Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.843
Filter
Add more filters

Publication year range
1.
Nat Chem Biol ; 19(4): 440-450, 2023 04.
Article in English | MEDLINE | ID: mdl-36443574

ABSTRACT

Drug efflux is a common resistance mechanism found in bacteria and cancer cells, but studies providing comprehensive functional insights are scarce. In this study, we performed deep mutational scanning (DMS) on the bacterial ABC transporter EfrCD to determine the drug efflux activity profile of more than 1,430 single variants. These systematic measurements revealed that the introduction of negative charges at different locations within the large substrate binding pocket results in strongly increased efflux activity toward positively charged ethidium, whereas additional aromatic residues did not display the same effect. Data analysis in the context of an inward-facing cryogenic electron microscopy structure of EfrCD uncovered a high-affinity binding site, which releases bound drugs through a peristaltic transport mechanism as the transporter transits to its outward-facing conformation. Finally, we identified substitutions resulting in rapid Hoechst influx without affecting the efflux activity for ethidium and daunorubicin. Hence, single mutations can convert EfrCD into a drug-specific ABC importer.


Subject(s)
ATP-Binding Cassette Transporters , Bacterial Proteins , Ethidium/chemistry , Ethidium/metabolism , Bacterial Proteins/metabolism , ATP-Binding Cassette Transporters/metabolism , Membrane Transport Proteins , Mutation
2.
Chembiochem ; 25(5): e202300721, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38226959

ABSTRACT

Glycated hemoglobin (GHb) found in mammals undergoes irreversible damage when exposed to external redox agents, which is much more vulnerable than its normal counterpart hemoglobin (Hb). Besides the oxygen regulation throughout the body, Hb plays a vital role in balancing immunological health and the redox cycle. Photoinduced ultra-fast electron transfer phenomena actively participate in regulation of various kind of homeostasis involved in such biomacromolecules. In the present study we have shown that a well-known mutagen Ethidium Bromide (EtBr) reduces GHb in femtosecond time scale (efficiently) upon photoexcitation after efficient recognition in the biomolecule. We have performed similar experiment by colocalizing EtBr and Iron (Fe(III)) on the micellar surface as Hb mimic in order to study the excited state EtBr dynamics to rationalize the time scale obtained from EtBr in GHb and Hb. While other experimental techniques including Dynamic Light Scattering (DLS), Zeta potential, absorbance and emission spectroscopy have been employed for the confirmation of structural perturbation of GHb compared to Hb, a detailed computational studies involving molecular docking and density functional theory (DFT) have been employed for the explanation of the experimental observations.


Subject(s)
Reducing Agents , Sodium Oxybate , Animals , Glycated Hemoglobin , Mutagens , Molecular Docking Simulation , Electrons , Ferric Compounds , Ethidium , Mammals
3.
Electrophoresis ; 45(5-6): 442-450, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37933673

ABSTRACT

Staining and visualization of the nucleic acid bands on agarose gels using ethidium bromide (EB) has been a widely used technique in molecular biology. Although it is an efficient dye for this purpose, EB is known to be mutagenic and genotoxic in humans. This led to the emergence of various alternative dyes, which were claimed to be safer and more efficient than EB. However, these dyes portray varied sensitivity and interference with the electrophoretic mobility of nucleic acids. This work aimed at assessing ten nucleic acid-binding dyes and two prestained dyes for these properties by three staining techniques, such as precasting, preloading, and poststaining. Of these, preloading was not suitable for any of the dye while poststaining worked optimal for most of them. Precasting was suitable for only four dyes viz. DNA Stain G, SYBR™ safe, EZ-Vision® in-gel, and LabSafe™. Poststaining was, in general, a costlier method than precasting. The work gives a comprehensive understanding of the performance of nucleic acid-binding dyes for routine molecular biology experiments.


Subject(s)
Fluorescent Dyes , Nucleic Acids , Humans , Ethidium/chemistry , Fluorescent Dyes/chemistry , DNA/analysis , Electrophoresis, Agar Gel/methods
4.
Microb Pathog ; 190: 106627, 2024 May.
Article in English | MEDLINE | ID: mdl-38521473

ABSTRACT

Overexpression of the efflux pump is a predominant mechanism by which bacteria show antimicrobial resistance (AMR) and leads to the global emergence of multidrug resistance (MDR). In this work, the inhibitory potential of library of dihydronapthyl scaffold-based imidazole derivatives having structural resemblances with some known efflux pump inhibitors (EPI) were designed, synthesized and evaluated against efflux pump inhibitor against overexpressing bacterial strains to study the synergistic effect of compounds and antibiotics. Out of 15 compounds, four compounds (Dz-1, Dz-3, Dz-7, and Dz-8) were found to be highly active. DZ-3 modulated the MIC of ciprofloxacin, erythromycin, and tetracycline by 128-fold each against 1199B, XU212 and RN4220 strains of S. aureus respectively. DZ-3 also potentiated tetracycline by 64-fold in E. coli AG100 strain. DZ-7 modulated the MIC of both tetracycline and erythromycin 128-fold each in S. aureus XU212 and S. aureus RN4220 strains. DZ-1 and DZ-8 showed the moderate reduction in MIC of tetracycline in E. coli AG100 only by 16-fold and 8-fold, respectively. DZ-3 was found to be the potential inhibitor of NorA as determined by ethidium bromide efflux inhibition and accumulation studies employing NorA overexpressing strain SA-1199B. DZ-3 displayed EPI activity at non-cytotoxic concentration to human cells and did not possess any antibacterial activity. Furthermore, molecular docking studies of DZ-3 was carried out in order to understand the possible binding sites of DZ-3 with the active site of the protein. These studies indicate that dihydronaphthalene scaffolds could serve as valuable cores for the development of promising EPIs.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Drug Resistance, Multiple, Bacterial , Imidazoles , Microbial Sensitivity Tests , Molecular Docking Simulation , Multidrug Resistance-Associated Proteins , Staphylococcus aureus , Staphylococcus aureus/drug effects , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Imidazoles/pharmacology , Imidazoles/chemistry , Humans , Drug Resistance, Multiple, Bacterial/drug effects , Ligands , Tetracycline/pharmacology , Naphthalenes/pharmacology , Naphthalenes/chemistry , Ciprofloxacin/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Erythromycin/pharmacology , Ethidium/metabolism , Drug Synergism
5.
FASEB J ; 37(9): e23139, 2023 09.
Article in English | MEDLINE | ID: mdl-37584631

ABSTRACT

Mutations in POLG, the gene encoding the catalytic subunit of the mitochondrial DNA (mtDNA) polymerase gamma (Pol-γ), lead to diseases driven by defective mtDNA maintenance. Despite being the most prevalent cause of mitochondrial disease, treatments for POLG-related disorders remain elusive. In this study, we used POLG patient-induced pluripotent stem cell (iPSC)-derived neural stem cells (iNSCs), one homozygous for the POLG mutation c.2243G>C and one compound heterozygous with c.2243G>C and c.1399G>A, and treated these iNSCs with ethidium bromide (EtBr) to study the rate of depletion and repopulation of mtDNA. In addition, we investigated the effect of deoxyribonucleoside (dNs) supplementation on mtDNA maintenance during EtBr treatment and post-treatment repopulation in the same cells. EtBr-induced mtDNA depletion occurred at a similar rate in both patient and control iNSCs, however, restoration of mtDNA levels was significantly delayed in iNSCs carrying the compound heterozygous POLG mutations. In contrast, iNSC with the homozygous POLG mutation recovered their mtDNA at a rate similar to controls. When we treated cells with dNs, we found that this reduced EtBr-induced mtDNA depletion and significantly increased repopulation rates in both patient iNSCs. These observations are consistent with the hypothesis that mutations in POLG impair mtDNA repopulation also within intact neural lineage cells and suggest that those with compound heterozygous mutation have a more severe defect of mtDNA synthesis. Our findings further highlight the potential for dNs to improve mtDNA replication in the presence of POLG mutations, suggesting that this may offer a new therapeutic modality for mitochondrial diseases caused by disturbed mtDNA homeostasis.


Subject(s)
Induced Pluripotent Stem Cells , Mitochondrial Diseases , Neural Stem Cells , Humans , DNA-Directed DNA Polymerase/genetics , DNA Polymerase gamma/genetics , Ethidium/pharmacology , Mutation , DNA, Mitochondrial/genetics , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy , Deoxyribonucleosides
6.
Neurochem Res ; 49(6): 1556-1576, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38160216

ABSTRACT

Multiple sclerosis (MS) is a pathological condition characterized by the demyelination of nerve fibers, primarily attributed to the destruction of oligodendrocytes and subsequent motor neuron impairment. Ethidium bromide (EB) is a neurotoxic compound that induces neuronal degeneration, resulting in demyelination and symptoms resembling those observed in experimental animal models of multiple sclerosis (MS). The neurotoxic effects induced by EB in multiple sclerosis (MS) are distinguished by the death of oligodendrocytes, degradation of myelin basic protein (MBP), and deterioration of axons. Neurological complications related to MS have been linked to alterations in the signaling pathway known as smo-shh. Purmorphine (PUR) is a semi-synthetic compound that exhibits potent Smo-shh agonistic activity. It possesses various pharmacological properties, including antioxidant, anti-inflammatory, anti-apoptotic, and neuromodulatory effects. Hence, the current investigation was conducted to assess the neuroprotective efficacy of PUR (at doses of 5 and 10 mg/kg, administered intraperitoneally) both individually and in conjunction with Fingolimod (FING) (at a dose of 0.5 mg/kg, administered intraperitoneally) in the experimental model of MS induced by EB. The administration of EB was conducted via the intracerebropeduncle route (ICP) over a period of seven days in the brain of rats. The Wistar rats were allocated into six groups using randomization, each consisting of eight rats (n = 8 per group). The experimental groups in this study were categorized as follows: (I) Sham Control, (II) Vehicle Control, (III) PUR per se, (IV) EB, (V) EB + PUR5, (VI) EB + PUR10, (VII) EB + FING 0.5, and (VIII) EB + PUR10 + FING 0.5. On the final day of the experimental timeline, all animal subjects were euthanized, and subsequent neurochemical estimations were conducted on cerebrospinal fluid, blood plasma, and brain tissue samples. In addition, we conducted neurofilament (NFL) analysis and histopathological examination. We utilized the luxol myelin stain to understand better the degeneration associated with MS and its associated neurological complications. The findings of our study indicate that the activation of SMO-Shh by PUR has a mitigating effect on neurobehavioral impairments induced by EB, as well as a restorative effect on cellular and neurotransmitter abnormalities in an experimental model of MS.


Subject(s)
Hedgehog Proteins , Multiple Sclerosis , Neurogenesis , Rats, Wistar , Animals , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Neurogenesis/drug effects , Male , Hedgehog Proteins/metabolism , Rats , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Smoothened Receptor/metabolism , Disease Models, Animal , Zinc Finger Protein GLI1/metabolism , Behavior, Animal/drug effects , Ethidium , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/therapeutic use
7.
Anal Chem ; 95(45): 16631-16638, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37904495

ABSTRACT

We demonstrate a rapid and sensitive method for DNA detection without the need for fluorescence. This is based on carbon-coated magnetic iron (Fe) microparticles with a covalent surface attachment of DNA. We show that these magnetic microparticles can capture complementary DNA. Significantly, the DNA covalent surface bonds are robust to high temperatures and can be included in a sample during polymerase chain reaction (PCR). This method is employed for the detection of targeted DNA sequences (40-50 bp). Hybridization probes on the surface of the magnetically susceptible Fe microparticle recognize the target DNA sequence-specifically. The double-stranded DNA (dsDNA) microparticles are then quickly captured with a magnet from the sample matrix. This foregoes postpurification processes, such as electrophoresis, which make our technique time- and cost-effective. Captured dsDNA can be detected with intercalating dyes such as ethidium bromide through a loss in the UV absorption signal with a limit of detection (LOD) of 24 nM within 15 min. Likewise, surface-bound DNA can act as a primer in PCR to decrease the LOD to 5 pM within 2 h. This is the first instance of a nucleotide-modified magnetically susceptible carbon substrate that is PCR-compatible. Besides DNA capture, this strategy can eventually be applied to sequence-specific nucleic acid purification and enrichment, PCR cleanup, and single-strand generation. The DNA-coated particles are stable under PCR conditions (unlike commonly used polystyrene or gold particles).


Subject(s)
Biosensing Techniques , Carbon , DNA/chemistry , Nucleic Acid Hybridization , Ethidium , Polymerase Chain Reaction/methods , Biosensing Techniques/methods
8.
Microb Pathog ; 185: 106397, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37852553

ABSTRACT

The escalating prevalence of carbapenem-resistant Pseudomonas aeruginosa (CRPA) poses a significant threat to global public health through the spread of its 'high-risk' clones. Immediate and decisive research into antimicrobial agents against CRPA is crucial for the development of effective measures and interventions. Overexpression of the MexAB-OprM efflux pump is one of the major mechanisms of CRPA. Since the active efflux of antibacterial agents plays a significant role in mediating drug resistance in CRPA, the inhibition of efflux pumps has become a promising strategy to restore antibacterial potency. Piperine (PIP) has been proven to be a promising efflux pump inhibitor in some bacteria. However, there are no studies on whether PIP can act as a potential efflux pump inhibitor in CRPA. The present study aimed to identify the antibacterial activity of PIP against CRPA and to evaluate the effect on the MexAB-OprM efflux pump. Molecular docking was used to analyze the possible interaction of PIP with the proteins of the MexAB-OprM efflux pump in CRPA. The effect of PIP on the expression of the MexAB-OprM efflux pump was investigated by real-time quantitative PCR (qPCR) and ethidium bromide accumulation efflux assay. The effect of PIP on CRPA imipenem (IPM) resistance was investigated by the checkerboard dilution method. The results demonstrated that PIP exhibited the lowest binding affinity of -9.1 kcal towards efflux pump proteins. A synergistic effect between PIP and IPM on CRPA was observed. More importantly, PIP effectively hindered the efflux of ethidium bromide and IPM by up-regulating MexR gene expression while down-regulating MexA, MexB, and OprM gene expressions. In conclusion, PIP could enhance the antibacterial activity of IPM by inhibiting the MexAB-OprM efflux pump. Our work proved that PIP had the potential to be an efflux pump inhibitor of CRPA.


Subject(s)
Imipenem , Pseudomonas aeruginosa , Imipenem/pharmacology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Ethidium/pharmacology , Molecular Docking Simulation , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Microbial Sensitivity Tests
9.
Arch Biochem Biophys ; 748: 109782, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37839789

ABSTRACT

The efflux pump mechanism contributes to the antibiotic resistance of widely distributed strains of Staphylococcus aureus. Therefore, in the present work, the ability of the riparins N-(4-methoxyphenethyl)benzamide (I), 2-hydroxy-N-[2-(4-methoxyphenyl)ethyl]benzamide (II), 2, 6-dihydroxy-N-[ 2-(4-methoxyphenyl)ethyl]benzamide (III), and 3,4,5-trimethoxy-N-[2-(4-methoxyphenethyl)benzamide (IV) as potential inhibitors of the MepA efflux pump in S. aureus K2068 (fluoroquinolone-resistant). In addition, we performed checkerboard assays to obtain more information about the activity of riparins as potential inhibitors of MepA efflux and also analyzed the ability of riparins to act on the permeability of the bacterial membrane of S. aureus by the fluorescence method with SYTOX Green. A molecular coupling assay was performed to characterize the interaction between riparins and MepA, and ADMET (absorption, distribution, metabolism, and excretion) properties were analyzed. We observed that I-IV riparins did not show direct antibacterial activity against S. aureus. However, combination assays with substrates of MepA, ciprofloxacin, and ethidium bromide (EtBr) revealed a potentiation of the efficacy of these substrates by reducing the minimum inhibitory concentration (MIC). Furthermore, increased EtBr fluorescence emission was observed for all riparins. The checkerboard assay showed synergism between riparins I, II, and III, ciprofloxacin, and EtBr. Furthermore, riparins III and IV exhibited permeability in the S. aureus membrane at a concentration of 200 µg/mL. Molecular docking showed that riparins I, II, and III bound in a different region from the binding site of chlorpromazine (standard pump inhibitor), indicating a possible synergistic effect with the reference inhibitor. In contrast, riparin IV binds in the same region as the chlorpromazine binding site. From the in silico ADMET prediction based on MPO, it could be concluded that the molecules of riparin I-IV present their physicochemical properties within the ideal pharmacological spectrum allowing their preparation as an oral drug. Furthermore, the prediction of cytotoxicity in liver cell lines showed a low cytotoxic effect for riparins I-IV.


Subject(s)
Chlorpromazine , Staphylococcus aureus , Staphylococcus aureus/metabolism , Molecular Docking Simulation , Chlorpromazine/metabolism , Chlorpromazine/pharmacology , Anti-Bacterial Agents/chemistry , Ciprofloxacin/pharmacology , Ethidium , Benzamides/pharmacology , Benzamides/chemistry , Benzamides/metabolism , Bacterial Proteins/metabolism , Microbial Sensitivity Tests
10.
Nucleic Acids Res ; 49(7): 3735-3747, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33764383

ABSTRACT

Visualization of double stranded DNA in gels with the binding of the fluorescent dye ethidium bromide has been a basic experimental technique in any molecular biology laboratory for >40 years. The interaction between ethidium and double stranded DNA has been observed to be an intercalation between base pairs with strong experimental evidence. This presents a unique opportunity for computational chemistry and biomolecular simulation techniques to benchmark and assess their models in order to see if the theory can reproduce experiments and ultimately provide new insights. We present molecular dynamics simulations of the interaction of ethidium with two different double stranded DNA models. The first model system is the classic sequence d(CGCGAATTCGCG)2 also known as the Drew-Dickerson dodecamer. We found that the ethidium ligand binds mainly stacked on, or intercalated between, the terminal base pairs of the DNA with little to no interaction with the inner base pairs. As the intercalation at the terminal CpG steps is relatively rapid, the resultant DNA unwinding, rigidification, and increased stability of the internal base pair steps inhibits further intercalation. In order to reduce these interactions and to provide a larger groove space, a second 18-mer DNA duplex system with the sequence d(GCATGAACGAACGAACGC) was tested. We computed molecular dynamics simulations for 20 independent replicas with this sequence, each with ∼27 µs of sampling time. Results show several spontaneous intercalation and base-pair eversion events that are consistent with experimental observations. The present work suggests that extended MD simulations with modern DNA force fields and optimized simulation codes are allowing the ability to reproduce unbiased intercalation events that we were not able to previously reach due to limits in computing power and the lack of extensively tested force fields and analysis tools.


Subject(s)
DNA/chemistry , Ethidium/chemistry , Molecular Dynamics Simulation , Nucleic Acid Conformation , Ligands , Staining and Labeling
11.
Nucleic Acids Res ; 49(21): 12591-12599, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34850119

ABSTRACT

Recent advances in DNA nanotechnology led the fabrication and utilization of various DNA assemblies, but the development of a method to control their global shapes and mechanical flexibilities with high efficiency and repeatability is one of the remaining challenges for the realization of the molecular machines with on-demand functionalities. DNA-binding molecules with intercalation and groove binding modes are known to induce the perturbation on the geometrical and mechanical characteristics of DNA at the strand level, which might be effective in structured DNA assemblies as well. Here, we demonstrate that the chemo-mechanical response of DNA strands with binding ligands can change the global shape and stiffness of DNA origami nanostructures, thereby enabling the systematic modulation of them by selecting a proper ligand and its concentration. Multiple DNA-binding drugs and fluorophores were applied to straight and curved DNA origami bundles, which demonstrated a fast, recoverable, and controllable alteration of the bending persistence length and the radius of curvature of DNA nanostructures. This chemo-mechanical modulation of DNA nanostructures would provide a powerful tool for reconfigurable and dynamic actuation of DNA machineries.


Subject(s)
Benzoxazoles/chemistry , DNA/chemistry , Doxorubicin/chemistry , Ethidium/chemistry , Intercalating Agents/chemistry , Nanostructures/chemistry , Quinolinium Compounds/chemistry , Benzoxazoles/metabolism , DNA/genetics , DNA/metabolism , Doxorubicin/metabolism , Ethidium/metabolism , Finite Element Analysis , Intercalating Agents/metabolism , Ligands , Microscopy, Atomic Force , Nanotechnology/methods , Quinolinium Compounds/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrophotometry
12.
Nucleic Acids Res ; 49(14): 7884-7900, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34289063

ABSTRACT

The low thermal stability of DNA nanostructures is the major drawback in their practical applications. Most of the DNA nanotubes/tiles and the DNA origami structures melt below 60°C due to the presence of discontinuities in the phosphate backbone (i.e., nicks) of the staple strands. In molecular biology, enzymatic ligation is commonly used to seal the nicks in the duplex DNA. However, in DNA nanotechnology, the ligation procedures are neither optimized for the DNA origami nor routinely applied to link the nicks in it. Here, we report a detailed analysis and optimization of the conditions for the enzymatic ligation of the staple strands in four types of 2D square lattice DNA origami. Our results indicated that the ligation takes overnight, efficient at 37°C rather than the usual 16°C or room temperature, and typically requires much higher concentration of T4 DNA ligase. Under the optimized conditions, up to 10 staples ligation with a maximum ligation efficiency of 55% was achieved. Also, the ligation is found to increase the thermal stability of the origami as low as 5°C to as high as 20°C, depending on the structure. Further, our studies indicated that the ligation of the staple strands influences the globular structure/planarity of the DNA origami, and the origami is more compact when the staples are ligated. The globular structure of the native and ligated origami was also found to be altered dynamically and progressively upon ethidium bromide intercalation in a concentration-dependent manner.


Subject(s)
DNA Ligases/metabolism , DNA/chemistry , Nanostructures/chemistry , Nucleic Acid Conformation , Temperature , DNA/genetics , DNA/metabolism , Electrophoresis, Agar Gel/methods , Ethidium/chemistry , Kinetics , Microscopy, Atomic Force/methods , Nucleic Acid Denaturation , Phosphorylation , Thermodynamics
13.
Molecules ; 28(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38005371

ABSTRACT

The efflux systems are considered important mechanisms of bacterial resistance due to their ability to extrude various antibiotics. Several naturally occurring compounds, such as sesquiterpenes, have demonstrated antibacterial activity and the ability to inhibit efflux pumps in resistant strains. Therefore, the objective of this research was to analyze the antibacterial and inhibitory activity of the efflux systems NorA, Tet(K), MsrA, and MepA by sesquiterpenes nerolidol, farnesol, and α-bisabolol, used either individually or in liposomal nanoformulation, against multi-resistant Staphylococcus aureus strains. The methodology consisted of in vitro testing of the ability of sesquiterpenes to reduce the Minimum Inhibitory Concentration (MIC) and enhance the action of antibiotics and ethidium bromide (EtBr) in broth microdilution assays. The following strains were used: S. aureus 1199B carrying the NorA efflux pump, resistant to norfloxacin; IS-58 strain carrying Tet(K), resistant to tetracyclines; RN4220 carrying MsrA, conferring resistance to erythromycin. For the EtBr fluorescence measurement test, K2068 carrying MepA was used. It was observed the individual sesquiterpenes exhibited better antibacterial activity as well as efflux pump inhibition. Farnesol showed the lowest MIC of 16.5 µg/mL against the S. aureus RN4220 strain. Isolated nerolidol stood out for reducing the MIC of EtBr to 5 µg/mL in the 1199B strain, yielding better results than the positive control CCCP, indicating strong evidence of NorA inhibition. The liposome formulations did not show promising results, except for liposome/farnesol, which reduced the MIC of EtBr against 1199B and RN4220. Further research is needed to evaluate the mechanisms of action involved in the inhibition of resistance mechanisms by the tested compounds.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Sesquiterpenes , Farnesol/pharmacology , Staphylococcus aureus/metabolism , Methicillin-Resistant Staphylococcus aureus/metabolism , Liposomes , Multidrug Resistance-Associated Proteins , Anti-Bacterial Agents/pharmacology , Sesquiterpenes/pharmacology , Ethidium/pharmacology , Microbial Sensitivity Tests , Bacterial Proteins/metabolism
14.
World J Microbiol Biotechnol ; 40(1): 9, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37938391

ABSTRACT

The aim of the study was to track the spread of antimicrobial resistance among the different sectors of One Health through the detection of Multidrug-Efflux-System in multidrug-resistant Staphylococcus aureus isolates. Multidrug-resistant (MDR) and methicillin-resistant (MRSA) S. aureus isolates were selected: 25 of human, one of animal and eight of food origin. The efflux system genes norA, norB, norC, LmrS, tet38 and msrA were screened by PCR. The activity of the efflux systems was determined by the minimum inhibitory concentration (MIC) of tetracycline and ciprofloxacin in the presence and absence of CCCP and in the quantification of ethidium bromide efflux. Furthermore, biofilm formation was determined in the presence and absence of the CCCP. The molecular epidemiology of the isolates was traced with the aid of PFGE. The gene norC was the most prevalent, detected in all isolates and msrA was the least prevalent, detected in only two isolates from humans. There was no difference in the MICs of tetracycline and ciprofloxacin in the presence of CCCP, but 55.9% of isolates showed ethidium bromide efflux. The presence of CCCP decreased the biofilm formation. Regarding the molecular epidemiology, in three clusters was a mixture of the isolates from different origins. Therefore, S. aureus MDR with active multidrug efflux systems are circulating between One Health domains and it is necessary to consider strategies to decrease this circulation in order to prevent the dissemination of resistance mediated by MES.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , One Health , Staphylococcal Infections , Animals , Humans , Staphylococcus aureus/genetics , Carbonyl Cyanide m-Chlorophenyl Hydrazone , Ethidium , Methicillin-Resistant Staphylococcus aureus/genetics , Tetracycline/pharmacology , Ciprofloxacin/pharmacology , Anti-Bacterial Agents/pharmacology
15.
Pak J Pharm Sci ; 36(2(Special)): 587-594, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37548194

ABSTRACT

Plasmid borne antibiotics resistance is the global threat to healthcare facilities. Such antibiotics resistance is inherited stably within the same bacterial generations and transmitted horizontally to other species of bacteria. The elimination of such resistance plasmid is of great importance to contain dispersal of antibiotics resistance. E. coli strains were identified, screened for the presence of antibiotics resistance by disc diffusion method, and cured by sub-lethal concentrations of Ethidium bromide and Acridine orange. After curing, again antibiotic resistance was determined. Before and after curing, plasmids were extracted by column spin Kit and subjected to 1% agarose gel electrophoresis and antibiotic resistance genes were identified by PCR. The Ethidium bromide was more effective than Acridine orange in eliminating antibiotics resistance and resistance genes bearing plasmids (4, 5, 6, 8, 9, 10 and <10kb). The most frequently eliminated antibiotic resistance was against Imipenem and Meropenem followed by Cefoperazone-sulbactam, Amikacin and cephalosporins in sequence. The loss of antibiotic resistance was associated with the elimination of plasmid-borne antibiotic resistance genes; bla-TEM, bla-SHV, bla-CTX-M, qnrA, qnrB, qnrC and qnrD. Some E. coli strains did not show the removal of antibiotics resistance and plasmids, suggesting the presence of resistance genes on main chromosome and or non-curable plasmids.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Ethidium , Acridine Orange , Microbial Sensitivity Tests , Plasmids/genetics , Drug Resistance, Microbial , beta-Lactamases/genetics
16.
Anal Chem ; 94(12): 5062-5068, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35286067

ABSTRACT

This article presents a novel approach to increase the detection sensitivity of trace amounts of DNA in a sample by employing Förster resonance energy transfer (FRET) between intercalating dyes. Two intercalators that present efficient FRET were used to enhance sensitivity and improve specificity in detecting minute amounts of DNA. Comparison of steady-state acceptor emission spectra with and without the donor allows for simple and specific detection of DNA (acceptor bound to DNA) down to 100 pg/µL. When utilizing as an acceptor a dye with a significantly longer lifetime (e.g., ethidium bromide bound to DNA), multipulse pumping and time-gated detection enable imaging/visualization of picograms of DNA present in a microliter of an unprocessed sample or DNA collected on a swab or other substrate materials.


Subject(s)
Fluorescence Resonance Energy Transfer , Intercalating Agents , Coloring Agents , DNA/genetics , Ethidium , Fluorescent Dyes
17.
J Neuroinflammation ; 19(1): 244, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36195881

ABSTRACT

BACKGROUND: Neuropathic pain is still a challenge for clinical treatment as a result of the comprehensive pathogenesis. Although emerging evidence demonstrates the pivotal role of glial cells in regulating neuropathic pain, the role of Schwann cells and their underlying mechanisms still need to be uncovered. Pannexin 1 (Panx 1), an important membrane channel for the release of ATP and inflammatory cytokines, as well as its activation in central glial cells, contributes to pain development. Here, we hypothesized that Schwann cell Panx 1 participates in the regulation of neuroinflammation and contributes to neuropathic pain. METHODS: A mouse model of chronic constriction injury (CCI) in CD1 adult mice or P0-Cre transgenic mice, and in vitro cultured Schwann cells were used. Intrasciatic injection with Panx 1 blockers or the desired virus was used to knock down the expression of Panx 1. Mechanical and thermal sensitivity was assessed using Von Frey and a hot plate assay. The expression of Panx 1 was measured using qPCR, western blotting, and immunofluorescence. The production of cytokines was monitored through qPCR and enzyme-linked immunosorbent assay (ELISA). Panx1 channel activity was detected by ethidium bromide (EB) uptake. RESULTS: CCI induced persistent neuroinflammatory responses and upregulation of Panx 1 in Schwann cells. Intrasciatic injection of Panx 1 blockers, carbenoxolone (CBX), probenecid, and Panx 1 mimetic peptide (10Panx) effectively reduced mechanical and heat hyperalgesia. Probenecid treatment of CCI-induced mice significantly reduced Panx 1 expression in Schwann cells, but not in dorsal root ganglion (DRG). In addition, Panx 1 knockdown in Schwann cells with Panx 1 shRNA-AAV in P0-Cre mice significantly reduced CCI-induced neuropathic pain. To determine whether Schwann cell Panx 1 participates in the regulation of neuroinflammation and contributes to neuropathic pain, we evaluated its effect in LPS-treated Schwann cells. We found that inhibition of Panx 1 via CBX and Panx 1-siRNA effectively attenuated the production of selective cytokines, as well as its mechanism of action being dependent on both Panx 1 channel activity and its expression. CONCLUSION: In this study, we found that CCI-related neuroinflammation correlates with Panx 1 activation in Schwann cells, indicating that inhibition of Panx 1 channels in Schwann cells reduces neuropathic pain through the suppression of neuroinflammatory responses.


Subject(s)
Carbenoxolone , Neuralgia , Adenosine Triphosphate/pharmacology , Animals , Carbenoxolone/pharmacology , Carbenoxolone/therapeutic use , Connexins/genetics , Connexins/metabolism , Cytokines/metabolism , Ethidium/metabolism , Ethidium/pharmacology , Ethidium/therapeutic use , Hyperalgesia/metabolism , Lipopolysaccharides/pharmacology , Mice , Nerve Tissue Proteins/metabolism , Neuralgia/metabolism , Probenecid/metabolism , Probenecid/pharmacology , Probenecid/therapeutic use , RNA, Small Interfering/metabolism , Schwann Cells
18.
J Bioenerg Biomembr ; 54(2): 109-117, 2022 04.
Article in English | MEDLINE | ID: mdl-35260987

ABSTRACT

Lysophosphatidic acid (LPA) signaling via LPA receptors (LPA1 to LPA6) exhibits a variety of malignant properties in cancer cells. Intracellular ATP depletion leads to the development of necrosis and apoptosis. The present study aimed to evaluate the effects of LPA receptor-mediated signaling on the regulation of cancer cell functions associated with ATP reduction. Long-term ethidium bromide (EtBr) treated (MG63-EtBr) cells were established from osteosarcoma MG-63 cells. The intracellular ATP levels of MG63-EtBr cells were significantly lower than that of MG-63 cells. LPAR2, LPAR3, LPAR4 and LPAR6 gene expressions were elevated in MG63-EtBr cells. The cell motile and invasive activities of MG63-EtBr cells were markedly higher than those of MG-63 cells. The cell motile activity of MG-63 cells was increased by LPA4 and LPA6 knockdowns. In cell survival assay, cells were treated with cisplatin (CDDP) every 24 h for 3 days. The cell survival to CDDP of MG63-EtBr cells was lower than that of MG-63 cells. LPA2 knockdown decreased the cell survival to CDDP of MG-63 cells. The cell survival to CDDP of MG-63 cells was inhibited by (2 S)-OMPT (LPA3 agonist). Moreover, the cell survival to CDDP of MG-63 cells was enhanced by LPA4 and LPA6 knockdowns. These results indicate that LPA signaling via LPA receptors is involved in the regulation of cellular functions associated with ATP reduction in MG-63 cells treated with EtBr.


Subject(s)
Bone Neoplasms , Osteosarcoma , Adenosine Triphosphate/pharmacology , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Cell Movement , Ethidium/pharmacology , Gene Expression Regulation, Neoplastic , Humans , Lysophospholipids/metabolism , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/metabolism
19.
Microb Pathog ; 167: 105570, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35550844

ABSTRACT

Efflux pump of Major Facilitator Superfamily (MFS) is widely distributed in bacteria, while its role in regulating antibiotic resistance of nosocomial pathogen Klebsiella pneumoniae remains unclear. Herein we analyzed the effect of amino acid substitution of MFS efflux pump KmrA on its export efficiency via molecular biology and molecular dynamics (MD). After searching across the 804 sequenced K. pneumoniae isolates, we identified four major variants of KmrA, while one of them KmrA-A was demonstrated an inactive one in MIC and ethidium bromide efflux assays. Subsequently, MD simulations of KmrA and its variants were conducted and the opposite motion of the central helices were observed for the active variants, while it was not found for KmrA-A. To further identify the importance of the opposite motion to the conformational transition, we calculated their differences in volume of binding pocket, salt bridge and hydrophilic interaction with water based on the rocker-switch model. Our results indicated that the opposite motion of KmrA conferred a larger binding pocket and stronger hydrogen bond with water at inward-facing conformation. An unusual substitution S374A of KmrA-A disrupted the normal motion of central helices by enhancing hydrophobic interactions between them, resulting into the altered positions and strengths of salt bridge, which was deduced to affect the conformational transition. Overall our data provided detailed information on the regular of KmrA's moving trajectory, demonstrating the importance of opposite motion of central helices to KmrA's export efficiency.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Bacterial Proteins/metabolism , Ethidium/metabolism , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Microbial Sensitivity Tests , Water
20.
Chemistry ; 28(47): e202201294, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35652726

ABSTRACT

DNA strand displacement is a technique to exchange one strand of a double stranded DNA by another strand (invader). It is an isothermal, enzyme free method driven by single stranded overhangs (toeholds) and is employed in DNA amplification, mismatch detection and nanotechnology. We discovered that anomeric (α/ß) DNA can be used for heterochiral strand displacement. Homochiral DNA in ß-D configuration was transformed to heterochiral DNA in α-D/ß-D configuration and further to homochiral DNA with both strands in α-D configuration. Single stranded α-D DNA acts as invader. Herein, new anomeric displacement systems with and without toeholds were designed. Due to their resistance against enzymatic degradation, the systems are applicable to living cells. The light-up intercalator ethidium bromide is used as fluorescence sensor to follow the progress of displacement. Anomeric DNA displacement shows benefits over canonical DNA in view of toehold free displacement and simple detection by ethidium bromide.


Subject(s)
DNA , Oligonucleotides , DNA/genetics , DNA, Single-Stranded , Ethidium , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL