Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 389
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Cell Sci ; 137(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38563084

ABSTRACT

Angiogenesis is a tightly controlled dynamic process demanding a delicate equilibrium between pro-angiogenic signals and factors that promote vascular stability. The spatiotemporal activation of the transcriptional co-factors YAP (herein referring to YAP1) and TAZ (also known WWTR1), collectively denoted YAP/TAZ, is crucial to allow for efficient collective endothelial migration in angiogenesis. The focal adhesion protein deleted-in-liver-cancer-1 (DLC1) was recently described as a transcriptional downstream target of YAP/TAZ in endothelial cells. In this study, we uncover a negative feedback loop between DLC1 expression and YAP activity during collective migration and sprouting angiogenesis. In particular, our study demonstrates that signaling via the RhoGAP domain of DLC1 reduces nuclear localization of YAP and its transcriptional activity. Moreover, the RhoGAP activity of DLC1 is essential for YAP-mediated cellular processes, including the regulation of focal adhesion turnover, traction forces, and sprouting angiogenesis. We show that DLC1 restricts intracellular cytoskeletal tension by inhibiting Rho signaling at the basal adhesion plane, consequently reducing nuclear YAP localization. Collectively, these findings underscore the significance of DLC1 expression levels and its function in mitigating intracellular tension as a pivotal mechanotransductive feedback mechanism that finely tunes YAP activity throughout the process of sprouting angiogenesis.


Subject(s)
Focal Adhesions , GTPase-Activating Proteins , Mechanotransduction, Cellular , Tumor Suppressor Proteins , YAP-Signaling Proteins , Animals , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Movement , Feedback, Physiological , Focal Adhesions/metabolism , Focal Adhesions/genetics , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Mechanotransduction, Cellular/genetics , Neovascularization, Physiologic , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , YAP-Signaling Proteins/metabolism
2.
J Biol Chem ; 300(6): 107380, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38762178

ABSTRACT

Cancer testis antigens (CTAs) are a collection of proteins whose expression is normally restricted to the gamete but abnormally activated in a wide variety of tumors. The CTA, Testis-specific serine kinase 6 (TSSK6), is essential for male fertility in mice. The functional relevance of TSSK6 to cancer, if any, has not previously been investigated. Here we find that TSSK6 is frequently anomalously expressed in colorectal cancer and patients with elevated TSSK6 expression have reduced relapse-free survival. Depletion of TSSK6 from colorectal cancer cells attenuates anchorage-independent growth, invasion, and growth in vivo. Conversely, overexpression of TSSK6 enhances anchorage independence and invasion in vitro as well as in vivo tumor growth. Notably, ectopic expression of TSSK6 in semi-transformed human colonic epithelial cells is sufficient to confer anchorage independence and enhance invasion. In somatic cells, TSSK6 co-localizes with and enhances the formation of paxillin and tensin-positive foci at the cell periphery, suggesting a function in focal adhesion formation. Importantly, TSSK6 kinase activity is essential to induce these tumorigenic behaviors. Our findings establish that TSSK6 exhibits oncogenic activity when abnormally expressed in colorectal cancer cells. Thus, TSSK6 is a previously unrecognized intervention target for therapy, which could exhibit an exceptionally broad therapeutic window.


Subject(s)
Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Protein Serine-Threonine Kinases , Animals , Humans , Male , Mice , Carcinogenesis/genetics , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Focal Adhesions/metabolism , Focal Adhesions/genetics , Neoplasm Invasiveness , Paxillin/metabolism , Paxillin/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Tensins/metabolism , Tensins/genetics
3.
J Cell Sci ; 136(12)2023 06 15.
Article in English | MEDLINE | ID: mdl-37248996

ABSTRACT

Vinculin is an actin-binding protein present at cell-matrix and cell-cell adhesions, which plays a critical role in bearing force experienced by cells and dissipating it onto the cytoskeleton. Recently, we identified a key tyrosine residue, Y822, whose phosphorylation plays a critical role in force transmission at cell-cell adhesions. The role of Y822 in human cancer remains unknown, even though Y822 is mutated to Y822C in uterine cancers. Here, we investigated the effect of this amino acid substitution and that of a phosphodeficient Y822F vinculin in cancer cells. We observed that the presence of the Y822C mutation led to cells that proliferate and migrate more rapidly and contained smaller focal adhesions when compared to cells with wild-type vinculin. In contrast, the presence of the Y822F mutation led to highly spread cells with larger focal adhesions and increased contractility. Furthermore, we provide evidence that Y822C vinculin forms a disulfide bond with paxillin, accounting for some of the elevated phosphorylated paxillin recruitment. Taken together, these data suggest that vinculin Y822 modulates the recruitment of ligands.


Subject(s)
Cell Communication , Focal Adhesions , Humans , Vinculin/genetics , Vinculin/metabolism , Paxillin/genetics , Paxillin/metabolism , Ligands , Cell Adhesion/genetics , Focal Adhesions/genetics , Focal Adhesions/metabolism
4.
Proc Natl Acad Sci U S A ; 119(25): e2205536119, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35700360

ABSTRACT

Dystrophin is an essential muscle protein that contributes to cell membrane stability by mechanically linking the actin cytoskeleton to the extracellular matrix via an adhesion complex called the dystrophin-glycoprotein complex. The absence or impaired function of dystrophin causes muscular dystrophy. Focal adhesions (FAs) are also mechanosensitive adhesion complexes that connect the cytoskeleton to the extracellular matrix. However, the interplay between dystrophin and FA force transmission has not been investigated. Using a vinculin-based bioluminescent tension sensor, we measured FA tension in transgenic C2C12 myoblasts expressing wild-type (WT) dystrophin, a nonpathogenic single nucleotide polymorphism (SNP) (I232M), or two missense mutations associated with Duchenne (L54R), or Becker muscular dystrophy (L172H). Our data revealed cross talk between dystrophin and FAs, as the expression of WT or I232M dystrophin increased FA tension compared to dystrophin-less nontransgenic myoblasts. In contrast, the expression of L54R or L172H did not increase FA tension, indicating that these disease-causing mutations compromise the mechanical function of dystrophin as an FA allosteric regulator. Decreased FA tension caused by these mutations manifests as defective migration, as well as decreased Yes-associated protein 1 (YAP) activation, possibly by the disruption of the ability of FAs to transmit forces between the extracellular matrix and cytoskeleton. Our results indicate that dystrophin influences FA tension and suggest that dystrophin disease-causing missense mutations may disrupt a cellular tension-sensing pathway in dystrophic skeletal muscle.


Subject(s)
Dystrophin , Focal Adhesions , Mechanotransduction, Cellular , Muscular Dystrophy, Duchenne , Animals , Cell Line , Dystrophin/genetics , Focal Adhesions/genetics , Mechanotransduction, Cellular/genetics , Mice , Muscle Cells , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Mutation, Missense , Polymorphism, Single Nucleotide
5.
J Biol Chem ; 299(11): 105311, 2023 11.
Article in English | MEDLINE | ID: mdl-37797694

ABSTRACT

While the role of endocytosis in focal adhesion turnover-coupled cell migration has been established in addition to its conventional role in cellular functions, the molecular regulators and precise molecular mechanisms that underlie this process remain largely unknown. In this study, we report that proto-oncoprotein hematopoietic PBX-interacting protein (HPIP) localizes to focal adhesions as well as endosomal compartments along with RUN FYVE domain-containing protein 3 (RUFY3) and Rab5, an early endosomal protein. HPIP contains two coiled-coil domains (CC1 and CC2) that are necessary for its association with Rab5 and RUFY3 as CC domain double mutant, that is, mtHPIPΔCC1-2 failed to support it. Furthermore, we show that HPIP and RUFY3 activate Rab5 by serving as noncanonical guanine nucleotide exchange factors of Rab5. In support of this, either deletion of coiled-coil domains or silencing of HPIP or RUFY3 impairs Rab5 activation and Rab5-dependent cell migration. Mechanistic studies further revealed that loss of HPIP or RUFY3 expression severely impairs Rab5-mediated focal adhesion disassembly, FAK activation, fibronectin-associated-ß1 integrin trafficking, and thus cell migration. Together, this study underscores the importance of HPIP and RUFY3 as noncanonical guanine nucleotide exchange factors of Rab5 and in integrin trafficking and focal adhesion turnover, which implicates in cell migration.


Subject(s)
Focal Adhesions , Guanine Nucleotide Exchange Factors , Cell Movement , Endocytosis , Focal Adhesions/genetics , Focal Adhesions/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism , Humans , Cell Line , Cell Line, Tumor
6.
Development ; 147(7)2020 04 06.
Article in English | MEDLINE | ID: mdl-32108024

ABSTRACT

Endothelial cell adhesion is implicated in blood vessel sprout formation, yet how adhesion controls angiogenesis, and whether it occurs via rapid remodeling of adherens junctions or focal adhesion assembly, or both, remains poorly understood. Furthermore, how endothelial cell adhesion is controlled in particular tissues and under different conditions remains unexplored. Here, we have identified an unexpected role for spatiotemporal c-Src activity in sprouting angiogenesis in the retina, which is in contrast to the dominant focus on the role of c-Src in the maintenance of vascular integrity. Thus, mice specifically deficient in endothelial c-Src displayed significantly reduced blood vessel sprouting and loss in actin-rich filopodial protrusions at the vascular front of the developing retina. In contrast to what has been observed during vascular leakage, endothelial cell-cell adhesion was unaffected by loss of c-Src. Instead, decreased angiogenic sprouting was due to loss of focal adhesion assembly and cell-matrix adhesion, resulting in loss of sprout stability. These results demonstrate that c-Src signaling at specified endothelial cell membrane compartments (adherens junctions or focal adhesions) control vascular processes in a tissue- and context-dependent manner.


Subject(s)
Cell Adhesion/genetics , Endothelial Cells/physiology , Focal Adhesions/genetics , Genes, src/physiology , Neovascularization, Physiologic/genetics , Retina/embryology , Animals , Cells, Cultured , Embryo, Mammalian , Endothelium, Vascular/embryology , Endothelium, Vascular/metabolism , Female , Focal Adhesions/metabolism , Focal Adhesions/physiology , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Mice, Knockout , Retina/metabolism
7.
Blood ; 138(15): 1359-1372, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34375384

ABSTRACT

The αIIbß3 integrin receptor coordinates platelet adhesion, activation, and mechanosensing in thrombosis and hemostasis. Using differential cysteine alkylation and mass spectrometry, we have identified a disulfide bond in the αIIb subunit linking cysteines 490 and 545 that is missing in ∼1 in 3 integrin molecules on the resting and activated human platelet surface. This alternate covalent form of αIIbß3 is predetermined as it is also produced by human megakaryoblasts and baby hamster kidney fibroblasts transfected with recombinant integrin. From coimmunoprecipitation experiments, the alternate form selectively partitions into focal adhesions on the activated platelet surface. Its function was evaluated in baby hamster kidney fibroblast cells expressing a mutant integrin with an ablated C490-C545 disulfide bond. The disulfide mutant integrin has functional outside-in signaling but extended residency time in focal adhesions due to a reduced rate of clathrin-mediated integrin internalization and recycling, which is associated with enhanced affinity of the αIIb subunit for clathrin adaptor protein 2. Molecular dynamics simulations indicate that the alternate covalent form of αIIb requires higher forces to transition from bent to open conformational states that is in accordance with reduced affinity for fibrinogen and activation by manganese ions. These findings indicate that the αIIbß3 integrin receptor is produced in various covalent forms that have different cell surface distribution and function. The C490, C545 cysteine pair is conserved across all 18 integrin α subunits, and the disulfide bond in the αV and α2 subunits in cultured cells is similarly missing, suggesting that the alternate integrin form and function are also conserved.


Subject(s)
Focal Adhesions/metabolism , Integrin beta3/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Membrane Glycoprotein IIb/metabolism , Animals , Cell Line , Cricetinae , Disulfides/analysis , Focal Adhesions/genetics , Human Umbilical Vein Endothelial Cells , Humans , Integrin beta3/chemistry , Integrin beta3/genetics , Molecular Dynamics Simulation , Mutation , Platelet Glycoprotein GPIIb-IIIa Complex/chemistry , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Platelet Membrane Glycoprotein IIb/chemistry , Platelet Membrane Glycoprotein IIb/genetics
8.
Circ Res ; 128(1): 8-23, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33092471

ABSTRACT

RATIONALE: Thoracic aortic aneurysm (TAA) leads to substantial mortality worldwide. Familial and syndromic TAAs are highly correlated with genetics. However, the incidence of sporadic isolated TAA (iTAA) is much higher, and the genetic contribution is not yet clear. OBJECTIVE: Here, we examined the genetic characteristics of sporadic iTAA. METHODS AND RESULTS: We performed a genetic screen of 551 sporadic iTAA cases and 1071 controls via whole-exome sequencing. The prevalence of pathogenic mutations in known causal genes was 5.08% in the iTAA cohort. We selected 100 novel candidate genes using a strict strategy, and the suspected functional variants of these genes were significantly enriched in cases compared with controls and carried by 60.43% of patients. We found more severe phenotypes and a lower proportion of hypertension in cases with pathogenic mutations or suspected functional variants. Among the candidate genes, Testin (TES), which encodes a focal adhesion scaffold protein, was identified as a potential TAA causal gene, accounting for 4 patients with 2 missense variants in the LIM1 domain (c.751T>C encoding p.Y251H; c.838T>C encoding p.Y280H) and highly expressed in the aorta. The 2 variants led to a decrease in TES expression. The thoracic aorta was spontaneously dilated in the TesY249H knock-in and Tes-/- mice. Mechanistically, the p.Y249H variant or knockdown of TES led to the repression of vascular smooth muscle cell contraction genes and disturbed the vascular smooth muscle cell contractile phenotype. Interestingly, suspected functional variants of other focal adhesion scaffold genes, including TLN1 (Talin-1) and ZYX (zyxin), were also significantly enriched in patients with iTAA; moreover, their knockdown resulted in decreased contractility of vascular smooth muscle cells. CONCLUSIONS: For the first time, this study revealed the genetic landscape across iTAA and showed that the focal adhesion scaffold genes are critical in the pathogenesis of iTAA.


Subject(s)
Aortic Aneurysm, Thoracic/genetics , Aortic Dissection/genetics , Cytoskeletal Proteins/genetics , Focal Adhesions/genetics , Mutation, Missense , Polymorphism, Single Nucleotide , RNA-Binding Proteins/genetics , Adult , Aortic Dissection/diagnostic imaging , Aortic Dissection/metabolism , Aortic Dissection/physiopathology , Animals , Aorta, Thoracic/diagnostic imaging , Aorta, Thoracic/metabolism , Aorta, Thoracic/physiopathology , Aortic Aneurysm, Thoracic/diagnostic imaging , Aortic Aneurysm, Thoracic/metabolism , Aortic Aneurysm, Thoracic/physiopathology , Case-Control Studies , Cells, Cultured , Cytoskeletal Proteins/metabolism , Female , Focal Adhesions/metabolism , Genetic Predisposition to Disease , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Muscle, Smooth, Vascular/diagnostic imaging , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiopathology , Phenotype , RNA-Binding Proteins/metabolism , Talin/genetics , Talin/metabolism , Vasoconstriction , Exome Sequencing , Zyxin/genetics , Zyxin/metabolism
9.
Mol Ther ; 30(2): 688-702, 2022 02 02.
Article in English | MEDLINE | ID: mdl-34371180

ABSTRACT

Long non-coding RNAs (lncRNAs) play critical roles in tumorigenesis and progression of colorectal cancer (CRC). However, functions of most lncRNAs in CRC and their molecular mechanisms remain uncharacterized. Here we found that lncRNA ITGB8-AS1 was highly expressed in CRC. Knockdown of ITGB8-AS1 suppressed cell proliferation, colony formation, and tumor growth in CRC, suggesting oncogenic roles of ITGB8-AS1. Transcriptomic analysis followed by KEGG analysis revealed that focal adhesion signaling was the most significantly enriched pathway for genes positively regulated by ITGB8-AS1. Consistently, knockdown of ITGB8-AS1 attenuated the phosphorylation of SRC, ERK, and p38 MAPK. Mechanistically, ITGB8-AS1 could sponge miR-33b-5p and let-7c-5p/let-7d-5p to regulate the expression of integrin family genes ITGA3 and ITGB3, respectively, in the cytosol of cells. Targeting ITGB8-AS1 using antisense oligonucleotide (ASO) markedly reduced cell proliferation and tumor growth in CRC, indicating the therapeutic potential of ITGB8-AS1 in CRC. Furthermore, ITGB8-AS1 was easily detected in plasma of CRC patients, which was positively correlated with differentiation and TNM stage, as well as plasma levels of ITGA3 and ITGB3. In conclusion, ITGB8-AS1 functions as a competing endogenous RNA (ceRNA) to regulate cell proliferation and tumor growth of CRC via regulating focal adhesion signaling. Targeting ITGB8-AS1 is effective in suppressing CRC cell growth and tumor growth. Elevated plasma levels of ITGB8-AS1 were detected in advanced-stage CRC. Thus, ITGB8-AS1 could serve as a potential therapeutic target and circulating biomarker in CRC.


Subject(s)
Colorectal Neoplasms , MicroRNAs , RNA, Long Noncoding , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Focal Adhesions/genetics , Focal Adhesions/metabolism , Focal Adhesions/pathology , Gene Expression Regulation, Neoplastic , Humans , Integrin beta Chains , Integrins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
10.
Proc Natl Acad Sci U S A ; 117(18): 9896-9905, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32321834

ABSTRACT

The extracellular matrix (ECM) initiates mechanical cues that activate intracellular signaling through matrix-cell interactions. In blood vessels, additional mechanical cues derived from the pulsatile blood flow and pressure play a pivotal role in homeostasis and disease development. Currently, the nature of the cues from the ECM and their interaction with the mechanical microenvironment in large blood vessels to maintain the integrity of the vessel wall are not fully understood. Here, we identified the matricellular protein thrombospondin-1 (Thbs1) as an extracellular mediator of matrix mechanotransduction that acts via integrin αvß1 to establish focal adhesions and promotes nuclear shuttling of Yes-associated protein (YAP) in response to high strain of cyclic stretch. Thbs1-mediated YAP activation depends on the small GTPase Rap2 and Hippo pathway and is not influenced by alteration of actin fibers. Deletion of Thbs1 in mice inhibited Thbs1/integrin ß1/YAP signaling, leading to maladaptive remodeling of the aorta in response to pressure overload and inhibition of neointima formation upon carotid artery ligation, exerting context-dependent effects on the vessel wall. We thus propose a mechanism of matrix mechanotransduction centered on Thbs1, connecting mechanical stimuli to YAP signaling during vascular remodeling in vivo.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Integrin beta1/genetics , Thrombospondin 1/genetics , Transcription Factors/genetics , Vascular Remodeling/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Aorta/growth & development , Aorta/metabolism , Carotid Arteries/growth & development , Carotid Arteries/metabolism , Cellular Microenvironment/genetics , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Focal Adhesions/genetics , Hippo Signaling Pathway , Humans , Integrin beta1/metabolism , Mechanotransduction, Cellular , Mice , Neointima/genetics , Neointima/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction/genetics , Thrombospondin 1/metabolism , Transcription Factors/metabolism , YAP-Signaling Proteins , rap GTP-Binding Proteins/genetics
11.
J Biol Chem ; 297(5): 101257, 2021 11.
Article in English | MEDLINE | ID: mdl-34597669

ABSTRACT

Healing of cutaneous wounds requires the collective migration of epithelial keratinocytes to seal the wound bed from the environment. However, the signaling events that coordinate this collective migration are unclear. In this report, we address the role of phosphorylation of eukaryotic initiation factor 2 (eIF2) and attendant gene expression during wound healing. Wounding of human keratinocyte monolayers in vitro led to the rapid activation of the eIF2 kinase GCN2. We determined that deletion or pharmacological inhibition of GCN2 significantly delayed collective cell migration and wound closure. Global transcriptomic, biochemical, and cellular analyses indicated that GCN2 is necessary for maintenance of intracellular free amino acids, particularly cysteine, as well as coordination of RAC1-GTP-driven reactive oxygen species (ROS) generation, lamellipodia formation, and focal adhesion dynamics following keratinocyte wounding. In vivo experiments using mice deficient for GCN2 validated the role of the eIF2 kinase during wound healing in intact skin. These results indicate that GCN2 is critical for appropriate induction of collective cell migration and plays a critical role in coordinating the re-epithelialization of cutaneous wounds.


Subject(s)
Cell Movement , Keratinocytes/enzymology , Protein Serine-Threonine Kinases/metabolism , Reactive Oxygen Species/metabolism , Wound Healing , Amino Acids/metabolism , Animals , Cell Line, Transformed , Focal Adhesions/genetics , Focal Adhesions/metabolism , Humans , Keratinocytes/pathology , Mice , Mice, Knockout , Protein Serine-Threonine Kinases/genetics , Pseudopodia/genetics , Pseudopodia/metabolism , Skin/enzymology , Skin/injuries , Skin/pathology
12.
PLoS Pathog ; 16(9): e1008879, 2020 09.
Article in English | MEDLINE | ID: mdl-32997728

ABSTRACT

The Human T-cell leukemia virus type 1 (HTLV-1) orf I-encoded accessory protein p8 is cleaved from its precursor p12, and both proteins contribute to viral persistence. p8 induces cellular protrusions, which are thought to facilitate transfer of p8 to target cells and virus transmission. Host factors interacting with p8 and mediating p8 transfer are unknown. Here, we report that vasodilator-stimulated phosphoprotein (VASP), which promotes actin filament elongation, is a novel interaction partner of p8 and important for p8 and HTLV-1 Gag cell-to-cell transfer. VASP contains an Ena/VASP homology 1 (EVH1) domain that targets the protein to focal adhesions. Bioinformatics identified a short stretch in p8 (amino acids (aa) 24-45) which may mediate interactions with the EVH1 domain of VASP. Co-immunoprecipitations confirmed interactions of VASP:p8 in 293T, Jurkat and HTLV-1-infected MT-2 cells. Co-precipitation of VASP:p8 could be significantly blocked by peptides mimicking aa 26-37 of p8. Mutational studies revealed that the EVH1-domain of VASP is necessary, but not sufficient for the interaction with p8. Further, deletion of the VASP G- and F-actin binding domains significantly diminished co-precipitation of p8. Imaging identified areas of partial co-localization of VASP with p8 at the plasma membrane and in protrusive structures, which was confirmed by proximity ligation assays. Co-culture experiments revealed that p8 is transferred between Jurkat T-cells via VASP-containing conduits. Imaging and flow cytometry revealed that repression of both endogenous and overexpressed VASP by RNA interference or by CRISPR/Cas9 reduced p8 transfer to the cell surface and to target Jurkat T-cells. Stable repression of VASP by RNA interference in chronically infected MT-2 cells impaired both p8 and HTLV-1 Gag transfer to target Jurkat T-cells, while virus release was unaffected. Thus, we identified VASP as a novel interaction partner of p8, which is important for transfer of HTLV-1 p8 and Gag to target T-cells.


Subject(s)
Cell Adhesion Molecules , Focal Adhesions , Gene Products, gag , Human T-lymphotropic virus 1 , Microfilament Proteins , Phosphoproteins , T-Lymphocytes , Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Focal Adhesions/chemistry , Focal Adhesions/genetics , Focal Adhesions/metabolism , Focal Adhesions/virology , Gene Products, gag/chemistry , Gene Products, gag/genetics , Gene Products, gag/metabolism , Human T-lymphotropic virus 1/chemistry , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 1/metabolism , Humans , Jurkat Cells , Microfilament Proteins/chemistry , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Domains , T-Lymphocytes/chemistry , T-Lymphocytes/metabolism , T-Lymphocytes/virology
13.
BMC Cancer ; 22(1): 1158, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36357874

ABSTRACT

BACKGROUND: Bladder cancer (BLCA) is the ninth most common cancer globally, as well as the fourth most common cancer in men, with an incidence of 7%. However, few effective prognostic biomarkers or models of BLCA are available at present. METHODS: The prognostic genes of BLCA were screened from one cohort of The Cancer Genome Atlas (TCGA) database through univariate Cox regression analysis and functionally annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The intersecting genes of the BLCA gene set and focal adhesion-related gene were obtained and subjected to the least absolute shrinkage and selection operator regression (LASSO) to construct a prognostic model. Gene set enrichment analysis (GSEA) of high- and low-risk patients was performed to explore further the biological process related to focal adhesion genes. Univariate and multivariate Cox analysis, receiver operating characteristic (ROC) curve analysis, and Kaplan-Meier survival analysis (KM) were used to evaluate the prognostic model. DNA methylation analysis was presented to explore the relationship between prognosis and gene methylation. Furthermore, immune cell infiltration was assessed by CIBERSORT, ESTIMATE, and TIMER. The model was verified in an external GSE32894 cohort of the Gene Expression Omnibus (GEO) database, and the Prognoscan database presented further validation of genes. The HPA database validated the related protein level, and functional experiments verified significant risk factors in the model. RESULTS: VCL, COL6A1, RAC3, PDGFD, JUN, LAMA2, and ITGB6 were used to construct a prognostic model in the TCGA-BLCA cohort and validated in the GSE32894 cohort. The 7-gene model successfully stratified the patients into both cohorts' high- and low-risk groups. The higher risk score was associated with a worse prognosis. CONCLUSIONS: The 7-gene prognostic model can classify BLCA patients into high- and low-risk groups based on the risk score and predict the overall survival, which may aid clinical decision-making.


Subject(s)
Urinary Bladder Neoplasms , Male , Humans , Computational Biology , Focal Adhesions/genetics , Focal Adhesions/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis
14.
Cell Mol Life Sci ; 78(5): 2157-2167, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32875355

ABSTRACT

Inherited fatty acid oxidation diseases in their mild forms often present as metabolic myopathies. Carnitine Palmitoyl Transferase 2 (CPT2) deficiency, one such prototypical disorder is associated with compromised myotube differentiation. Here, we show that CPT2-deficient myotubes exhibit defects in focal adhesions and redox balance, exemplified by increased SOD2 expression. We document unprecedented alterations in the cellular prion protein PrPC, which directly arise from the failure in CPT2 enzymatic activity. We also demonstrate that the loss of PrPC function in normal myotubes recapitulates the defects in focal adhesion, redox balance and differentiation hallmarks monitored in CPT2-deficient cells. These results are further corroborated by studies performed in muscles from Prnp-/- mice. Altogether, our results unveil a molecular scenario, whereby PrPC dysfunction governed by faulty CPT2 activity may drive aberrant focal adhesion turnover and hinder proper myotube differentiation. Our study adds a novel facet to the involvement of PrPC in diverse physiopathological situations.


Subject(s)
Carnitine O-Palmitoyltransferase/genetics , Focal Adhesions/genetics , Muscle Fibers, Skeletal/metabolism , Muscular Diseases/genetics , Prion Proteins/genetics , Animals , Carnitine O-Palmitoyltransferase/deficiency , Cells, Cultured , Focal Adhesions/metabolism , Humans , Mice, Knockout , Muscle Fibers, Skeletal/cytology , Muscular Diseases/metabolism , Myogenic Regulatory Factor 5/genetics , Myogenic Regulatory Factor 5/metabolism , Oxidation-Reduction , Prion Diseases/genetics , Prion Diseases/metabolism , Prion Proteins/deficiency , RNA Interference , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
15.
Proc Natl Acad Sci U S A ; 116(8): 3278-3287, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30718399

ABSTRACT

Cells express a family of three inositol hexakisphosphate kinases (IP6Ks). Although sharing the same enzymatic activity, individual IP6Ks mediate different cellular processes. Here we report that IP6K3 is enriched at the leading edge of migrating cells where it associates with dynein intermediate chain 2 (DIC2). Using immunofluorescence microscopy and total internal reflection fluorescence microscopy, we found that DIC2 and IP6K3 are recruited interdependently to the leading edge of migrating cells, where they function coordinately to enhance the turnover of focal adhesions. Deletion of IP6K3 causes defects in cell motility and neuronal dendritic growth, eventually leading to brain malformations. Our results reveal a mechanism whereby IP6K3 functions in coordination with DIC2 in a confined intracellular microenvironment to promote focal adhesion turnover.


Subject(s)
Cytoplasmic Dyneins/genetics , Dendrites/genetics , Phosphotransferases (Phosphate Group Acceptor)/genetics , Brain/metabolism , Brain/pathology , Cell Adhesion/genetics , Cell Movement/genetics , Cellular Microenvironment/genetics , Focal Adhesions/genetics , HEK293 Cells , Humans , Neurons/metabolism
16.
Proc Natl Acad Sci U S A ; 116(14): 6766-6774, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30877242

ABSTRACT

Focal adhesion kinase (FAK) is a key signaling molecule regulating cell adhesion, migration, and survival. FAK localizes into focal adhesion complexes formed at the cytoplasmic side of cell attachment to the ECM and is activated after force generation via actomyosin fibers attached to this complex. The mechanism of translating mechanical force into a biochemical signal is not understood, and it is not clear whether FAK is activated directly by force or downstream to the force signal. We use experimental and computational single-molecule force spectroscopy to probe the mechanical properties of FAK and examine whether force can trigger activation by inducing conformational changes in FAK. By comparison with an open and active mutant of FAK, we are able to assign mechanoactivation to an initial rupture event in the low-force range. This activation event occurs before FAK unfolding at forces within the native range in focal adhesions. We are also able to assign all subsequent peaks in the force landscape to partial unfolding of FAK modules. We show that binding of ATP stabilizes the kinase domain, thereby altering the unfolding hierarchy. Using all-atom molecular dynamics simulations, we identify intermediates along the unfolding pathway, which provide buffering to allow extension of FAK in focal adhesions without compromising functionality. Our findings strongly support that forces in focal adhesions applied to FAK via known interactions can induce conformational changes, which in turn, trigger focal adhesion signaling.


Subject(s)
Adenosine Triphosphate/chemistry , Avian Proteins/chemistry , Focal Adhesion Protein-Tyrosine Kinases/chemistry , Molecular Dynamics Simulation , Protein Unfolding , Adenosine Triphosphate/metabolism , Animals , Avian Proteins/genetics , Avian Proteins/metabolism , Chickens , Enzyme Activation , Focal Adhesion Protein-Tyrosine Kinases/genetics , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesions/enzymology , Focal Adhesions/genetics , Mechanotransduction, Cellular/genetics , Protein Domains , Structure-Activity Relationship
17.
J Cell Mol Med ; 25(5): 2471-2483, 2021 03.
Article in English | MEDLINE | ID: mdl-33547870

ABSTRACT

Non-muscle myosin II (NMII) plays a role in many fundamental cellular processes including cell adhesion, migration, and cytokinesis. However, its role in mammalian vascular function is not well understood. Here, we investigated the function of NMII in the biomechanical and signalling properties of mouse aorta. We found that blebbistatin, an inhibitor of NMII, decreases agonist-induced aortic stress and stiffness in a dose-dependent manner. We also specifically demonstrate that in freshly isolated, contractile, aortic smooth muscle cells, the non-muscle myosin IIA (NMIIA) isoform is associated with contractile filaments in the core of the cell as well as those in the non-muscle cell cortex. However, the non-muscle myosin IIB (NMIIB) isoform is excluded from the cell cortex and colocalizes only with contractile filaments. Furthermore, both siRNA knockdown of NMIIA and NMIIB isoforms in the differentiated A7r5 smooth muscle cell line and blebbistatin-mediated inhibition of NM myosin II suppress agonist-activated increases in phosphorylation of the focal adhesion proteins FAK Y925 and paxillin Y118. Thus, we show in the present study, for the first time that NMII regulates aortic stiffness and stress and that this regulation is mediated through the tension-dependent phosphorylation of the focal adhesion proteins FAK and paxillin.


Subject(s)
Cytoskeleton/metabolism , Focal Adhesions/genetics , Focal Adhesions/metabolism , Myosin Type II/genetics , Vascular Stiffness/genetics , Actins/metabolism , Animals , Biomarkers , Cells, Cultured , Fluorescent Antibody Technique , Heterocyclic Compounds, 4 or More Rings/pharmacology , Immunohistochemistry , Male , Mice , Muscle Contraction/drug effects , Myocytes, Smooth Muscle/metabolism , Myosin Type II/metabolism , Phosphorylation , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Multimerization , Stress, Mechanical
18.
J Biol Chem ; 295(37): 12885-12899, 2020 09 11.
Article in English | MEDLINE | ID: mdl-32605925

ABSTRACT

Integrin receptors regulate normal cellular processes such as signaling, cell migration, adhesion to the extracellular matrix, and leukocyte function. Talin recruitment to the membrane is necessary for its binding to and activation of integrin. Vertebrates have two highly conserved talin homologs that differ in their expression patterns. The F1-F3 FERM subdomains of cytoskeletal proteins resemble a cloverleaf, but in talin1, its F1 subdomain and additional F0 subdomain align more linearly with its F2 and F3 subdomains. Here, we present the talin2 crystal structure, revealing that its F0-F1 di-subdomain displays another unprecedented constellation, whereby the F0-F1-F2 adopts a new cloverleaf-like arrangement. Using multiangle light scattering (MALS), fluorescence lifetime imaging (FLIM), and FRET analyses, we found that substituting the corresponding residues in talin2 that abolish lipid binding in talin1 disrupt the binding of talin to the membrane, focal adhesion formation, and cell spreading. Our results provide the molecular details of the functions of specific talin isoforms in cell adhesion.


Subject(s)
Cell Adhesion , Focal Adhesions , Talin , Cell Line , Focal Adhesions/chemistry , Focal Adhesions/genetics , Focal Adhesions/metabolism , Humans , Protein Domains , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Talin/chemistry , Talin/genetics , Talin/metabolism
19.
Hum Mol Genet ; 28(14): 2295-2308, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31180501

ABSTRACT

Tbx1, the major candidate gene for DiGeorge or 22q11.2 deletion syndrome, is required for efficient incorporation of cardiac progenitors of the second heart field (SHF) into the heart. However, the mechanisms by which TBX1 regulates this process are still unclear. Here, we have used two independent models, mouse embryos and cultured cells, to define the role of TBX1 in establishing morphological and dynamic characteristics of SHF in the mouse. We found that loss of TBX1 impairs extracellular matrix (ECM)-integrin-focal adhesion (FA) signaling in both models. Mosaic analysis in embryos suggested that this function is non-cell autonomous, and, in cultured cells, loss of TBX1 impairs cell migration and FAs. Additionally, we found that ECM-mediated integrin signaling is disrupted upon loss of TBX1. Finally, we show that interfering with the ECM-integrin-FA axis between E8.5 and E9.5 in mouse embryos, corresponding to the time window within which TBX1 is required in the SHF, causes outflow tract dysmorphogenesis. Our results demonstrate that TBX1 is required to maintain the integrity of ECM-cell interactions in the SHF and that this interaction is critical for cardiac outflow tract development. More broadly, our data identifies a novel TBX1 downstream pathway as an important player in SHF tissue architecture and cardiac morphogenesis.


Subject(s)
Extracellular Matrix/metabolism , Heart/embryology , T-Box Domain Proteins/physiology , Animals , Cell Adhesion , Cell Communication , Cell Movement , Cell Polarity/genetics , Cells, Cultured , Focal Adhesions/genetics , Focal Adhesions/metabolism , Gene Expression Regulation, Developmental , Mice , Mice, Inbred C57BL , Mice, Knockout , Myoblasts/cytology , Myoblasts/metabolism , Organogenesis , Signal Transduction , T-Box Domain Proteins/genetics
20.
J Cell Sci ; 132(7)2019 04 03.
Article in English | MEDLINE | ID: mdl-30837291

ABSTRACT

Talin protein is one of the key components in integrin-mediated adhesion complexes. Talins transmit mechanical forces between ß-integrin and actin, and regulate adhesion complex composition and signaling through the force-regulated unfolding of talin rod domain. Using modified talin proteins, we demonstrate that these functions contribute to different cellular processes and can be dissected. The transmission of mechanical forces regulates adhesion complex composition and phosphotyrosine signaling even in the absence of the mechanically regulated talin rod subdomains. However, the presence of the rod subdomains and their mechanical activation are required for the reinforcement of the adhesion complex, cell polarization and migration. Talin rod domain unfolding was also found to be essential for the generation of cellular signaling anisotropy, since both insufficient and excess activity of the rod domain severely inhibited cell polarization. Utilizing proteomics tools, we identified adhesome components that are recruited and activated either in a talin rod-dependent manner or independently of the rod subdomains. This study clarifies the division of roles between the force-regulated unfolding of a talin protein (talin 1) and its function as a physical linker between integrins and the cytoskeleton.


Subject(s)
Cell Movement , Focal Adhesions/metabolism , Protein Unfolding , Signal Transduction , Talin/metabolism , Actins/metabolism , Amino Acid Sequence , Animals , Cell Line , Cytoskeleton/metabolism , Focal Adhesions/genetics , Integrins/metabolism , Mice , Phosphotyrosine/metabolism , Protein Binding , Talin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL