Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.466
Filter
Add more filters

Publication year range
1.
Cell ; 187(19): 5238-5252.e20, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39208796

ABSTRACT

Fanzor (Fz) is an ωRNA-guided endonuclease extensively found throughout the eukaryotic domain with unique gene editing potential. Here, we describe the structures of Fzs from three different organisms. We find that Fzs share a common ωRNA interaction interface, regardless of the length of the ωRNA, which varies considerably across species. The analysis also reveals Fz's mode of DNA recognition and unwinding capabilities as well as the presence of a non-canonical catalytic site. The structures demonstrate how protein conformations of Fz shift to allow the binding of double-stranded DNA to the active site within the R-loop. Mechanistically, examination of structures in different states shows that the conformation of the lid loop on the RuvC domain is controlled by the formation of the guide/DNA heteroduplex, regulating the activation of nuclease and DNA double-stranded displacement at the single cleavage site. Our findings clarify the mechanism of Fz, establishing a foundation for engineering efforts.


Subject(s)
DNA Cleavage , DNA , DNA/metabolism , DNA/chemistry , Catalytic Domain , Models, Molecular , RNA, Guide, CRISPR-Cas Systems/metabolism , RNA, Guide, CRISPR-Cas Systems/chemistry , Humans , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/chemistry , Gene Editing , CRISPR-Cas Systems
2.
Cell ; 187(19): 5220-5222, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39303688

ABSTRACT

Fanzors are recently characterized RNA-guided DNA endonucleases found in eukaryotic organisms. In this issue of Cell, Xu, Saito et al. reveal the structural diversity of Fanzors and identify key features shared with TnpB and Cas12 proteins, providing a comprehensive perspective on their molecular function and evolution.


Subject(s)
CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , Eukaryota/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , DNA/genetics , DNA/metabolism , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Humans
3.
Annu Rev Biochem ; 89: 309-332, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32186918

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR) together with their accompanying cas (CRISPR-associated) genes are found frequently in bacteria and archaea, serving to defend against invading foreign DNA, such as viral genomes. CRISPR-Cas systems provide a uniquely powerful defense because they can adapt to newly encountered genomes. The adaptive ability of these systems has been exploited, leading to their development as highly effective tools for genome editing. The widespread use of CRISPR-Cas systems has driven a need for methods to control their activity. This review focuses on anti-CRISPRs (Acrs), proteins produced by viruses and other mobile genetic elements that can potently inhibit CRISPR-Cas systems. Discovered in 2013, there are now 54 distinct families of these proteins described, and the functional mechanisms of more than a dozen have been characterized in molecular detail. The investigation of Acrs is leading to a variety of practical applications and is providing exciting new insight into the biology of CRISPR-Cas systems.


Subject(s)
CRISPR-Cas Systems/drug effects , Gene Editing/methods , Small Molecule Libraries/pharmacology , Viral Proteins/genetics , Viruses/genetics , Archaea/genetics , Archaea/immunology , Archaea/virology , Bacteria/genetics , Bacteria/immunology , Bacteria/virology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Coevolution , CRISPR-Associated Proteins/antagonists & inhibitors , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , DNA/antagonists & inhibitors , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA Cleavage/drug effects , Endodeoxyribonucleases/antagonists & inhibitors , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Humans , Models, Molecular , Multigene Family , Protein Binding , Protein Multimerization/drug effects , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Viral Proteins/pharmacology , Viruses/metabolism , Viruses/pathogenicity
4.
Mol Cell ; 84(14): 2717-2731.e6, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38955179

ABSTRACT

The specific nature of CRISPR-Cas12a makes it a desirable RNA-guided endonuclease for biotechnology and therapeutic applications. To understand how R-loop formation within the compact Cas12a enables target recognition and nuclease activation, we used cryo-electron microscopy to capture wild-type Acidaminococcus sp. Cas12a R-loop intermediates and DNA delivery into the RuvC active site. Stages of Cas12a R-loop formation-starting from a 5-bp seed-are marked by distinct REC domain arrangements. Dramatic domain flexibility limits contacts until nearly complete R-loop formation, when the non-target strand is pulled across the RuvC nuclease and coordinated domain docking promotes efficient cleavage. Next, substantial domain movements enable target strand repositioning into the RuvC active site. Between cleavage events, the RuvC lid conformationally resets to occlude the active site, requiring re-activation. These snapshots build a structural model depicting Cas12a DNA targeting that rationalizes observed specificity and highlights mechanistic comparisons to other class 2 effectors.


Subject(s)
Acidaminococcus , Bacterial Proteins , CRISPR-Associated Proteins , CRISPR-Cas Systems , Catalytic Domain , Cryoelectron Microscopy , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/genetics , Acidaminococcus/enzymology , Acidaminococcus/genetics , Acidaminococcus/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , R-Loop Structures/genetics , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/chemistry , RNA, Guide, CRISPR-Cas Systems/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics , Models, Molecular , Protein Domains , Structure-Activity Relationship , Protein Binding
5.
Mol Cell ; 84(12): 2223-2237.e4, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38870937

ABSTRACT

In Saccharomyces cerevisiae (S. cerevisiae), Mre11-Rad50-Xrs2 (MRX)-Sae2 nuclease activity is required for the resection of DNA breaks with secondary structures or protein blocks, while in humans, the MRE11-RAD50-NBS1 (MRN) homolog with CtIP is needed to initiate DNA end resection of all breaks. Phosphorylated Sae2/CtIP stimulates the endonuclease activity of MRX/N. Structural insights into the activation of the Mre11 nuclease are available only for organisms lacking Sae2/CtIP, so little is known about how Sae2/CtIP activates the nuclease ensemble. Here, we uncover the mechanism of Mre11 activation by Sae2 using a combination of AlphaFold2 structural modeling of biochemical and genetic assays. We show that Sae2 stabilizes the Mre11 nuclease in a conformation poised to cleave substrate DNA. Several designs of compensatory mutations establish how Sae2 activates MRX in vitro and in vivo, supporting the structural model. Finally, our study uncovers how human CtIP, despite considerable sequence divergence, employs a similar mechanism to activate MRN.


Subject(s)
DNA-Binding Proteins , Endodeoxyribonucleases , Endonucleases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Endonucleases/metabolism , Endonucleases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/chemistry , Humans , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , Models, Molecular , Phosphorylation , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , DNA Breaks, Double-Stranded , Acid Anhydride Hydrolases/metabolism , Acid Anhydride Hydrolases/genetics , Mutation , MRE11 Homologue Protein/metabolism , MRE11 Homologue Protein/genetics , DNA Repair , Enzyme Activation
6.
Annu Rev Biochem ; 85: 193-226, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27088880

ABSTRACT

The repair of DNA by homologous recombination is an essential, efficient, and high-fidelity process that mends DNA lesions formed during cellular metabolism; these lesions include double-stranded DNA breaks, daughter-strand gaps, and DNA cross-links. Genetic defects in the homologous recombination pathway undermine genomic integrity and cause the accumulation of gross chromosomal abnormalities-including rearrangements, deletions, and aneuploidy-that contribute to cancer formation. Recombination proceeds through the formation of joint DNA molecules-homologously paired but metastable DNA intermediates that are processed by several alternative subpathways-making recombination a versatile and robust mechanism to repair damaged chromosomes. Modern biophysical methods make it possible to visualize, probe, and manipulate the individual molecules participating in the intermediate steps of recombination, revealing new details about the mechanics of genetic recombination. We review and discuss the individual stages of homologous recombination, focusing on common pathways in bacteria, yeast, and humans, and place particular emphasis on the molecular mechanisms illuminated by single-molecule methods.


Subject(s)
DNA/genetics , Escherichia coli/genetics , Recombination, Genetic , Recombinational DNA Repair , Saccharomyces cerevisiae/genetics , Chromosome Aberrations , DNA/metabolism , DNA Damage , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Escherichia coli/metabolism , Exodeoxyribonuclease V/genetics , Exodeoxyribonuclease V/metabolism , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Gene Expression Regulation , Genomic Instability , Humans , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , RecQ Helicases/genetics , RecQ Helicases/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Single Molecule Imaging
7.
Cell ; 167(7): 1814-1828.e12, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27984729

ABSTRACT

C2c1 is a newly identified guide RNA-mediated type V-B CRISPR-Cas endonuclease that site-specifically targets and cleaves both strands of target DNA. We have determined crystal structures of Alicyclobacillus acidoterrestris C2c1 (AacC2c1) bound to sgRNA as a binary complex and to target DNAs as ternary complexes, thereby capturing catalytically competent conformations of AacC2c1 with both target and non-target DNA strands independently positioned within a single RuvC catalytic pocket. Moreover, C2c1-mediated cleavage results in a staggered seven-nucleotide break of target DNA. crRNA adopts a pre-ordered five-nucleotide A-form seed sequence in the binary complex, with release of an inserted tryptophan, facilitating zippering up of 20-bp guide RNA:target DNA heteroduplex on ternary complex formation. Notably, the PAM-interacting cleft adopts a "locked" conformation on ternary complex formation. Structural comparison of C2c1 ternary complexes with their Cas9 and Cpf1 counterparts highlights the diverse mechanisms adopted by these distinct CRISPR-Cas systems, thereby broadening and enhancing their applicability as genome editing tools.


Subject(s)
Alicyclobacillus/enzymology , CRISPR-Cas Systems , Endodeoxyribonucleases/metabolism , Alicyclobacillus/classification , Alicyclobacillus/genetics , Alicyclobacillus/metabolism , Crystallography, X-Ray , Endodeoxyribonucleases/genetics , Gene Editing , Homeodomain Proteins/genetics , Humans , Models, Molecular , RNA, Untranslated/metabolism , Transcription Factors/genetics
8.
Cell ; 166(1): 88-101, 2016 Jun 30.
Article in English | MEDLINE | ID: mdl-27293190

ABSTRACT

Antibodies to DNA and chromatin drive autoimmunity in systemic lupus erythematosus (SLE). Null mutations and hypomorphic variants of the secreted deoxyribonuclease DNASE1L3 are linked to familial and sporadic SLE, respectively. We report that DNASE1L3-deficient mice rapidly develop autoantibodies to DNA and chromatin, followed by an SLE-like disease. Circulating DNASE1L3 is produced by dendritic cells and macrophages, and its levels inversely correlate with anti-DNA antibody response. DNASE1L3 is uniquely capable of digesting chromatin in microparticles released from apoptotic cells. Accordingly, DNASE1L3-deficient mice and human patients have elevated DNA levels in plasma, particularly in circulating microparticles. Murine and human autoantibody clones and serum antibodies from human SLE patients bind to DNASE1L3-sensitive chromatin on the surface of microparticles. Thus, extracellular microparticle-associated chromatin is a potential self-antigen normally digested by circulating DNASE1L3. The loss of this tolerance mechanism can contribute to SLE, and its restoration may represent a therapeutic opportunity in the disease.


Subject(s)
Autoantibodies/immunology , Cell-Derived Microparticles/chemistry , Chromatin/immunology , DNA/immunology , Endodeoxyribonucleases/genetics , Lupus Erythematosus, Systemic/immunology , Animals , Cell-Derived Microparticles/metabolism , Disease Models, Animal , Endodeoxyribonucleases/deficiency , Endodeoxyribonucleases/metabolism , Humans , Jurkat Cells , Lupus Erythematosus, Systemic/enzymology , Lupus Erythematosus, Systemic/genetics , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout
9.
Cell ; 167(3): 695-708.e16, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27745971

ABSTRACT

Heritability and genome stability are shaped by meiotic recombination, which is initiated via hundreds of DNA double-strand breaks (DSBs). The distribution of DSBs throughout the genome is not random, but mechanisms molding this landscape remain poorly understood. Here, we exploit genome-wide maps of mouse DSBs at unprecedented nucleotide resolution to uncover previously invisible spatial features of recombination. At fine scale, we reveal a stereotyped hotspot structure-DSBs occur within narrow zones between methylated nucleosomes-and identify relationships between SPO11, chromatin, and the histone methyltransferase PRDM9. At large scale, DSB formation is suppressed on non-homologous portions of the sex chromosomes via the DSB-responsive kinase ATM, which also shapes the autosomal DSB landscape at multiple size scales. We also provide a genome-wide analysis of exonucleolytic DSB resection lengths and elucidate spatial relationships between DSBs and recombination products. Our results paint a comprehensive picture of features governing successive steps in mammalian meiotic recombination.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Genomic Instability/genetics , Homologous Recombination , Meiosis/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Chromatin/genetics , Chromatin/metabolism , DNA Methylation , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Mice , Mice, Inbred C57BL , Nucleosomes/enzymology , Nucleosomes/genetics , X Chromosome/genetics , Y Chromosome/genetics
10.
Genes Dev ; 37(3-4): 119-135, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36746606

ABSTRACT

DNA double-strand break (DSB) repair is initiated by DNA end resection. CtIP acts in short-range resection to stimulate MRE11-RAD50-NBS1 (MRN) to endonucleolytically cleave 5'-terminated DNA to bypass protein blocks. CtIP also promotes the DNA2 helicase-nuclease to accelerate long-range resection downstream from MRN. Here, using AlphaFold2, we identified CtIP-F728E-Y736E as a separation-of-function mutant that is still proficient in conjunction with MRN but is not able to stimulate ssDNA degradation by DNA2. Accordingly, CtIP-F728E-Y736E impairs physical interaction with DNA2. Cellular assays revealed that CtIP-F728E-Y736E cells exhibit reduced DSB-dependent chromatin-bound RPA, impaired long-range resection, and increased sensitivity to DSB-inducing drugs. Previously, CtIP was shown to be targeted by PLK1 to inhibit long-range resection, yet the underlying mechanism was unclear. We show that the DNA2-interacting region in CtIP includes the PLK1 target site at S723. The integrity of S723 in CtIP is necessary for the stimulation of DNA2, and phosphorylation of CtIP by PLK1 in vitro is consequently inhibitory, explaining why PLK1 restricts long-range resection. Our data support a model in which CDK-dependent phosphorylation of CtIP activates resection by MRN in S phase, and PLK1-mediated phosphorylation of CtIP disrupts CtIP stimulation of DNA2 to attenuate long-range resection later at G2/M.


Subject(s)
Carrier Proteins , DNA Breaks, Double-Stranded , Carrier Proteins/genetics , Endodeoxyribonucleases/metabolism , DNA Repair , DNA Helicases/genetics , DNA Helicases/metabolism , DNA
11.
Cell ; 163(4): 854-65, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26522594

ABSTRACT

CRISPR-Cas adaptive immune systems protect bacteria and archaea against foreign genetic elements. In Escherichia coli, Cascade (CRISPR-associated complex for antiviral defense) is an RNA-guided surveillance complex that binds foreign DNA and recruits Cas3, a trans-acting nuclease helicase for target degradation. Here, we use single-molecule imaging to visualize Cascade and Cas3 binding to foreign DNA targets. Our analysis reveals two distinct pathways dictated by the presence or absence of a protospacer-adjacent motif (PAM). Binding to a protospacer flanked by a PAM recruits a nuclease-active Cas3 for degradation of short single-stranded regions of target DNA, whereas PAM mutations elicit an alternative pathway that recruits a nuclease-inactive Cas3 through a mechanism that is dependent on the Cas1 and Cas2 proteins. These findings explain how target recognition by Cascade can elicit distinct outcomes and support a model for acquisition of new spacer sequences through a mechanism involving processive, ATP-dependent Cas3 translocation along foreign DNA.


Subject(s)
Bacteriophage lambda/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , DNA Helicases/metabolism , DNA, Viral/metabolism , Endodeoxyribonucleases/metabolism , Endonucleases/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/virology , Escherichia coli/immunology , Escherichia coli/metabolism , Models, Biological , Repetitive Sequences, Nucleic Acid
12.
Cell ; 163(4): 840-53, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26478180

ABSTRACT

Bacteria acquire memory of viral invaders by incorporating invasive DNA sequence elements into the host CRISPR locus, generating a new spacer within the CRISPR array. We report on the structures of Cas1-Cas2-dual-forked DNA complexes in an effort toward understanding how the protospacer is sampled prior to insertion into the CRISPR locus. Our study reveals a protospacer DNA comprising a 23-bp duplex bracketed by tyrosine residues, together with anchored flanking 3' overhang segments. The PAM-complementary sequence in the 3' overhang is recognized by the Cas1a catalytic subunits in a base-specific manner, and subsequent cleavage at positions 5 nt from the duplex boundary generates a 33-nt DNA intermediate that is incorporated into the CRISPR array via a cut-and-paste mechanism. Upon protospacer binding, Cas1-Cas2 undergoes a significant conformational change, generating a flat surface conducive to proper protospacer recognition. Here, our study provides important structure-based mechanistic insights into PAM-dependent spacer acquisition.


Subject(s)
CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , Endodeoxyribonucleases/metabolism , Endonucleases/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Amino Acid Sequence , CRISPR-Associated Proteins/chemistry , Crystallography, X-Ray , Endodeoxyribonucleases/chemistry , Escherichia coli/genetics , Escherichia coli/immunology , Escherichia coli Proteins/chemistry , Models, Biological , Models, Molecular , Molecular Sequence Data , Sequence Alignment
13.
Nature ; 634(8033): 492-500, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39261728

ABSTRACT

DNA double-strand break (DSB) repair by homologous recombination is initiated by DNA end resection, a process involving the controlled degradation of the 5'-terminated strands at DSB sites1,2. The breast cancer suppressor BRCA1-BARD1 not only promotes resection and homologous recombination, but it also protects DNA upon replication stress1,3-9. BRCA1-BARD1 counteracts the anti-resection and pro-non-homologous end-joining factor 53BP1, but whether it functions in resection directly has been unclear10-16. Using purified recombinant proteins, we show here that BRCA1-BARD1 directly promotes long-range DNA end resection pathways catalysed by the EXO1 or DNA2 nucleases. In the DNA2-dependent pathway, BRCA1-BARD1 stimulates DNA unwinding by the Werner or Bloom helicase. Together with MRE11-RAD50-NBS1 and phosphorylated CtIP, BRCA1-BARD1 forms the BRCA1-C complex17,18, which stimulates resection synergistically to an even greater extent. A mutation in phosphorylated CtIP (S327A), which disrupts its binding to the BRCT repeats of BRCA1 and hence the integrity of the BRCA1-C complex19-21, inhibits resection, showing that BRCA1-C is a functionally integrated ensemble. Whereas BRCA1-BARD1 stimulates resection in DSB repair, it paradoxically also protects replication forks from unscheduled degradation upon stress, which involves a homologous recombination-independent function of the recombinase RAD51 (refs. 4-6,8). We show that in the presence of RAD51, BRCA1-BARD1 instead inhibits DNA degradation. On the basis of our data, the presence and local concentration of RAD51 might determine the balance between the pronuclease and the DNA protection functions of BRCA1-BARD1 in various physiological contexts.


Subject(s)
BRCA1 Protein , DNA Breaks, Double-Stranded , DNA , Recombinational DNA Repair , Tumor Suppressor Proteins , Ubiquitin-Protein Ligases , Humans , BRCA1 Protein/chemistry , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA Helicases/metabolism , DNA Repair Enzymes/metabolism , DNA Replication , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Exodeoxyribonucleases/metabolism , Phosphorylation , Protein Binding , Rad51 Recombinase/metabolism , RecQ Helicases , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Werner Syndrome Helicase , MRE11 Homologue Protein/metabolism , Cell Cycle Proteins/metabolism
14.
Mol Cell ; 82(7): 1297-1312.e8, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35219381

ABSTRACT

Synthetic lethality through combinatorial targeting DNA damage response (DDR) pathways provides exciting anticancer therapeutic benefit. Currently, the long noncoding RNAs (lncRNAs) have been implicated in tumor drug resistance; however, their potential significance in DDR is still largely unknown. Here, we report that a human lncRNA, CTD-2256P15.2, encodes a micropeptide, named PAR-amplifying and CtIP-maintaining micropeptide (PACMP), with a dual function to maintain CtIP abundance and promote poly(ADP-ribosyl)ation. PACMP not only prevents CtIP from ubiquitination through inhibiting the CtIP-KLHL15 association but also directly binds DNA damage-induced poly(ADP-ribose) chains to enhance PARP1-dependent poly(ADP-ribosyl)ation. Targeting PACMP alone inhibits tumor growth by causing a synthetic lethal interaction between CtIP and PARP inhibitions and confers sensitivity to PARP/ATR/CDK4/6 inhibitors, ionizing radiation, epirubicin, and camptothecin. Our findings reveal that a lncRNA-derived micropeptide regulates cancer progression and drug resistance by modulating DDR, whose inhibition could be employed to augment the existing anticancer therapeutic strategies.


Subject(s)
Endodeoxyribonucleases , Neoplasms , Peptides , Poly ADP Ribosylation , RNA, Long Noncoding , DNA Repair , Endodeoxyribonucleases/metabolism , Humans , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Peptides/pharmacology , Poly Adenosine Diphosphate Ribose/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
15.
Mol Cell ; 82(18): 3513-3522.e6, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35987200

ABSTRACT

DNA double-strand breaks (DSBs) threaten genome stability and are linked to tumorigenesis in humans. Repair of DSBs requires the removal of attached proteins and hairpins through a poorly understood but physiologically critical endonuclease activity by the Mre11-Rad50 complex. Here, we report cryoelectron microscopy (cryo-EM) structures of the bacterial Mre11-Rad50 homolog SbcCD bound to a protein-blocked DNA end and a DNA hairpin. The structures reveal that Mre11-Rad50 bends internal DNA for endonucleolytic cleavage and show how internal DNA, DNA ends, and hairpins are processed through a similar ATP-regulated conformational state. Furthermore, Mre11-Rad50 is loaded onto blocked DNA ends with Mre11 pointing away from the block, explaining the distinct biochemistries of 3' → 5' exonucleolytic and endonucleolytic incision through the way Mre11-Rad50 interacts with diverse DNA ends. In summary, our results unify Mre11-Rad50's enigmatic nuclease diversity within a single structural framework and reveal how blocked DNA ends and hairpins are processed.


Subject(s)
DNA-Binding Proteins , DNA , MRE11 Homologue Protein/chemistry , Acid Anhydride Hydrolases/genetics , Acid Anhydride Hydrolases/metabolism , Adenosine Triphosphate/metabolism , Cryoelectron Microscopy , DNA/metabolism , DNA Repair , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Endonucleases/genetics , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Humans , Nucleic Acid Conformation
16.
Cell ; 156(1-2): 134-45, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24412650

ABSTRACT

The HIV auxiliary protein Vpr potently blocks the cell cycle at the G2/M transition. Here, we show that G2/M arrest results from untimely activation of the structure-specific endonuclease (SSE) regulator SLX4 complex (SLX4com) by Vpr, a process that requires VPRBP-DDB1-CUL4 E3-ligase complex. Direct interaction of Vpr with SLX4 induced the recruitment of VPRBP and kinase-active PLK1, enhancing the cleavage of DNA by SLX4-associated MUS81-EME1 endonucleases. G2/M arrest-deficient Vpr alleles failed to interact with SLX4 or to induce recruitment of MUS81 and PLK1. Furthermore, knockdown of SLX4, MUS81, or EME1 inhibited Vpr-induced G2/M arrest. In addition, we show that the SLX4com is involved in suppressing spontaneous and HIV-1-mediated induction of type 1 interferon and establishment of antiviral responses. Thus, our work not only reveals the identity of the cellular factors required for Vpr-mediated G2/M arrest but also identifies the SLX4com as a regulator of innate immunity.


Subject(s)
G2 Phase Cell Cycle Checkpoints , HIV Infections/pathology , HIV-1/metabolism , Immunity, Innate , Multiprotein Complexes/metabolism , Recombinases/metabolism , vpr Gene Products, Human Immunodeficiency Virus/metabolism , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/metabolism , Endonucleases/metabolism , HEK293 Cells , HIV Infections/immunology , HIV Infections/virology , HeLa Cells , Humans , Interferon-gamma/metabolism
17.
Nature ; 616(7956): 390-397, 2023 04.
Article in English | MEDLINE | ID: mdl-37020030

ABSTRACT

The class 2 type V CRISPR effector Cas12 is thought to have evolved from the IS200/IS605 superfamily of transposon-associated TnpB proteins1. Recent studies have identified TnpB proteins as miniature RNA-guided DNA endonucleases2,3. TnpB associates with a single, long RNA (ωRNA) and cleaves double-stranded DNA targets complementary to the ωRNA guide. However, the RNA-guided DNA cleavage mechanism of TnpB and its evolutionary relationship with Cas12 enzymes remain unknown. Here we report the cryo-electron microscopy (cryo-EM) structure of Deinococcus radiodurans ISDra2 TnpB in complex with its cognate ωRNA and target DNA. In the structure, the ωRNA adopts an unexpected architecture and forms a pseudoknot, which is conserved among all guide RNAs of Cas12 enzymes. Furthermore, the structure, along with our functional analysis, reveals how the compact TnpB recognizes the ωRNA and cleaves target DNA complementary to the guide. A structural comparison of TnpB with Cas12 enzymes suggests that CRISPR-Cas12 effectors acquired an ability to recognize the protospacer-adjacent motif-distal end of the guide RNA-target DNA heteroduplex, by either asymmetric dimer formation or diverse REC2 insertions, enabling engagement in CRISPR-Cas adaptive immunity. Collectively, our findings provide mechanistic insights into TnpB function and advance our understanding of the evolution from transposon-encoded TnpB proteins to CRISPR-Cas12 effectors.


Subject(s)
Bacterial Proteins , Cryoelectron Microscopy , DNA Transposable Elements , Deinococcus , Endodeoxyribonucleases , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA/ultrastructure , DNA Transposable Elements/genetics , RNA, Guide, CRISPR-Cas Systems/chemistry , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , RNA, Guide, CRISPR-Cas Systems/ultrastructure , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/ultrastructure , Deinococcus/enzymology , Deinococcus/genetics , Substrate Specificity
18.
Mol Cell ; 81(1): 183-197.e6, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33278361

ABSTRACT

Mre11-Rad50-Xrs2 (MRX) is a highly conserved complex with key roles in various aspects of DNA repair. Here, we report a new function for MRX in limiting transcription in budding yeast. We show that MRX interacts physically and colocalizes on chromatin with the transcriptional co-regulator Mediator. MRX restricts transcription of coding and noncoding DNA by a mechanism that does not require the nuclease activity of Mre11. MRX is required to tether transcriptionally active loci to the nuclear pore complex (NPC), and it also promotes large-scale gene-NPC interactions. Moreover, MRX-mediated chromatin anchoring to the NPC contributes to chromosome folding and helps to control gene expression. Together, these findings indicate that MRX has a role in transcription and chromosome organization that is distinct from its known function in DNA repair.


Subject(s)
Chromosomes, Fungal/metabolism , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/metabolism , Exodeoxyribonucleases/metabolism , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Chromosomes, Fungal/genetics , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/genetics , Exodeoxyribonucleases/genetics , Multiprotein Complexes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
19.
Mol Cell ; 81(5): 1100-1115.e5, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33472057

ABSTRACT

Bacteria and archaea apply CRISPR-Cas surveillance complexes to defend against foreign invaders. These invading genetic elements are captured and integrated into the CRISPR array as spacer elements, guiding sequence-specific DNA/RNA targeting and cleavage. Recently, in vivo studies have shown that target RNAs with extended complementarity with repeat sequences flanking the target element (tag:anti-tag pairing) can dramatically reduce RNA cleavage by the type VI-A Cas13a system. Here, we report the cryo-EM structure of Leptotrichia shahii LshCas13acrRNA in complex with target RNA harboring tag:anti-tag pairing complementarity, with the observed conformational changes providing a molecular explanation for inactivation of the composite HEPN domain cleavage activity. These structural insights, together with in vitro biochemical and in vivo cell-based assays on key mutants, define the molecular principles underlying Cas13a's capacity to target and discriminate between self and non-self RNA targets. Our studies illuminate approaches to regulate Cas13a's cleavage activity, thereby influencing Cas13a-mediated biotechnological applications.


Subject(s)
Bacterial Proteins/chemistry , CRISPR-Associated Proteins/chemistry , CRISPR-Cas Systems , Endodeoxyribonucleases/chemistry , Leptotrichia/genetics , RNA, Guide, Kinetoplastida/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Pairing , Base Sequence , Binding Sites , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , Cloning, Molecular , Cryoelectron Microscopy , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Leptotrichia/metabolism , Models, Molecular , Mutation , Nucleic Acid Conformation , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , RNA Cleavage , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
20.
Cell ; 152(5): 1173-83, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23452860

ABSTRACT

Targeted gene regulation on a genome-wide scale is a powerful strategy for interrogating, perturbing, and engineering cellular systems. Here, we develop a method for controlling gene expression based on Cas9, an RNA-guided DNA endonuclease from a type II CRISPR system. We show that a catalytically dead Cas9 lacking endonuclease activity, when coexpressed with a guide RNA, generates a DNA recognition complex that can specifically interfere with transcriptional elongation, RNA polymerase binding, or transcription factor binding. This system, which we call CRISPR interference (CRISPRi), can efficiently repress expression of targeted genes in Escherichia coli, with no detectable off-target effects. CRISPRi can be used to repress multiple target genes simultaneously, and its effects are reversible. We also show evidence that the system can be adapted for gene repression in mammalian cells. This RNA-guided DNA recognition platform provides a simple approach for selectively perturbing gene expression on a genome-wide scale.


Subject(s)
Endodeoxyribonucleases/genetics , Escherichia coli/genetics , Gene Knockdown Techniques/methods , RNA Interference , Streptococcus pyogenes/enzymology , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/metabolism , Gene Expression , Streptococcus pyogenes/genetics , Transcription Elongation, Genetic , Transcription Initiation, Genetic , RNA, Small Untranslated
SELECTION OF CITATIONS
SEARCH DETAIL