ABSTRACT
Cell death supports morphogenesis during development and homeostasis after birth by removing damaged or obsolete cells. It also curtails the spread of pathogens by eliminating infected cells. Cell death can be induced by the genetically programmed suicide mechanisms of apoptosis, necroptosis, and pyroptosis, or it can be a consequence of dysregulated metabolism, as in ferroptosis. Here, we review the signaling mechanisms underlying each cell-death pathway, discuss how impaired or excessive activation of the distinct cell-death processes can promote disease, and highlight existing and potential therapies for redressing imbalances in cell death in cancer and other diseases.
Subject(s)
Cell Death , Signal Transduction , Humans , Apoptosis , Ferroptosis , Homeostasis , PyroptosisABSTRACT
Phospholipids containing a single polyunsaturated fatty acyl tail (PL-PUFA1s) are considered the driving force behind ferroptosis, whereas phospholipids with diacyl-PUFA tails (PL-PUFA2s) have been rarely characterized. Dietary lipids modulate ferroptosis, but the mechanisms governing lipid metabolism and ferroptosis sensitivity are not well understood. Our research revealed a significant accumulation of diacyl-PUFA phosphatidylcholines (PC-PUFA2s) following fatty acid or phospholipid treatments, correlating with cancer cell sensitivity to ferroptosis. Depletion of PC-PUFA2s occurred in aging and Huntington's disease brain tissue, linking it to ferroptosis. Notably, PC-PUFA2s interacted with the mitochondrial electron transport chain, generating reactive oxygen species (ROS) for initiating lipid peroxidation. Mitochondria-targeted antioxidants protected cells from PC-PUFA2-induced mitochondrial ROS (mtROS), lipid peroxidation, and cell death. These findings reveal a critical role for PC-PUFA2s in controlling mitochondria homeostasis and ferroptosis in various contexts and explain the ferroptosis-modulating mechanisms of free fatty acids. PC-PUFA2s may serve as diagnostic and therapeutic targets for modulating ferroptosis.
Subject(s)
Dietary Fats , Ferroptosis , Phospholipids , Fatty Acids , Phosphatidylcholines , Phospholipids/chemistry , Phospholipids/metabolism , Reactive Oxygen Species , Dietary Fats/metabolismABSTRACT
Inflammation-induced neurodegeneration is a defining feature of multiple sclerosis (MS), yet the underlying mechanisms remain unclear. By dissecting the neuronal inflammatory stress response, we discovered that neurons in MS and its mouse model induce the stimulator of interferon genes (STING). However, activation of neuronal STING requires its detachment from the stromal interaction molecule 1 (STIM1), a process triggered by glutamate excitotoxicity. This detachment initiates non-canonical STING signaling, which leads to autophagic degradation of glutathione peroxidase 4 (GPX4), essential for neuronal redox homeostasis and thereby inducing ferroptosis. Both genetic and pharmacological interventions that target STING in neurons protect against inflammation-induced neurodegeneration. Our findings position STING as a central regulator of the detrimental neuronal inflammatory stress response, integrating inflammation with glutamate signaling to cause neuronal cell death, and present it as a tractable target for treating neurodegeneration in MS.
Subject(s)
Inflammation , Membrane Proteins , Multiple Sclerosis , Neurons , Animals , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Membrane Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Mice , Humans , Inflammation/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Signal Transduction , Autophagy , Mice, Inbred C57BL , Glutamic Acid/metabolism , Ferroptosis , Disease Models, Animal , Female , MaleABSTRACT
Curtailed protein translation ensures stemness and multipotency in embryonic and adult tissue-specific stem cells. In this issue of Cell, a study led by Zhao and colleagues uncovered increased susceptibility of hematopoietic stem cells (HSC) to iron-dependent programmed necrotic cell death (ferroptosis) as a consequence of low protein synthesis.
Subject(s)
Hematopoietic Stem Cells , Protein Biosynthesis , Cell Proliferation , FerroptosisABSTRACT
Ferroptosis, a cell death process driven by iron-dependent phospholipid peroxidation, has been implicated in various diseases. There are two major surveillance mechanisms to suppress ferroptosis: one mediated by glutathione peroxidase 4 (GPX4) that catalyzes the reduction of phospholipid peroxides and the other mediated by enzymes, such as FSP1, that produce metabolites with free radical-trapping antioxidant activity. In this study, through a whole-genome CRISPR activation screen, followed by mechanistic investigation, we identified phospholipid-modifying enzymes MBOAT1 and MBOAT2 as ferroptosis suppressors. MBOAT1/2 inhibit ferroptosis by remodeling the cellular phospholipid profile, and strikingly, their ferroptosis surveillance function is independent of GPX4 or FSP1. MBOAT1 and MBOAT2 are transcriptionally upregulated by sex hormone receptors, i.e., estrogen receptor (ER) and androgen receptor (AR), respectively. A combination of ER or AR antagonist with ferroptosis induction significantly inhibited the growth of ER+ breast cancer and AR+ prostate cancer, even when tumors were resistant to single-agent hormonal therapies.
Subject(s)
Ferroptosis , Male , Humans , Phospholipid Hydroperoxide Glutathione Peroxidase , Lipid Peroxidation , Peroxides , PhospholipidsABSTRACT
Hematopoietic stem cells (HSCs) have a number of unique physiologic adaptations that enable lifelong maintenance of blood cell production, including a highly regulated rate of protein synthesis. Yet, the precise vulnerabilities that arise from such adaptations have not been fully characterized. Here, inspired by a bone marrow failure disorder due to the loss of the histone deubiquitinase MYSM1, characterized by selectively disadvantaged HSCs, we show how reduced protein synthesis in HSCs results in increased ferroptosis. HSC maintenance can be fully rescued by blocking ferroptosis, despite no alteration in protein synthesis rates. Importantly, this selective vulnerability to ferroptosis not only underlies HSC loss in MYSM1 deficiency but also characterizes a broader liability of human HSCs. Increasing protein synthesis rates via MYSM1 overexpression makes HSCs less susceptible to ferroptosis, more broadly illustrating the selective vulnerabilities that arise in somatic stem cell populations as a result of physiologic adaptations.
Subject(s)
Ferroptosis , Hematopoietic Stem Cells , Humans , Endopeptidases/metabolism , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Trans-Activators/metabolism , Ubiquitin-Specific Proteases/metabolismABSTRACT
Ferroptosis, a form of cell death driven by iron-dependent lipid peroxidation, was identified as a distinct phenomenon and named a decade ago. Ferroptosis has been implicated in a broad set of biological contexts, from development to aging, immunity, and cancer. This review describes key regulators of this form of cell death within a framework of metabolism, ROS biology, and iron biology. Key concepts and major unanswered questions in the ferroptosis field are highlighted. The next decade promises to yield further breakthroughs in the mechanisms governing ferroptosis and additional ways of harnessing ferroptosis for therapeutic benefit.
Subject(s)
Ferroptosis , Cell Death , Iron/metabolism , Lipid Peroxidation , Reactive Oxygen Species/metabolismABSTRACT
Ferroptosis is a non-apoptotic cell death mechanism characterized by iron-dependent membrane lipid peroxidation. Here, we review what is known about the cellular mechanisms mediating the execution and regulation of ferroptosis. We first consider how the accumulation of membrane lipid peroxides leads to the execution of ferroptosis by altering ion transport across the plasma membrane. We then discuss how metabolites and enzymes that are distributed in different compartments and organelles throughout the cell can regulate sensitivity to ferroptosis by impinging upon iron, lipid and redox metabolism. Indeed, metabolic pathways that reside in the mitochondria, endoplasmic reticulum, lipid droplets, peroxisomes and other organelles all contribute to the regulation of ferroptosis sensitivity. We note how the regulation of ferroptosis sensitivity by these different organelles and pathways seems to vary between different cells and death-inducing conditions. We also highlight transcriptional master regulators that integrate the functions of different pathways and organelles to modulate ferroptosis sensitivity globally. Throughout this Review, we highlight open questions and areas in which progress is needed to better understand the cell biology of ferroptosis.
Subject(s)
Ferroptosis , Iron , Lipid Peroxidation , Ferroptosis/physiology , Humans , Animals , Iron/metabolism , Mitochondria/metabolism , Lipid Metabolism , Cell Membrane/metabolism , Oxidation-ReductionABSTRACT
Regulated cell death mediated by dedicated molecular machines, known as programmed cell death, plays important roles in health and disease. Apoptosis, necroptosis and pyroptosis are three such programmed cell death modalities. The caspase family of cysteine proteases serve as key regulators of programmed cell death. During apoptosis, a cascade of caspase activation mediates signal transduction and cellular destruction, whereas pyroptosis occurs when activated caspases cleave gasdermins, which can then form pores in the plasma membrane. Necroptosis, a form of caspase-independent programmed necrosis mediated by RIPK3 and MLKL, is inhibited by caspase-8-mediated cleavage of RIPK1. Disruption of cellular homeostatic mechanisms that are essential for cell survival, such as normal ionic and redox balance and lysosomal flux, can also induce cell death without invoking programmed cell death mechanisms. Excitotoxicity, ferroptosis and lysosomal cell death are examples of such cell death modes. In this Review, we provide an overview of the major cell death mechanisms, highlighting the latest insights into their complex regulation and execution, and their relevance to human diseases.
Subject(s)
Cell Death , Animals , Humans , Apoptosis/physiology , Caspases/metabolism , Cell Death/physiology , Ferroptosis/physiology , Lysosomes/metabolism , Necroptosis , Pyroptosis/physiology , Signal TransductionABSTRACT
Ferroptosis is a regulated form of cell death that occurs when phospholipids with polyunsaturated fatty acyl tails are oxidized in an iron-dependent manner. Research in recent years has uncovered complex cellular networks that induce and suppress lethal lipid peroxidation. This SnapShot provides an overview of ferroptosis-related pathways, including relevant biomolecules and small-molecule modulators regulating them.
Subject(s)
Ferroptosis/genetics , Ferroptosis/physiology , Iron/metabolism , Cell Death , Humans , Lipid Peroxidation/physiology , Oxidation-Reduction , Phospholipids/metabolismABSTRACT
Antigen-specific memory CD4+ T cells can persist and confer rapid and efficient protection from microbial reinfection. However, the mechanisms underlying the long-term maintenance of the memory CD4+ T cell pool remain largely unknown. Here, using a mouse model of acute infection with lymphocytic choriomeningitis virus (LCMV), we found that the serine/threonine kinase complex mammalian target of rapamycin complex 2 (mTORC2) is critical for the long-term persistence of virus-specific memory CD4+ T cells. The perturbation of mTORC2 signaling at memory phase led to an enormous loss of virus-specific memory CD4+ T cells by a unique form of regulated cell death (RCD), ferroptosis. Mechanistically, mTORC2 inactivation resulted in the impaired phosphorylation of downstream AKT and GSK3ß kinases, which induced aberrant mitochondrial reactive oxygen species (ROS) accumulation and ensuing ferroptosis-causative lipid peroxidation in virus-specific memory CD4+ T cells; furthermore, the disruption of this signaling cascade also inhibited glutathione peroxidase 4 (GPX4), a major scavenger of lipid peroxidation. Thus, the mTORC2-AKT-GSK3ß axis functions as a key signaling hub to promote the longevity of virus-specific memory CD4+ T cells by preventing ferroptosis.
Subject(s)
CD4-Positive T-Lymphocytes/immunology , Ferroptosis/immunology , Immunologic Memory/immunology , Longevity/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Mechanistic Target of Rapamycin Complex 2/immunology , Animals , Glycogen Synthase Kinase 3 beta/immunology , Lipid Peroxidation/immunology , Lymphocyte Activation/immunology , Lymphocyte Count/methods , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt/immunologyABSTRACT
Mitochondrial dysfunction is associated with a spectrum of human conditions, ranging from rare, inborn errors of metabolism to the aging process. To identify pathways that modify mitochondrial dysfunction, we performed genome-wide CRISPR screens in the presence of small-molecule mitochondrial inhibitors. We report a compendium of chemical-genetic interactions involving 191 distinct genetic modifiers, including 38 that are synthetic sick/lethal and 63 that are suppressors. Genes involved in glycolysis (PFKP), pentose phosphate pathway (G6PD), and defense against lipid peroxidation (GPX4) scored high as synthetic sick/lethal. A surprisingly large fraction of suppressors are pathway intrinsic and encode mitochondrial proteins. A striking example of such "intra-organelle" buffering is the alleviation of a chemical defect in complex V by simultaneous inhibition of complex I, which benefits cells by rebalancing redox cofactors, increasing reductive carboxylation, and promoting glycolysis. Perhaps paradoxically, certain forms of mitochondrial dysfunction may best be buffered with "second site" inhibitors to the organelle.
Subject(s)
Genes, Modifier , Mitochondria/genetics , Mitochondria/pathology , Autoantigens/metabolism , Cell Death/drug effects , Cytosol/drug effects , Cytosol/metabolism , Electron Transport Complex I/metabolism , Epistasis, Genetic/drug effects , Ferroptosis/drug effects , Ferroptosis/genetics , Genome , Glutathione Peroxidase/metabolism , Glycolysis/drug effects , Glycolysis/genetics , Humans , K562 Cells , Mitochondria/drug effects , Oligomycins/toxicity , Oxidation-Reduction , Oxidative Phosphorylation/drug effects , Pentose Phosphate Pathway/drug effects , Pentose Phosphate Pathway/genetics , Reactive Oxygen Species/metabolism , Ribonucleoproteins/metabolism , SS-B AntigenABSTRACT
Ferroptosis, a non-apoptotic form of programmed cell death, is triggered by oxidative stress in cancer, heat stress in plants, and hemorrhagic stroke. A homeostatic transcriptional response to ferroptotic stimuli is unknown. We show that neurons respond to ferroptotic stimuli by induction of selenoproteins, including antioxidant glutathione peroxidase 4 (GPX4). Pharmacological selenium (Se) augments GPX4 and other genes in this transcriptional program, the selenome, via coordinated activation of the transcription factors TFAP2c and Sp1 to protect neurons. Remarkably, a single dose of Se delivered into the brain drives antioxidant GPX4 expression, protects neurons, and improves behavior in a hemorrhagic stroke model. Altogether, we show that pharmacological Se supplementation effectively inhibits GPX4-dependent ferroptotic death as well as cell death induced by excitotoxicity or ER stress, which are GPX4 independent. Systemic administration of a brain-penetrant selenopeptide activates homeostatic transcription to inhibit cell death and improves function when delivered after hemorrhagic or ischemic stroke.
Subject(s)
Brain Ischemia , Cell-Penetrating Peptides/pharmacology , Ferroptosis/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Intracranial Hemorrhages , Neurons , Phospholipid Hydroperoxide Glutathione Peroxidase/biosynthesis , Selenium/pharmacology , Stroke , Transcription, Genetic/drug effects , Animals , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/pathology , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Humans , Intracranial Hemorrhages/drug therapy , Intracranial Hemorrhages/metabolism , Intracranial Hemorrhages/pathology , Male , Mice , Neurons/metabolism , Neurons/pathology , Sp1 Transcription Factor/metabolism , Stroke/drug therapy , Stroke/metabolism , Stroke/pathology , Transcription Factor AP-2/metabolismABSTRACT
The linkage between neutrophil death and the development of autoimmunity has not been thoroughly explored. Here, we show that neutrophils from either lupus-prone mice or patients with systemic lupus erythematosus (SLE) undergo ferroptosis. Mechanistically, autoantibodies and interferon-α present in the serum induce neutrophil ferroptosis through enhanced binding of the transcriptional repressor CREMα to the glutathione peroxidase 4 (Gpx4, the key ferroptosis regulator) promoter, which leads to suppressed expression of Gpx4 and subsequent elevation of lipid-reactive oxygen species. Moreover, the findings that mice with neutrophil-specific Gpx4 haploinsufficiency recapitulate key clinical features of human SLE, including autoantibodies, neutropenia, skin lesions and proteinuria, and that the treatment with a specific ferroptosis inhibitor significantly ameliorates disease severity in lupus-prone mice reveal the role of neutrophil ferroptosis in lupus pathogenesis. Together, our data demonstrate that neutrophil ferroptosis is an important driver of neutropenia in SLE and heavily contributes to disease manifestations.
Subject(s)
Ferroptosis/physiology , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Neutropenia/pathology , Neutrophils/immunology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Animals , Autoantibodies/immunology , Autoimmunity/immunology , Cyclic AMP Response Element Modulator/metabolism , Humans , Interferon-alpha/immunology , Mice , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Promoter Regions, Genetic/genetics , Reactive Oxygen Species/metabolismABSTRACT
Follicular helper T (TFH) cells are a specialized subset of CD4+ T cells that essentially support germinal center responses where high-affinity and long-lived humoral immunity is generated. The regulation of TFH cell survival remains unclear. Here we report that TFH cells show intensified lipid peroxidation and altered mitochondrial morphology, resembling the features of ferroptosis, a form of programmed cell death that is driven by iron-dependent accumulation of lipid peroxidation. Glutathione peroxidase 4 (GPX4) is the major lipid peroxidation scavenger and is necessary for TFH cell survival. The deletion of GPX4 in T cells selectively abrogated TFH cells and germinal center responses in immunized mice. Selenium supplementation enhanced GPX4 expression in T cells, increased TFH cell numbers and promoted antibody responses in immunized mice and young adults after influenza vaccination. Our findings reveal the central role of the selenium-GPX4-ferroptosis axis in regulating TFH homeostasis, which can be targeted to enhance TFH cell function in infection and following vaccination.
Subject(s)
Ferroptosis/physiology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Selenium/pharmacology , T Follicular Helper Cells/physiology , Adolescent , Adult , Animals , Cell Survival/immunology , Child , Female , Germinal Center/cytology , Germinal Center/immunology , Homeostasis/drug effects , Homeostasis/genetics , Humans , Immunity, Humoral/immunology , Influenza Vaccines/immunology , Lipid Peroxidation/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/physiology , Ovalbumin , T Follicular Helper Cells/immunology , Vaccination , Young AdultABSTRACT
Ferroptosis is a type of regulated cell death that drives the pathophysiology of many diseases. Oxidative stress is detectable in many types of regulated cell death, but only ferroptosis involves lipid peroxidation and iron dependency. Ferroptosis originates and propagates from several organelles, including the mitochondria, endoplasmic reticulum, Golgi, and lysosomes. Recent data have revealed that immune cells can both induce and undergo ferroptosis. A mechanistic understanding of how ferroptosis regulates immunity is critical to understanding how ferroptosis controls immune responses and how this is dysregulated in disease. Translationally, more work is needed to produce ferroptosis-modulating immunotherapeutics. This review focuses on the role of ferroptosis in immune-related diseases, including infection, autoimmune diseases, and cancer. We discuss how ferroptosis is regulated in immunity, how this regulation contributes to disease pathogenesis, and how targeting ferroptosis may lead to novel therapies.
Subject(s)
Ferroptosis , Iron , Ferroptosis/immunology , Humans , Animals , Iron/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Lipid Peroxidation/immunology , Autoimmune Diseases/immunology , Immunity , Oxidative Stress/immunology , Mitochondria/metabolism , Mitochondria/immunologyABSTRACT
The tumor microenvironment (TME) promotes metabolic reprogramming and dysfunction in immune cells. Here, we examined the impact of the TME on phospholipid metabolism in CD8+ T cells. In lung cancer, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were lower in intratumoral CD8+ T cells than in circulating CD8+ T cells. Intratumoral CD8+ T cells exhibited decreased expression of phospholipid phosphatase 1 (PLPP1), which catalyzes PE and PC synthesis. T cell-specific deletion of Plpp1 impaired antitumor immunity and promoted T cell death by ferroptosis. Unsaturated fatty acids in the TME stimulated ferroptosis of Plpp1-/- CD8+ T cells. Mechanistically, programmed death-1 (PD-1) signaling in CD8+ T cells induced GATA1 binding to the promoter region Plpp1 and thereby suppressed Plpp1 expression. PD-1 blockade increased Plpp1 expression and restored CD8+ T cell antitumor function but did not rescue dysfunction of Plpp1-/- CD8+ T cells. Thus, PD-1 signaling regulates phospholipid metabolism in CD8+ T cells, with therapeutic implications for immunotherapy.
Subject(s)
CD8-Positive T-Lymphocytes , Ferroptosis , Programmed Cell Death 1 Receptor , Signal Transduction , Tumor Microenvironment , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Programmed Cell Death 1 Receptor/metabolism , Animals , Mice , Signal Transduction/immunology , Ferroptosis/immunology , Tumor Microenvironment/immunology , Humans , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Cell Line, TumorABSTRACT
The research field of ferroptosis has seen exponential growth over the past few years, since the term was coined in 2012. This unique modality of cell death, driven by iron-dependent phospholipid peroxidation, is regulated by multiple cellular metabolic pathways, including redox homeostasis, iron handling, mitochondrial activity and metabolism of amino acids, lipids and sugars, in addition to various signalling pathways relevant to disease. Numerous organ injuries and degenerative pathologies are driven by ferroptosis. Intriguingly, therapy-resistant cancer cells, particularly those in the mesenchymal state and prone to metastasis, are exquisitely vulnerable to ferroptosis. As such, pharmacological modulation of ferroptosis, via both its induction and its inhibition, holds great potential for the treatment of drug-resistant cancers, ischaemic organ injuries and other degenerative diseases linked to extensive lipid peroxidation. In this Review, we provide a critical analysis of the current molecular mechanisms and regulatory networks of ferroptosis, the potential physiological functions of ferroptosis in tumour suppression and immune surveillance, and its pathological roles, together with a potential for therapeutic targeting. Importantly, as in all rapidly evolving research areas, challenges exist due to misconceptions and inappropriate experimental methods. This Review also aims to address these issues and to provide practical guidelines for enhancing reproducibility and reliability in studies of ferroptosis. Finally, we discuss important concepts and pressing questions that should be the focus of future ferroptosis research.
Subject(s)
Ferroptosis/genetics , Neoplasms/genetics , Animals , Gene Regulatory Networks/genetics , Humans , Lipid Peroxidation , Oxidation-Reduction , Reproducibility of ResultsABSTRACT
The aryl-hydrocarbon receptor (AHR) is a ligand-activated transcription factor that buoys intestinal immune responses. AHR induces its own negative regulator, the AHR repressor (AHRR). Here, we show that AHRR is vital to sustaining intestinal intraepithelial lymphocytes (IELs). AHRR deficiency reduced IEL representation in a cell-intrinsic fashion. Single-cell RNA sequencing revealed an oxidative stress profile in Ahrr-/- IELs. AHRR deficiency unleashed AHR-induced expression of CYP1A1, a monooxygenase that generates reactive oxygen species, increasing redox imbalance, lipid peroxidation, and ferroptosis in Ahrr-/- IELs. Dietary supplementation with selenium or vitamin E to restore redox homeostasis rescued Ahrr-/- IELs. Loss of IELs in Ahrr-/- mice caused susceptibility to Clostridium difficile infection and dextran sodium-sulfate-induced colitis. Inflamed tissue of inflammatory bowel disease patients showed reduced Ahrr expression that may contribute to disease. We conclude that AHR signaling must be tightly regulated to prevent oxidative stress and ferroptosis of IELs and to preserve intestinal immune responses.
Subject(s)
Ferroptosis , Intraepithelial Lymphocytes , Animals , Mice , Intraepithelial Lymphocytes/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Oxidative Stress , HydrocarbonsABSTRACT
In a recent publication in Cell, Woo et al.1 report that stimulator of interferon genes (STING) links inflammation with glutamate-driven excitotoxicity to induce ferroptosis, identifying a mechanism of inflammation-induced neurodegeneration and also a novel candidate therapeutic target for multiple sclerosis.