphol ; 32(4): 1347-1356, Dec. 2014. ilus
Article in English | LILACS | ID: lil-734682

ABSTRACT

Tissue engineering (TE) has become an alternative for auricular reconstruction based on the combination of cells, molecular signals and biomaterials. Scaffolds are biomaterials that provide structural support for cell attachment and subsequent tissue development. Ideally, a scaffold should have characteristics such as biocompatibility and bioactivity to adequate support cell functions. Our purpose was to evaluate biocompatibility of microtic auricular chondrocytes seeded onto a chitosan-polyvinyl alcohol-epichlorohydrin (CS-PVA-ECH) hydrogel to propose this material as a scaffold for tissue engineering application. After being cultured onto CS-PVA-ECH hydrogels, auricular chondrocytes viability was up to 81%. SEM analysis showed cell attachment and extracellular matrix formation that was confirmed by IF detection of type II collagen and elastin, the main constituents of elastic cartilage. Expression of elastic cartilage molecular markers during in vitro expansion and during culture onto hydrogels allowed confirming auricular chondrocyte phenotype. In vivo assay of tissue formation revealed generation of neotissues with similar physical characteristics and protein composition to those found in elastic cartilage. According to our results, biocompatibility of the CS-PVA-ECH hydrogel makes it a suitable scaffold for tissue engineering application aimed to elastic cartilage regeneration.


La ingeniería de tejidos (TE) es una alternativa para la reconstrucción auricular basada en la combinación de células, señales moleculares y biomateriales. Los andamios fabricados con biomateriales brindan un soporte estructural que favorece la adhesión cellular y el desarrollo del tejido. Un andamio debe poseer características como biocompatibilidad y bioactividad para soportar adecuadamente funciones celulares. Nuestro objetivo fue evaluar la biocompatibilidad de condrocitos auriculares de microtia cultivados sobre un hidrogel a base de quitosano-alcohol polivinílico-epiclorhidrina (CS-PVA-ECH) y proponerlo como andamio con aplicaciones en ingeniería de tejidos. La viabilidad de los condrocitos auriculares es superior al 81% después de ser cultivados sobre el hidrogel. El análisis por SEM reveló la unión celular y formación de matriz extracellular sobre el hidrogel; confirmada mediante detección por IF de colágena tipo II y elastina. La expresión de marcadores moleculares durante la expansión in vitro y el cultivo sobre los hidrogeles confirmaron el fenotipo condral. El ensayo de formación de tejido in vivo demostró la generación de neotejidos con características físicas y composición similar al cartílago elástico. Nuestros resultados indican que la biocompatibilidad del hidrogel de CS-PVA-ECH lo hace un andamio adecuado para aplicaciones en ingeniería de tejidos enfocadas a regeneración de cartílago elástico.


Subject(s)
Humans , Chondrocytes/cytology , Tissue Engineering/methods , Chitosan/chemistry , Ear Cartilage/cytology , Polyvinyls/chemistry , Biocompatible Materials , Immunohistochemistry , Cell Culture Techniques , Chondrocytes/metabolism , Hydrogels , Epichlorohydrin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL