Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 221
Filter
Add more filters

Publication year range
1.
Molecules ; 29(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38338421

ABSTRACT

Food and fish adulteration is a major public concern worldwide. Apart from economic fraud, health issues are in the forefront mainly due to severe allergies. Sardines are one of the most vulnerable-to-adulteration fish species due to their high nutritional value. Adulteration comprises the substitution of one fish species with similar species of lower nutritional value and lower cost. The detection of adulteration, especially in processed fish products, is very challenging because the morphological characteristics of the tissues change, making identification by the naked eye very difficult. Therefore, new analytical methods and (bio)sensors that provide fast analysis with high specificity, especially between closely related fish species, are in high demand. DNA-based methods are considered as important analytical tools for food adulteration detection. In this context, we report the first DNA sensors for sardine species identification. The sensing principle involves species recognition, via short hybridization of PCR-amplified sequences with specific probes, capture in the test zone of the sensor, and detection by the naked eye using gold nanoparticles as reporters; thus, avoiding the need for expensive instruments. As low as 5% adulteration of Sardina pilchardus with Sardinella aurita was detected with high reproducibility in the processed mixtures simulating canned fish products.


Subject(s)
Gold , Metal Nanoparticles , Animals , Reproducibility of Results , DNA/genetics , Fish Products
2.
J Sci Food Agric ; 104(1): 14-20, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37551539

ABSTRACT

Carbohydrate is widely used in the production of surimi and surimi products to improve their qualities, such as anti-freezing capability, gelling ability, nutrition, flavor and 3D printability. More and more native carbohydrates have been modified through physical methods (e.g., ball milling, irradiation and differential sedimentation), chemical method (e.g., deacetylation, hydroxypropylation and acetic acid esterification) or enzymatic method (e.g., chitosanase) before being used in the processing of surimi and surimi products in recent years. At the same time, different carbohydrates are compounded and applied to surimi and surimi products. The modified and compounded carbohydrates in surimi have been proved to improve quality of surimi and surimi products more pronouncedly than native carbohydrates. Therefore, this review summarizes the manipulation of carbohydrate by modification and compounding to improve the qualities of surimi and surimi products. Moreover, the prospects for carbohydrate modification and compounding for use in surimi and surimi products are discussed. © 2023 Society of Chemical Industry.


Subject(s)
Carbohydrates , Fish Products , Gels , Fish Products/analysis
3.
J Sci Food Agric ; 104(7): 4251-4259, 2024 May.
Article in English | MEDLINE | ID: mdl-38311866

ABSTRACT

BACKGROUND: Hairtail (Trichiurus haumela) surimi exhibits poor gelation properties and a dark gray appearance, which hinder its utilization in high-quality surimi gel products. The effect of Pickering emulsions stabilized by myofibrillar proteins (MPE) on the gel properties of hairtail surimi has been unclear. In particular, the impact of MPE under NaCl and KCl treatments on the quality of hairtail surimi gels requires further elucidation. RESULTS: Pickering emulsions stabilized by myofibrillar proteins and treated with NaCl or KCl (Na-MPE, K-MPE) were added to hairtail surimi in amounts of 10-70 g kg-1. The addition of 50 g kg-1 Na-MPE and K-MPE improved the gel strength, textural properties, whiteness, and water-holding capacity (WHC) of hairtail surimi. The relative content of ß-turn and ß-sheet in the surimi gels increased and the relative content of random coils and α-helix decreased with the addition of oil. The addition of Na-MPE and K-MPE did not affect the secondary structure of surimi gels but stimulated the gelation of hairtail surimi gels. Hairtail surimi containing K-MPE demonstrated similar performance in terms of hardness, microstructure, and WHC compared with the addition of Na-MPE. CONCLUSION: The quality of hairtail surimi gels can be improved by the addition of Na-MPE or K-MPE. The K-MPE proved to be an effective option for enhancing the properties of hairtail surimi gels at 50 g kg-1 to replace Na-MPE. © 2024 Society of Chemical Industry.


Subject(s)
Fish Proteins , Food Handling , Fish Proteins/chemistry , Emulsions , Sodium Chloride , Fish Products/analysis , Gels/chemistry
4.
J Sci Food Agric ; 104(2): 1132-1142, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37737024

ABSTRACT

BACKGROUND: Adding appropriate exogenous substances is an effective means to improve the quality of freshwater fish surimi. The present study investigated the effects of chicken breast on the gel properties of mixed minced meat products. RESULTS: With the increase in the proportion of chicken breast, the breaking force of mixed gels gradually increased. When the addition ratio was 30:70, the gel strength of mixed gels had the highest strength of 759.00 g cm-1 and also the highest water holding capacity of 87.36%. Compared with surimi gels (0:100), the hardness, adhesiveness and chewiness of mixed gels were significantly improved. The increase in the proportion of chicken breast increased the thermal stability of the mixed sol and improved the rheological properties of the mixed sol. When the proportion was 40:60, the area of immobile water (A22 ) in the mixed gel increased significantly, and the highest A22 was 3463.24. The hydrophobic interactions and disulfide bonds in the mixed gel were significantly increased as a result of the addition of chicken breast. The results of microstructure, electrophoresis and Raman spectroscopy indicated that the addition of chicken breast promoted the cross-linking of the proteins in mixed gels, which facilitated the transformation of the protein secondary structure from α-helical to ß-folded structure, thus forming a more uniform and orderly network structure. CONCLUSION: These results suggest that improving the gel properties of silver carp surimi by use of chicken breast has practical implications for the development of new blended products for surimi processing. © 2023 Society of Chemical Industry.


Subject(s)
Carps , Fish Proteins , Animals , Fish Proteins/chemistry , Chickens , Food Handling/methods , Gels/chemistry , Water , Fish Products/analysis
5.
J Sci Food Agric ; 104(10): 6035-6044, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38437166

ABSTRACT

BACKGROUND: Potentilla anserina L. is rich in various nutrients, active ingredients and unique flavor, comprising a natural nutrition and health food. However, its application in aquatic food has been rarely reported. Therefore, the effects of Potentilla anserina L. powder (PAP) on gel properties and volatile flavor profile of silver carp surimi were investigated. RESULTS: The gel strength and water-holding capacity of the surimi gels were significantly improved (P < 0.05), and the whiteness and cooking loss of all the samples decreased slightly with the increase in PAP content. The addition of PAP shortened the relaxation time (T2) of the surimi gels and converted some of the free water into immobile or bound water, which resulted in a better immobilization of water in the surimi. Scanning electron microscopy images demonstrated that the network of surimi gels with PAP added was denser and had a smoother surface compared to the control. Volatile components (VCs) analysis showed that 33 VCs were identified in the surimi gel samples with different additions of PAP, among which aldehydes, alcohols and esters were the major VCs, accounting for more than 50% of the VCs in the surimi gels. PAP addition reduced the fishy and rancid flavor compounds in surimi gels, such as 1-propanol, 1-octen-3-ol, etc., and promoted the production of aldehydes, alcohols, esters and other flavor substances. CONCLUSION: These results of the present study provide theoretical support for the investigation and development of new nutrient-health-flavored surimi products. © 2024 Society of Chemical Industry.


Subject(s)
Carps , Fish Products , Flavoring Agents , Gels , Potentilla , Taste , Volatile Organic Compounds , Animals , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Fish Products/analysis , Gels/chemistry , Flavoring Agents/chemistry , Potentilla/chemistry , Powders/chemistry , Plant Extracts/chemistry , Cooking , Humans
6.
J Sci Food Agric ; 104(11): 6649-6656, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38529727

ABSTRACT

BACKGROUND: The present study aimed to investigate the cryoprotective effect of epigallocatechin gallate (EGCG) replacing sucrose on surimi during frozen storage. Substitution or partial substitution of 0.1% EGCG for sucrose (1.5%) was added to surimi, and the surimi samples without and with commercial cryoprotectants (4% sucrose and 4% sorbitol) were used as the control group. RESULTS: The results obtained suggest that, with the increase in frozen storage time, the structural performance of surimi protein gradually weakened (e.g. the decrease in the surface hydrophobicity, the increase in the total sulfhydryl and solubility, and the protein myosin heavy chain bands became shallow) and surimi gel quality gradually deteriorated (e.g. the decrease in water-holding capacity, gel strength and all texture profile attributes). However, compared with the other three group surimi samples during the frozen period, the surimi proteins with partial replacement of sucrose by EGCG had a higher total sulfhydryl group content and solubility of proteins, as well as lower surface hydrophobicity of protein, suggesting that the addition of EGCG as a partial substitute for sucrose can enhance the antifreeze ability of surimi. Meanwhile, the surimi gel with the partial replacement of sucrose by EGCG had a higher water retention capacity, gel strength and texture attributes (e.g. hardness, springiness, cohesiveness, chewiness, and resilience), indicating that the addition of EGCG as a partial substitute for sucrose can inhibit the deterioration of surimi gel quality. CONCLUSION: Overall, EGCG partially replacing sucrose can play an alternative cryoprotectant with a lower sweetness to prevent the quality of surimi from deteriorating. © 2024 Society of Chemical Industry.


Subject(s)
Catechin , Cryoprotective Agents , Fish Products , Food Preservation , Food Storage , Freezing , Sucrose , Cryoprotective Agents/chemistry , Cryoprotective Agents/pharmacology , Catechin/analogs & derivatives , Catechin/chemistry , Animals , Fish Products/analysis , Sucrose/chemistry , Food Preservation/methods , Hydrophobic and Hydrophilic Interactions , Solubility
7.
J Sci Food Agric ; 104(11): 6518-6530, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38517154

ABSTRACT

BACKGROUND: Conventional cryoprotectant mixtures (sucrose and sorbitol) impart excessive sweetness and calories to surimi. Therefore, there is a need to explore alternative cryoprotectants with low sweetness and low-calorie content. The cryoprotective effects and possible mechanisms of soybean oligosaccharides (SBOS) on the frozen stability of grass carp (Ctenopharyngodon idellus) surimi were investigated during 120 days of frozen storage in a comparison with commercial cryoprotectants (4% sucrose and 4% sorbitol, w/w). RESULTS: SBOS at 6-8% (w/w) and commercial cryoprotectants could restrain water mobility and reduce thawing loss of frozen surimi by increasing non-freezable water content. SBOS could maintain the structural stability of proteins by preventing sulfhydryl groups from being rapidly oxidized to disulfide bonds, retarding the reduction of the solubility, Ca2+-ATPase activity and α-helix content of myofibrillar proteins (MP), as well as hindering the increasing surface hydrophobicity of MP of surimi during 120 days of frozen storage. The introduction of SBOS increased the gel strength and water-holding capacity of frozen-stored surimi. Compared with commercial cryoprotectants, 8% SBOS was more effective in stabilizing protein structure, whereas it was slightly less effective with respect to ice-forming inhibition. CONCLUSION: The results obtained in the present study suggest that 8% SBOS could be potentially developed as a new cryoprotectant for surimi as a result of its ice-forming inhibition abilities and protein structure stability. © 2024 Society of Chemical Industry.


Subject(s)
Carps , Cryoprotective Agents , Food Storage , Freezing , Glycine max , Oligosaccharides , Animals , Cryoprotective Agents/chemistry , Cryoprotective Agents/pharmacology , Glycine max/chemistry , Oligosaccharides/chemistry , Food Preservation/methods , Fish Products/analysis , Fish Proteins/chemistry
8.
J Food Drug Anal ; 32(1): 21-38, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38526592

ABSTRACT

In Taiwan, the number of applications for inspecting imported food has grown annually and noncompliant products must be accurately detected in these border sampling inspections. Previously, border management has used an automated border inspection system (import food inspection (IFI) system) to select batches via a random sampling method to manage the risk levels of various food products complying with regulatory inspection procedures. Several countries have implemented artificial intelligence (AI) technology to improve domestic governmental processes, social service, and public feedback. AI technologies are applied in border inspection by the Taiwan Food and Drug Administration (TFDA). Risk management of border inspections is conducted using the Border Prediction Intelligent (BPI) system. The risk levels are analyzed on based on the noncompliance records of imported food, the country of origin, and international food safety alerts. The subjects of this study were frozen fish products, which have been under surveillance by the BPI system. The purpose of this study was to investigate the relevance between the noncompliant trend of frozen fish products using the adoption of the BPI system and the results of postmarket sampling inspections. The border inspection and postmarket sampling data were divided into two groups: IFI and BPI groups (corresponding to before and after the adoption of the BPI system, respectively). The Chi-square test was employed to analyze the noncompliant differences in products between before and after the BPI system adoption. Despite the number of noncompliance batches being statistically insignificant after the adoption of the BPI system, the noncompliance rate of frozen fish products at the border increased from 3.0% to 4.7%. Meanwhile, the noncompliance rate in the postmarket decreased from 2.1% to 1.9%. The results indicate that the BPI system improves the effectiveness of interception of noncompliant products at the border, thereby preventing the entrance of noncompliant products to the postmarket. The variables were further classified and organized according to the scope of this study and product characteristics. Furthermore, ordinal logistic regression (OLR) was employed to determine the correlations among border, postmarket, and major influencing factors. Based on the analysis of major influencing factors, small fish and fish internal organ products exhibited significantly high risk for fish body type and product type, respectively. The BPI system effectively utilizes the large amount of data accumulated from border inspections over the years. Additionally, real-time information on bilateral data obtained from the border and postmarket should be bidirectionally shared for effectively intercepting noncompliance products and used for improving the border management efficiency.


Subject(s)
Artificial Intelligence , Fish Products , United States , Animals , Humans , Taiwan , Fishes , Food Safety
9.
Food Res Int ; 178: 113903, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309899

ABSTRACT

The volatile and non-volatile compounds were monitored to investigate the microbial evolution associated with the characteristic flavors for sturgeon caviar during refrigeration. The results revealed that the composition of volatile compounds changed significantly with prolonged refrigeration time, especially hexanal, nonanal, phenylacetaldehyde, 3-methyl butyraldehyde, and 1-octen-3-ol. The nonvolatile metabolites were mainly represented by the increase of bitter amino acids (Thr. Ser, Gly, Ala, and Pro) and a decrease in polyunsaturated fatty acids, especially an 18.63 % decrease in 5 months of storage. A total of 332 differential metabolites were mainly involved in the biosynthetic metabolic pathways of α-linolenic acid, linoleic acid, and arachidonic acid. The precursors associated with flavor evolution were mainly phospholipids, including oleic, linoleic, arachidonic, eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids. The most abundant at the genus level was Serratia, followed by Arsenophnus, Rhodococcus, and Pseudomonas, as obtained by high-throughput sequencing. Furthermore, seven core microorganisms were isolated and characterized from refrigerated caviar. Among them, inoculation with Mammalian coccus and Bacillus chrysosporium restored the flavor profile of caviar and enhanced the content of nonvolatile precursors, contributing to the characteristic aroma attributes of sturgeon caviar. The study presents a theoretical basis for the exploitation of technologies for quality stabilization and control of sturgeon caviar during storage.


Subject(s)
Fatty Acids, Unsaturated , Fishes , Animals , Phospholipids , Fish Products , Linoleic Acid , Mammals
10.
J Texture Stud ; 55(3): e12847, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924099

ABSTRACT

As an important aquatic prepared food, surimi products are favored by consumers due to their unique viscoelastic properties and high nutritional value. Gel properties are the main indicators to measure the quality of surimi products. The gelation of surimi mainly involves intramolecular (conformational change) and intermolecular (chemical force) changes. Factors such as processing treatments, raw fish species and exogenous additives affect surimi protein structure, chemical forces and endogenous enzyme activities, which further affect the gel properties of surimi products. This review focuses on the mechanism of surimi heat-induced gel, mainly including protein chain expansion and aggregation through various chemical forces to form a three-dimensional network structure. In addition, the mechanism and application of different factors on the gel properties of surimi were also discussed, providing a reference for the selection of fish species, the control of heating conditions in the gel process of surimi products, the selection of additives and other measures to improve the gel performance.


Subject(s)
Fish Products , Food Handling , Gels , Gels/chemistry , Animals , Fish Products/analysis , Food Handling/methods , Hot Temperature , Viscosity , Fishes , Fish Proteins , Nutritive Value , Humans
11.
J Food Sci ; 89(8): 5016-5030, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38980966

ABSTRACT

To improve the classification and regression performance of the total volatile basic nitrogen (TVB-N) and acid value (AV) of different freshness fish meal samples detected by a metal-oxide semiconductor electronic nose (MOS e-nose), 402 original features, 62 manually extracted features, manually extracted and selected features by the RFRFE method, and the features extracted by the long short-term memory (LSTM) network were used as inputs to identify the freshness. The classification performance of the freshness grades and the estimation performance of the TVB-N and AV values of fish meal with different freshness were compared. According to the sensor response curve, preprocessing and feature extraction steps were first applied to the original data. Then, five classification algorithms and four regression algorithms were used for modeling. The results showed that a total of 30 features were extracted using the LSTM network, and the number of extracted features was significantly reduced. In the classification, the highest accuracy rate of 95.4% was obtained using the support vector machine method. In the regression, the least squares support vector regression method obtained the best root mean square error (RMSE). The coefficient of determination (R2), RMSE, and relative standard deviation (RSD) between the predicted value of TVBN and the actual value were 0.963, 11.01, and 7.9%, respectively. The R2, RMSE, and RSD between the predicted value of AV and the actual value were 0.972, 0.170, and 6.05%, respectively. The LSTM feature extraction method provided a new method and reference for feature extraction using an E-nose to identify other animal-derived material samples.


Subject(s)
Electronic Nose , Fish Products , Semiconductors , Fish Products/analysis , Animals , Algorithms , Nitrogen/analysis , Metals/analysis , Support Vector Machine , Oxides/chemistry , Fishes
12.
Methods Mol Biol ; 2820: 89-98, 2024.
Article in English | MEDLINE | ID: mdl-38941017

ABSTRACT

Fishery products are one of the main human nutritional sources, and due to the consumption increase, the quality of the derived products may be modified, during catching, technological processing, and storage. Detection and identification of pathogenic and spoilage microorganisms in fishery products is needed because the first may be involved in human diseases, while the second is responsible of significant economic losses. In this sense, liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method and computational analysis of MS data are useful tools for characterizing and identifying different microorganisms and to develop promising strategies for food science investigations. Moreover, in the past decade, metaproteomic methodologies have progressed for the study of microorganisms isolated from their natural samples and independently of the culture restrictions. Metaproteomics enables assessment of proteins and pathways from individual members of the consortium. Metaproteomics can provide a detailed understanding of which organisms occupy specific metabolic niches, how they interact, and how they utilize nutrients, and these insights can be obtained directly from environmental samples.According to that, the sample preparation of the fishery product, the LC-ESI-MS/MS dedicated method, and the MS data analysis were described in the present chapter to obtain the metaproteomic analysis of the respective microbiomes or microbial communities.


Subject(s)
Microbiota , Proteomics , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Proteomics/methods , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Fisheries , Humans , Fish Products/microbiology , Fish Products/analysis , Animals , Food Microbiology
13.
Food Chem ; 455: 139841, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38824724

ABSTRACT

Microcrystalline cellulose was modified by TEMPO oxidation combined with ultrasound to prepare modified cellulose-based emulsion. The effect of different emulsion concentration on gel properties and protein conformation of surimi was investigated. The results showed the length and width of microcrystalline cellulose were reduced, and a large amount of -COOH was introduced into modified cellulose. Direct addition of flaxseed oil decreased the gel strength and WHC from 3640.49 g·mm and 76.94% to 2702.95 g·mm and 75.89%, respectively, while 5% modified cellulose-based emulsion could improve the gel properties of surimi. Surimi gel containing 5% emulsion had the highest hydrophobic interaction, disulfide bond and ß-sheet content. Moreover, protein network structure was the densest in 5% emulsion group. Therefore, modified cellulose-based emulsion could be used to compensating for the negative impact of direct addition of flaxseed oil on surimi, which provided a new idea for the development of healthy and new emulsified surimi products.


Subject(s)
Cellulose , Emulsions , Fish Products , Gels , Cellulose/chemistry , Emulsions/chemistry , Animals , Gels/chemistry , Fish Products/analysis , Protein Conformation , Fish Proteins/chemistry , Hydrophobic and Hydrophilic Interactions
14.
Food Chem ; 451: 139456, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38670022

ABSTRACT

Frozen surimi quality generally correlates with oxidation, but impacts of protein oxidation on salt-dissolved myofibrillar protein (MP) sol in surimi remain unclear. Hence, physicochemical and gelling properties of MP sol with different oxidation degrees were investigated subjected to freeze-thaw cycles. Results showed that mild oxidation (≤1 mmol/L) improved unfrozen MP gel quality with lowest cooking loss (3.29 %) and highest hardness (829.76 N). Whereas, oxidized sol suffering freeze-thawing degenerated severely, showing reduction of 23.85 % of salt soluble protein contents with H2O2 concentrations of 10 mmol/L. Shearing before heating influenced gelling properties of freeze-thawed sol, depending on oxidation levels. Oxidized gel with shearing displayed disorganized network structures, whereas gel without shearing displayed relatively complete appearances without holes under high oxidation condition (10 mmol/L). Overall, freeze-thaw process aggravated denaturation extents of MP sol subjected to oxidation, further causing high water loss and yellow color of heat-induced gel, especially to gel with shearing.


Subject(s)
Fish Products , Freezing , Gels , Muscle Proteins , Oxidation-Reduction , Animals , Gels/chemistry , Fish Products/analysis , Muscle Proteins/chemistry , Swine , Protein Aggregates , Myofibrils/chemistry , Fish Proteins/chemistry , Cooking , Food Handling
15.
Food Res Int ; 192: 114785, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147490

ABSTRACT

Seafood fraud has become a global issue, threatening food security and safety. Adulteration, substitution, dilution, and incorrect labeling of seafood products are fraudulent practices that violate consumer safety. In this context, developing sensitive, robust, and high-throughput molecular tools for food and feed authentication is becoming crucial for regulatory purposes. Analytical approaches such as proteomics mass spectrometry have shown promise in detecting incorrectly labeled products. For the application of these tools, genome information is crucial, but currently, for many marine species of commercial importance, such information is unavailable. However, when combining proteomic analysis with spectral library matching, commercially important fish species were successfully identified, differentiated, and quantified in pure muscle samples and mixtures, even when genome information was scarce. This study further tested the previously developed spectral library matching approach to differentiate between 29 fish species from the North Sea and examined samples including individual fish, laboratory-prepared mixtures and commercial products. For authenticating libraries generated from 29 fish species, fresh muscle samples from the fish samples were matched against the reference spectral libraries. Species of the fresh fish samples were correctly authenticated using the spectral library approach. The same result was obtained when evaluating the laboratory-prepared mixtures. Furthermore, processed commercial products containing mixtures of two or three fish species were matched against these reference spectral libraries to test the accuracy and robustness of this method for authentication of fish species. The results indicated that the method is suitable for the authentication of fish species from highly processed samples such as fish cakes and burgers. The study shows that current and future challenges in food and feed authentication can efficiently be tackled by reference spectral libraries method when prospecting new resources in the Arctic.


Subject(s)
Fish Products , Fishes , Food Contamination , Animals , Fishes/classification , Fish Products/analysis , Food Contamination/analysis , Proteomics/methods , Seafood/analysis , Mass Spectrometry/methods
16.
Food Chem ; 456: 139859, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38870800

ABSTRACT

κ-Carrageenan (CG) was employed to mask the bitterness induced by 50% KCl in surimi gels to achieve salt reduction and gel performance improvement. The combination of KCl and CG (KCl + CG) yielded the increased textural characteristics and water-holding capacity (WHC) of surimi gels and facilitated the transition of free water to immobilized water. In addition, the KCl + CG supplement increased the turbidity and particle size of myofibrillar protein (MP) sols but decreased the surface hydrophobicity in a dose-dependent manner. The hydrophobic interactions and disulfide bonds played crucial roles in maintaining the stability of MP gels. The specific binding of potassium ions to the sulfate groups of CG limited the release and diffusion of potassium ions from the surimi gels during oral processing, effectively masking the bitterness perception and maintaining the saltiness perception. This study provides a promising strategy to reduce the utilization of sodium salt in surimi products.


Subject(s)
Carrageenan , Fish Products , Gels , Potassium Chloride , Taste , Carrageenan/chemistry , Humans , Gels/chemistry , Potassium Chloride/chemistry , Fish Products/analysis , Animals , Taste Perception , Hydrophobic and Hydrophilic Interactions , Adult , Male , Female
17.
Food Chem ; 456: 140002, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38870812

ABSTRACT

It is well known that aquatic products such as fish and shellfish, when stored for a long period of time under inappropriate conditions, can suffer from muscle softening. This phenomenon is mainly caused by endogenous proteases, which are activated during heating and accelerates the degradation of myofibrillar proteins, directly leading to weaker gels and poorer water retention capacity. This paper reviews the changes in fish proteins during storage after death and the factors affecting protein hydrolysis. A brief overview of the extraction of protease inhibitors, polysaccharides and proteins is given, as well as their mechanism of inhibition of protein hydrolysis in surimi and the current status of their application to improve the properties of surimi.


Subject(s)
Fish Products , Fish Proteins , Animals , Hydrolysis , Fish Proteins/chemistry , Fish Proteins/metabolism , Fish Products/analysis , Gels/chemistry , Fishes , Food Additives/chemistry , Food Additives/metabolism , Food Additives/analysis
18.
Food Addit Contam Part B Surveill ; 17(3): 198-207, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38726701

ABSTRACT

Fish substitution in fish products is an important issue in fish markets, as it is a widespread practice. An authentication protocol for Rohu, Thaila and Tilapia was developed by multiplex PCR. Three species-specific and one degenerate common forward primer were designed using the Cytb gene of the mitochondrial genome. These primers for Labeo rohita, Labeo catla and Oreochromis niloticus showed the fragment size of 235 bp, 186 bp and 506 bp on the agarose gel, respectively. The primers for L. rohita and L. catla were sensitive to 0.1 ng of DNA template, while for O. niloticus this value was 1 ng of DNA template. A total of 230 commercial samples (160 fried and 70 processed fish products) were screened, where 60% mislabeling in fried and 30% mislabeling in processed fish were found. This multiplex PCR protocol could give useful insights for food inspection and enforcement of regulatory food control.


Subject(s)
Fish Products , Food Contamination , Food Labeling , Multiplex Polymerase Chain Reaction , Animals , Multiplex Polymerase Chain Reaction/methods , Fish Products/analysis , Food Contamination/analysis , Tilapia/genetics , Species Specificity , Fishes , DNA Primers , Humans , Cytochromes b/genetics
19.
J Food Sci ; 89(7): 4079-4092, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38847743

ABSTRACT

Ohmic heating (OH) at different conditions (voltage: 15, 20, 25 V; frequency: 1, 5, 10 kHz) and one-step water bath (WB) were used to heat wash and unwash surimi prepared from fresh pre-rigor common carp. The optimal heating conditions were established through assessments of gel strength, Texture Profile Analysis (TPA), water-holding capacity (WHC), whiteness, and sensory evaluation. Then, the impact of heating modes on gelation properties of unwashed surimi based on the optimal heating conditions was investigated. The study findings indicated a significant enhancement in gel properties compared to WB. Unwashed surimi gel properties showed improvement when derived from freshly caught raw fish and subjected to OH treatment. Moreover, variations in frequencies and voltages were observed to influence the heating rate. Optimal gel quality was achieved at 10 kHz 20 V (10 V/cm), facilitating swift progression through the gel deterioration stage, inhibition of protein hydrolyzing enzymes activity, and establishment of a stable gel network. Continuing to increase the heating rate would disrupt its network structure, resulting in diminished gel strength and WHC. The best quality of unwashed surimi gel was achieved by heating to 40°C for 30 min, followed by heating to 90°C for another 30 min (40°C 30 min + 90°C 30 min) under 10 kHz 20 V. The gel strength increased when held for 1 h at 40°C. For optimal heating efficiency, the heating mode of 40°C 30 min + 90°C 30 min is recommended to prepare unwashed surimi gel. PRACTICAL APPLICATION: Ohmic heating, as a rapid food heat treatment method, can both increase the heating rate and improve the gelation properties of freshwater surimi. There is a wide range of potential applications for the heat treatment of the surimi.


Subject(s)
Carps , Fish Products , Food Handling , Gels , Hot Temperature , Animals , Gels/chemistry , Fish Products/analysis , Food Handling/methods , Humans , Taste , Cooking/methods , Heating/methods , Water/chemistry
20.
Food Chem ; 450: 139342, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38631198

ABSTRACT

Numerous Pseudomonas species can infect aquatic animals, such as farmed rainbow trout, sea trout, sea bass, and sea bream, by causing disease or stress reactions. In aquaculture facilities, a number of Pseudomonas species have been isolated and identified as the main pathogens. The present study describes the characterization of 18 Pseudomonas strains, isolated from fish products using shotgun proteomics. The bacterial proteomes obtained were further analyzed to identify the main functional pathway proteins involved. In addition, this study revealed the presence of 1015 non-redundant peptides related to virulence factors. An additional 25 species-specific peptides were identified as putative Pseudomonas spp. biomarkers. The results constitute the largest dataset, described thus far for the rapid identification and characterization of Pseudomonas species present in edible fish; furthermore, these data can provide the basis for further research into the development of new therapies against these harmful pathogens.


Subject(s)
Fish Products , Proteomics , Pseudomonas , Animals , Pseudomonas/isolation & purification , Pseudomonas/metabolism , Pseudomonas/classification , Pseudomonas/chemistry , Fish Products/analysis , Fish Products/microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/analysis , Fish Diseases/microbiology , Proteome/analysis , Proteome/metabolism , Virulence Factors/metabolism , Fishes/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL