Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Forensic Sci Int ; 360: 112062, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781837

ABSTRACT

The use of controlled precursors for reaction optimisation is not always practical. One approach to limiting the use of controlled substances is to instead use 'model compounds'. Herein, two model compounds resembling norephedrine and ephedrine were selected based on their (i) structural similarity (i.e., presence of key functional groups) and (ii) availability from multiple suppliers without restriction. Model compounds 2-amino-1-phenylethanol and 2-(methylamino)-1-phenylethanol (halostachine), were compared to norephedrine and pseudoephedrine by firstly subjecting them to transformations known in the synthesis of amphetamines, and secondly, comparing the compounds using colourimetric spot tests, FTIR and NMR.


Subject(s)
Amphetamines , Central Nervous System Stimulants , Magnetic Resonance Spectroscopy , Spectroscopy, Fourier Transform Infrared , Amphetamines/chemistry , Central Nervous System Stimulants/chemistry , Humans , Ephedrine/chemistry , Colorimetry , Phenylpropanolamine/chemistry , Pseudoephedrine/chemistry , Models, Chemical
2.
J Chromatogr A ; 1722: 464857, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38569445

ABSTRACT

Epimer separation is crucial in the field of analytical chemistry, separation science, and the pharmaceutical industry. No reported methods could separate simultaneously epimers or even isomers and remove other unwanted, co-existing, interfering substances from complex systems like herbal extracts. Herein, we prepared a heptapeptide-modified stationary phase for the separation of 1R,2S-(-)-ephedrine [(-)-Ephe] and 1S,2S-(+)-pseudoephedrine [(+)-Pse] epimers from Ephedra sinica Stapf extract and blood samples. The heptapeptide stationary phase was comprehensively characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The separation efficiency of the heptapeptide column was compared with an affinity column packed with full-length ß2-AR functionalized silica gel (ß2-AR column). The binding affinity of the heptapeptide with (+)-Pse was 3-fold greater than that with (-)-Ephe. Their binding mechanisms were extensively characterized by chromatographic analysis, ultraviolet spectra, circular dichroism analysis, isothermal titration calorimetry, and molecule docking. An enhanced hydrogen bonding was clearly observed in the heptapeptide-(+)-Pse complex. Such results demonstrated that the heptapeptide can recognize (+)-Pse and (-)-Ephe epimers in a complex system. This work, we believe, was the first report to simultaneously separate epimers and remove non-specific interfering substances from complex samples. The method was potentially applicable to more challenging sample separation, such as chiral separation from complex systems.


Subject(s)
Ephedrine , Pseudoephedrine , Receptors, Adrenergic, beta-2 , Ephedrine/chemistry , Pseudoephedrine/chemistry , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/metabolism , Molecular Docking Simulation , Ephedra sinica/chemistry , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Humans , Stereoisomerism , Oligopeptides/chemistry , Oligopeptides/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL