Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
Add more filters

Publication year range
1.
Br J Cancer ; 130(9): 1453-1462, 2024 May.
Article in English | MEDLINE | ID: mdl-38429437

ABSTRACT

BACKGROUND: FOXL2 is a transcription factor expressed in ovarian granulosa cells. A somatic variant of FOXL2 (c.402 C > G, p.Cys134Trp) is the hallmark of adult-type granulosa cell tumours. METHODS: We generated KGN cell clones either heterozygous for this variant (MUT) or homozygous for the wild-type (WT) allele by CRISPR/Cas9 editing. They underwent RNA-Seq and bioinformatics analyses to uncover pathways impacted by deregulated genes. Cell morphology and migration were studied. RESULTS: The differentially expressed genes (DEGs) between WT/MUT and WT/WT KGN cells (DEGs-WT/MUT), pointed to several dysregulated pathways, like TGF-beta pathway, cell adhesion and migration. Consistently, WT/MUT cells were rounder than WT/WT cells and displayed a different distribution of stress fibres and paxillin staining. A comparison of the DEGs-WT/MUT with those found when FOXL2 was knocked down (KD) in WT/WT KGN cells showed that most DEGs-WT/MUT cells were not so in the KD experiment, supporting a gain-of-function (GOF) scenario. MUT-FOXL2 also displayed a stronger interaction with SMAD3. CONCLUSIONS: Our work, aiming at better understanding the GOF scenario, shows that the dysregulated genes and pathways are consistent with this idea. Besides, we propose that GOF might result from an enhanced interaction with SMAD3 that could underlie an ectopic capacity of mutated FOXL2 to bind SMAD4.


Subject(s)
Forkhead Box Protein L2 , Granulosa Cell Tumor , Forkhead Box Protein L2/genetics , Forkhead Box Protein L2/metabolism , Humans , Female , Granulosa Cell Tumor/genetics , Granulosa Cell Tumor/pathology , Cell Line, Tumor , Cell Movement/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Smad3 Protein/genetics , Smad3 Protein/metabolism , CRISPR-Cas Systems , Gene Expression Regulation, Neoplastic
2.
EMBO J ; 39(24): e104719, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33215742

ABSTRACT

Recent evidence suggests that animal microRNAs (miRNAs) can target coding sequences (CDSs); however, the pathophysiological importance of such targeting remains unknown. Here, we show that a somatic heterozygous missense mutation (c.402C>G; p.C134W) in FOXL2, a feature shared by virtually all adult-type granulosa cell tumors (AGCTs), introduces a target site for miR-1236, which causes haploinsufficiency of the tumor-suppressor FOXL2. This miR-1236-mediated selective degradation of the variant FOXL2 mRNA is preferentially conducted by a distinct miRNA-loaded RNA-induced silencing complex (miRISC) directed by the Argonaute3 (AGO3) and DHX9 proteins. In both patients and a mouse model of AGCT, abundance of the inversely regulated variant FOXL2 with miR-1236 levels is highly correlated with malignant features of AGCT. Our study provides a molecular basis for understanding the conserved FOXL2 CDS mutation-mediated etiology of AGCT, revealing the existence of a previously unidentified mechanism of miRNA-targeting disease-associated mutations in the CDS by forming a non-canonical miRISC.


Subject(s)
Forkhead Box Protein L2/genetics , Forkhead Box Protein L2/metabolism , Granulosa Cell Tumor/genetics , MicroRNAs/metabolism , Mutation , Open Reading Frames , Allelic Imbalance , Animals , Apoptosis , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Cell Death/physiology , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Granulosa Cell Tumor/pathology , HEK293 Cells , Humans , Mice , Mice, Knockout , MicroRNAs/genetics , Mutation, Missense , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , RNA, Messenger/metabolism , Transcriptome
3.
Development ; 148(8)2021 04 15.
Article in English | MEDLINE | ID: mdl-33741713

ABSTRACT

Germline sexual fate has long been believed to be determined by the somatic environment, but this idea is challenged by recent studies of foxl3 mutants in medaka. Here, we demonstrate that the sexual fate of tilapia germline is determined by the antagonistic interaction of dmrt1 and foxl3, which are transcriptionally repressed in male and female germ cells, respectively. Loss of dmrt1 rescued the germ cell sex reversal in foxl3Δ7/Δ7 XX fish, and loss of foxl3 partially rescued germ cell sex reversal but not somatic cell fate in dmrt1Δ5/Δ5 XY fish. Interestingly, germ cells lost sexual plasticity in dmrt1Δ5/Δ5 XY and foxl3Δ7/Δ7 XX single mutants, as aromatase inhibitor (AI) and estrogen treatment failed to rescue the respective phenotypes. However, recovery of germ cell sexual plasticity was observed in dmrt1/foxl3 double mutants. Importantly, mutation of somatic cell-specific foxl2 resulted in testicular development in foxl3Δ7/Δ7 or dmrt1Δ5/Δ5 mutants. Our findings demonstrate that sexual plasticity of germ cells relies on the presence of both dmrt1 and foxl3. The existence of dmrt1 and foxl3 allows environmental factors to influence the sex fate decision in vertebrates.


Subject(s)
Cichlids , Fish Proteins , Forkhead Box Protein L2 , Sex Determination Processes , Sex Differentiation , Transcription Factors , Animals , Cichlids/embryology , Cichlids/genetics , Female , Fish Proteins/genetics , Fish Proteins/metabolism , Forkhead Box Protein L2/genetics , Forkhead Box Protein L2/metabolism , Male , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Biol Reprod ; 110(5): 985-999, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38376238

ABSTRACT

Sry on the Y-chromosome upregulates Sox9, which in turn upregulates a set of genes such as Fgf9 to initiate testicular differentiation in the XY gonad. In the absence of Sry expression, genes such as Rspo1, Foxl2, and Runx1 support ovarian differentiation in the XX gonad. These two pathways antagonize each other to ensure the development of only one gonadal sex in normal development. In the B6.YTIR mouse, carrying the YTIR-chromosome on the B6 genetic background, Sry is expressed in a comparable manner with that in the B6.XY mouse, yet, only ovaries or ovotestes develop. We asked how testicular and ovarian differentiation pathways interact to determine the gonadal sex in the B6.YTIR mouse. Our results showed that (1) transcript levels of Sox9 were much lower than in B6.XY gonads while those of Rspo1 and Runx1 were as high as B6.XX gonads at 11.5 and 12.5 days postcoitum. (2) FOXL2-positive cells appeared in mosaic with SOX9-positive cells at 12.5 days postcoitum. (3) SOX9-positive cells formed testis cords in the central area while those disappeared to leave only FOXL2-positive cells in the poles or the entire area at 13.5 days postcoitum. (4) No difference was found at transcript levels of all genes between the left and right gonads up to 12.5 days postcoitum, although ovotestes developed much more frequently on the left than the right at 13.5 days postcoitum. These results suggest that inefficient Sox9 upregulation and the absence of Rspo1 repression prevent testicular differentiation in the B6.YTIR gonad.


Subject(s)
SOX9 Transcription Factor , Sex Determination Processes , Testis , Thrombospondins , Up-Regulation , Animals , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Male , Female , Mice , Thrombospondins/genetics , Thrombospondins/metabolism , Sex Determination Processes/genetics , Sex Determination Processes/physiology , Testis/metabolism , Gonads/metabolism , Ovary/metabolism , Forkhead Box Protein L2/genetics , Forkhead Box Protein L2/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Gene Expression Regulation, Developmental , Sex Differentiation/genetics , Mice, Inbred C57BL
5.
Clin Genet ; 106(1): 102-108, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38558253

ABSTRACT

Pathogenic germline variants in the FOXL2 gene are associated with Blepharophimosis, Ptosis, and Epicanthus Inversus syndrome (BPES) in humans, an autosomal dominant condition. Two forms of BPES have emerged: (i) type I (BPES-I), characterized by ocular signs and primary ovarian failure (POI), and (ii) type II (BPES-II) with no systemic associations. This study aimed to compare the distribution of FOXL2 variants in idiopathic POI/DOR (diminished ovarian reserve) and both types of BPES, and to determine the involvement of FOXL2 in non-syndromic forms of POI/DOR. We studied the whole coding region of the FOXL2 gene using next-generation sequencing in 1282 patients with non-syndromic POI/DOR. Each identified FOXL2 variant was compared to its frequency in the general population, considering ethnicity. Screening of the entire coding region of the FOXL2 gene allowed us to identify 10 different variants, including nine missense variants. Of the patients with POI/DOR, 14 (1%) carried a FOXL2 variant. Significantly, six out of nine missense variants (67%) were overrepresented in our POI/DOR cohort compared to the general or specific ethnic subgroups. Our findings strongly suggest that five rare missense variants, mainly located in the C-terminal region of FOXL2 are high-risk factors for non-syndromic POI/DOR, though FOXL2 gene implication accounts for approximately 0.54% of non-syndromic POI/DOR cases. These results support the implementation of routine genetic screening for patients with POI/DOR in clinical settings.


Subject(s)
Blepharophimosis , Forkhead Box Protein L2 , Mutation, Missense , Primary Ovarian Insufficiency , Humans , Forkhead Box Protein L2/genetics , Female , Primary Ovarian Insufficiency/genetics , Mutation, Missense/genetics , Blepharophimosis/genetics , Adult , High-Throughput Nucleotide Sequencing , Genetic Predisposition to Disease , Skin Abnormalities/genetics , Urogenital Abnormalities/genetics , Forkhead Transcription Factors/genetics , Phenotype
6.
Int J Gynecol Pathol ; 43(1): 78-89, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37255476

ABSTRACT

Granulosa-cell tumors (GCTs) are the most common type of malignant ovarian sex cord-stromal tumor (SCST). The histopathologic diagnosis of these tumors can be challenging. A recurrent somatic mutation of the forkhead box L2 (FOXL2) gene has been identified in adult GCT. In this retrospective single-center study of 44 SCST, a morphologic review together with analysis of FOXL2 C134W was evaluated in relation to tumor morphology. In addition, TERT promoter mutation testing was performed. Twelve of 36 cases got an altered diagnosis based on morphology alone. The overarching architectural growth pattern in 32/44 (72.7%) tumors was diffuse/solid with several tumors showing markedly heterogeneous architecture. In correlation to FOXL2 C134W mutation status, cytoplasmic color, and nuclear shape, differed between the FOXL2 C134W positive and FOXL2 C134 W negative groups, but these differences were not significant when comparing them separately. Nineteen of 44 cases underwent TERT promoter sequencing with a positive result in 3 cases; 2 adult GCTs and 1 cellular fibroma. Three patients developed a recurrence of which 2 were FOXL2 C134W positive adult GCTs and the third was an unclassified SCST. In conclusion, the morphologic and immunohistochemical diagnosis of different SCSTs is challenging and one cannot reliably identify FOXL2 mutation-positive tumors solely by morphologic features. Therefore, broad use of molecular analysis of the FOXL2 C134W mutation is suggested for SCSTs, and further studies are needed to evaluate the clinical outcome of these tumors as well as the diagnostic and prognostic implications of TERT promoter mutations.


Subject(s)
Granulosa Cell Tumor , Ovarian Neoplasms , Sex Cord-Gonadal Stromal Tumors , Adult , Female , Humans , Retrospective Studies , Forkhead Box Protein L2/genetics , Sex Cord-Gonadal Stromal Tumors/diagnosis , Sex Cord-Gonadal Stromal Tumors/genetics , Sex Cord-Gonadal Stromal Tumors/pathology , Mutation , Granulosa Cell Tumor/diagnosis , Granulosa Cell Tumor/genetics , Granulosa Cell Tumor/pathology , Ovarian Neoplasms/pathology , Forkhead Transcription Factors/genetics
7.
J Craniofac Surg ; 35(1): e52-e56, 2024.
Article in English | MEDLINE | ID: mdl-37938073

ABSTRACT

Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) is a relatively uncommon autosomal-dominant genetic disorder, primarily attributed to mutations in the forkhead box L2 (FOXL2) gene. Albeit the involvement of protein-coding regions of FOXL2 has been observed in the majority of BPES cases, whether deficiencies in regulatory elements lead to the pathogenesis remains poorly understood. Herein, an autosomal-dominant BPES type II family was included. Peripheral venous blood has been collected, and genomic DNA has been extracted from leukocytes. A whole exome sequencing analysis has been performed and analyzed (Deposited in NODE database: OER422653). The promoter region of FOXL2 was amplified using polymerase chain reaction (PCR). The luciferase reporter assay was performed to identify the activity of this region. In this study, we present a Chinese family diagnosed with type II BPES, characterized by the presence of small palpebral fissures, ptosis, telecanthus, and epicanthus inversus. Notably, all male individuals within the family display polydactyly. A 225-bp deletion in the 556-bp 5'-upstream to transcription start site of FOXL2 , decorated by multiple histone modifications, was identified in affected members of the family. This deletion significantly decreased FOXL2 promoter activity, as measured by the luciferase assay. Conclusively, a novel 255-bp-deletion of the FOXL2 promoter was identified in Chinese families with BPES. Our results expand the spectrum of known FOXL2 mutations and provide additional insight into the genotype-phenotype relationships of the BPES pathogenesis. In addition, this study indicates the important role of genetic screening of cis-regulatory elements in testing heritable diseases.


Subject(s)
Blepharophimosis , Blepharoptosis , Skin Abnormalities , Urogenital Abnormalities , Humans , Male , Forkhead Box Protein L2/genetics , Blepharophimosis/genetics , Blepharophimosis/diagnosis , Pedigree , Mutation , Promoter Regions, Genetic/genetics , China , Luciferases/genetics
8.
Dev Biol ; 492: 101-110, 2022 12.
Article in English | MEDLINE | ID: mdl-36220348

ABSTRACT

The forkhead transcription factor Foxl2 plays a major role in ovarian development and function in mice and fish, and acts as a female sex-determining gene in goat. Its functional role in the sex determination and gonadal differentiation has not yet been investigated in reptiles. Here, we characterized Foxl2 gene in Chinese soft-shelled turtle Pelodiscus sinensis, exhibiting ZZ/ZW sex chromosomes. Foxl2 exhibited a female-specific embryonic expression pattern throughout the critical sex determination periods in P. sinensis. The expression of Foxl2 was induced at early stage in ZZ embryonic gonads that were feminized by estrogen treatment. Most importantly, Foxl2 knockdown in ZW embryos by RNA interference resulted in female-to-male sex reversal, characterized by obvious masculinization of gonads, significant up-regulation of testicular markers Dmrt1 and Sox9, and remarkable down-regulation of ovarian regulator Cyp19a1. Conversely, gain-of-function study showed that overexpression of Foxl2 in ZZ embryos led to largely feminized genetic males, production of Cyp19a1, and a decline in Dmrt1 and Sox9. These findings demonstrate that Foxl2 is both necessary and sufficient to initiate ovarian differentiation in P. sinensis, thereby acting as a key upstream regulator of the female pathway in a reptilian species.


Subject(s)
Forkhead Box Protein L2 , Sex Determination Processes , Turtles , Animals , Female , Male , China , Forkhead Box Protein L2/genetics , Sex Determination Processes/genetics , Sex Differentiation/genetics , Turtles/genetics
9.
Mod Pathol ; 36(11): 100318, 2023 11.
Article in English | MEDLINE | ID: mdl-37634867

ABSTRACT

Adult granulosa cell tumors (AGCTs) are a molecularly distinct group of malignant ovarian sex cord-stromal tumors (SCSTs) characterized by a nearly ubiquitous c.402C>G/p.C134W mutation in FOXL2 (hereafter referred to as "C134W"). In some cases, AGCT exhibits marked morphologic overlap with other SCSTs and has an identical immunophenotype, and molecular testing may be necessary to help confirm the diagnosis. However, molecular testing is time consuming, relatively expensive, and unavailable in many pathology laboratories. We describe the development and validation of an in situ hybridization (ISH) custom BaseScope assay for the detection of the FOXL2 C134W mutation. We evaluated 106 ovarian SCSTs, including 78 AGCTs, 9 juvenile granulosa cell tumors, 18 fibromas (cellular and conventional), and 1 SCST, not otherwise specified, as well as 53 epithelial ovarian tumors (42 endometrioid carcinomas and 11 carcinosarcomas) and 1 STK11 adnexal tumor for the presence or absence of FOXL2 wild-type and FOXL2 C134W RNA expression via BaseScope-ISH. Fifty-one tumors had previously undergone DNA sequencing of the FOXL2 gene. Across the entire cohort, the FOXL2 C134W probe staining was positive in 77 of 78 (98.7%) AGCTs. Two of 81 (2.5%) non-AGCTs also showed positive staining, both of which were epithelial ovarian tumors. The assay worked in tissue from blocks >20 years old. There was 100% concordance between the FOXL2 sequencing and BaseScope-ISH results. Overall, assessment of FOXL2 mutation status by custom BaseScope-ISH demonstrated 98.7% sensitivity and 97.5% specificity for the diagnosis of AGCT. BaseScope-ISH for FOXL2 C134W represents a reasonable alternative to sequencing, is quicker and less expensive, and is more easily incorporated than molecular testing into many pathology laboratories. It also has the advantage of requiring less tissue, and the neoplastic cells can be directly visualized on stained sections.


Subject(s)
Granulosa Cell Tumor , Ovarian Neoplasms , Female , Adult , Humans , Young Adult , Granulosa Cell Tumor/diagnosis , Granulosa Cell Tumor/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Forkhead Box Protein L2/genetics , Mutation , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , In Situ Hybridization
10.
Int J Gynecol Pathol ; 42(5): 500-507, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-36044294

ABSTRACT

We report a case of a cystic ovarian neoplasm in a 76-yr-old female composed of 2 distinct and intimately associated components: a macrocystic adult granulosa cell tumor (AGCT) and a serous borderline tumor. The granulosa cell nature of the tumor was confirmed with positive immunohistochemical staining for inhibin, calretinin, and WT1, while the neoplastic nature of the granulosa cell proliferation was supported by the presence of a point mutation of the FOXL2 gene. A review of 19 previously reported mixed AGCT and epithelial neoplasms of the ovary is included. Of the eight mixed AGCT and epithelial tumors, including our case, that were tested for FOXL2 mutation, 4 of the 5 mutation-positive cases were notable for demonstrating a macroscopically visible nodule or mass of AGCT at the time of gross examination, while 2 of the 3 mutation-negative cases lacked a mass-producing granulosa cell component. This feature by itself may be sufficient to predict the true neoplastic nature of the granulosa cell proliferation. This is the first reported case of a composite neoplastic AGCT and serous borderline tumor. We also discuss the current histogenetic models for these rare mixed AGCT and epithelial tumors.


Subject(s)
Carcinoma , Cystadenoma, Serous , Granulosa Cell Tumor , Ovarian Neoplasms , Precancerous Conditions , Female , Humans , Cystadenoma, Serous/genetics , Forkhead Box Protein L2/genetics , Granulosa Cell Tumor/diagnosis , Granulosa Cell Tumor/genetics , Granulosa Cell Tumor/pathology , Mutation , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Aged
11.
J Pathol ; 256(1): 1-3, 2022 01.
Article in English | MEDLINE | ID: mdl-34687235

ABSTRACT

Recent studies have suggested that the unique FOXL2C134W mutation, which is pathognomonic for adult granulosa cell tumours of the ovary, is a tumour suppressor gene. In a recent issue of The Journal of Pathology, a detailed study by Pilsworth et al seeks to rebut the proposition that the FOXL2C134W mutation, which uniquely characterises adult granulosa cell tumours of the ovary, leads to reduced transcript levels with the implication that FOXL2 is a tumour suppressor gene. The study provides compelling evidence that both wild-type and mutant FOXL2 transcripts and protein are expressed at equivalent levels. In the context of other recent studies, one is drawn to the conclusion that FOXL2C134W is a gain-of-function mutation whose impact is mediated through enhanced interactions with the SMAD transcription factor complex. © 2021 The Pathological Society of Great Britain and Ireland.


Subject(s)
Granulosa Cell Tumor , Ovarian Neoplasms , Cell Line, Tumor , Female , Forkhead Box Protein L2/genetics , Forkhead Transcription Factors/genetics , Humans , Mutation , Ovarian Neoplasms/genetics
12.
BMC Ophthalmol ; 23(1): 446, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37932670

ABSTRACT

INTRODUCTION: Blepharophimosis, ptosis, and epicanthus inversus syndrome (BPES) is a rare genetic disease with diverse ocular malformations. This study aimed to investigate the disease-causing gene in members of a BPES pedigree presenting with the rare features of anisometropia, unilateral pathologic myopia (PM), and congenital cataracts. METHODS: The related BPES patients underwent a comprehensive ocular examination. Next, whole-exome sequencing (WES) was performed to screen for the disease-causing genetic variants. A step-wise variant filtering was performed to select candidate variants combined with the annotation of the variant's pathogenicity, which was assessed using several bioinformatic approaches. Co-segregation analysis and Sanger sequencing were then conducted to validate the candidate variant. RESULTS: The variant c.672_701dup in FOXL2 was identified to be the disease-causing variant in this rare BPES family. Combined with clinical manifestations, the two affected individuals were diagnosed with type II BPES. CONCLUSION: This study uncovered the variant c.672_701dup in FOXL2 as a disease causal variant in a rare-presenting BPES family with anisometropia, unilateral pathogenic myopia, and/or congenital cataracts, thus expanding the phenotypic spectrum of FOXL2.


Subject(s)
Anisometropia , Blepharophimosis , Cataract , Myopia , Humans , Mutation , Exome Sequencing , Pedigree , Syndrome , Forkhead Box Protein L2/genetics
13.
Proc Natl Acad Sci U S A ; 117(33): 20015-20026, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32759216

ABSTRACT

We sequenced more than 52,500 single cells from embryonic day 11.5 (E11.5) postembryonic day 5 (P5) gonads and performed lineage tracing to analyze primordial follicles and wave 1 medullar follicles during mouse fetal and perinatal oogenesis. Germ cells clustered into six meiotic substages, as well as dying/nurse cells. Wnt-expressing bipotential precursors already present at E11.5 are followed at each developmental stage by two groups of ovarian pregranulosa (PG) cells. One PG group, bipotential pregranulosa (BPG) cells, derives directly from bipotential precursors, expresses Foxl2 early, and associates with cysts throughout the ovary by E12.5. A second PG group, epithelial pregranulosa (EPG) cells, arises in the ovarian surface epithelium, ingresses cortically by E12.5 or earlier, expresses Lgr5, but delays robust Foxl2 expression until after birth. By E19.5, EPG cells predominate in the cortex and differentiate into granulosa cells of quiescent primordial follicles. In contrast, medullar BPG cells differentiate along a distinct pathway to become wave 1 granulosa cells. Reflecting their separate somatic cellular lineages, second wave follicles were ablated by diptheria toxin treatment of Lgr5-DTR-EGFP mice at E16.5 while first wave follicles developed normally and supported fertility. These studies provide insights into ovarian somatic cells and a resource to study the development, physiology, and evolutionary conservation of mammalian ovarian follicles.


Subject(s)
Granulosa Cells/cytology , Mice/embryology , Ovarian Follicle/embryology , Animals , Cell Differentiation , Cell Lineage , Female , Forkhead Box Protein L2/genetics , Forkhead Box Protein L2/metabolism , Granulosa Cells/metabolism , Mice/metabolism , Ovarian Follicle/cytology , Ovarian Follicle/metabolism , Pregnancy , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
14.
Mol Biol Evol ; 38(5): 1995-2013, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33432361

ABSTRACT

Evolutionary fates of duplicated genes have been widely investigated in many polyploid plants and animals, but research is scarce in recurrent polyploids. In this study, we focused on foxl2, a central player in ovary, and elaborated the functional divergence in gibel carp (Carassius gibelio), a recurrent auto-allo-hexaploid fish. First, we identified three divergent foxl2 homeologs (Cgfoxl2a-B, Cgfoxl2b-A, and Cgfoxl2b-B), each of them possessing three highly conserved alleles and revealed their biased retention/loss. Then, their abundant sexual dimorphism and biased expression were uncovered in hypothalamic-pituitary-gonadal axis. Significantly, granulosa cells and three subpopulations of thecal cells were distinguished by cellular localization of CgFoxl2a and CgFoxl2b, and the functional roles and the involved process were traced in folliculogenesis. Finally, we successfully edited multiple foxl2 homeologs and/or alleles by using CRISPR/Cas9. Cgfoxl2a-B deficiency led to ovary development arrest or complete sex reversal, whereas complete disruption of Cgfoxl2b-A and Cgfoxl2b-B resulted in the depletion of germ cells. Taken together, the detailed cellular localization and functional differences indicate that Cgfoxl2a and Cgfoxl2b have subfunctionalized and cooperated to regulate folliculogenesis and gonad differentiation, and Cgfoxl2b has evolved a new function in oogenesis. Therefore, the current study provides a typical case of homeolog/allele diversification, retention/loss, biased expression, and sub-/neofunctionalization in the evolution of duplicated genes driven by polyploidy and subsequent diploidization from the recurrent polyploid fish.


Subject(s)
Evolution, Molecular , Forkhead Box Protein L2/genetics , Gene Duplication , Goldfish/genetics , Polyploidy , Animals , Female , Forkhead Box Protein L2/metabolism , Goldfish/growth & development , Goldfish/metabolism , Male , Oocytes/growth & development , Oocytes/metabolism , Ovary/growth & development , Ovary/metabolism
15.
Mod Pathol ; 35(5): 697-704, 2022 05.
Article in English | MEDLINE | ID: mdl-34845303

ABSTRACT

Testicular adult granulosa cell tumor (AGCT) is a rare type of sex-cord stromal tumor that affects patients of a wide age range and has the potential for late metastasis. In the testis, the diagnosis of AGCTs often requires the exclusion of other more common types of sex-cord stromal tumors. Immunohistochemistry is of limited utility, being used mostly to confirm sex-cord lineage and to exclude other entities when morphology is not typical. Unlike ovarian AGCTs, which are molecularly homogeneous and harbor a specific activating FOXL2 mutation (c.7558C > T p.C134W) in >90% of cases, the molecular characteristics of testicular AGCTs remain largely unknown. In the current study, we analyzed 13 testicular AGCTs diagnosed at multiple institutions using massively parallel DNA sequencing to evaluate single nucleotide variants, copy number alterations, and structural variants. In all, 10/13 cases were sequenced successfully. Notably, the FOXL2 c.7558C > T (p.C134W) mutation was identified in only a single case (1/10, 10%). The remaining cases were molecularly heterogeneous, with largely nonrecurrent genetic variants. Putative driver events in individual cases included a well-characterized gain-of-function NRAS mutation, as well as inactivation of ATM and TP53, among others. The only highly recurrent finding was single copy loss of 22q (7/10 cases, 70%). Comparatively, the frequencies of FOXL2 c.7558C > T (p.C134W) and 22q loss in 12 metastatic ovarian AGCTs identified in our database were 92% (11/12) and 42% (5/12), respectively. The results of the present study suggest that testicular AGCTs are different from their ovarian counterparts in that they appear to be molecularly heterogeneous and only rarely harbor FOXL2 mutations.


Subject(s)
Granular Cell Tumor , Granulosa Cell Tumor , Testicular Neoplasms , Adult , Forkhead Box Protein L2/genetics , Granular Cell Tumor/genetics , Granulosa Cell Tumor/genetics , Humans , Immunohistochemistry , Male , Mutation , Testicular Neoplasms/genetics
16.
Mol Vis ; 28: 352-358, 2022.
Article in English | MEDLINE | ID: mdl-36338666

ABSTRACT

Purpose: To investigate the molecular pathogenesis of a large group of Han Chinese patients with blepharophimosis-ptosis-epicanthus inversus syndrome (BPES), and to evaluate the correlation between the phenotype and genotype for these patients. Methods: Seventy-six affected individuals, including 45 patients from 17 pedigrees and 31 sporadic patients, were recruited with their family members. All participants underwent complete clinical examinations and were classified as having type I or II based on whether they had premature ovarian failure. The patients' genomic DNA was extracted. A genetic test was performed with direct sequencing of the coding regions of the forkhead transcriptional factor 2 (FOXL2) gene. Variations were analyzed using online databases and programs. Genotype-phenotype correction was investigated. Results: Seventy-six affected and 75 unaffected individuals underwent clinical evaluations and genetic testing. Only one family was diagnosed with type I; the others could not be classified because of a lack of female patients or a definite history of premature ovarian failure. Twenty-seven variations were identified, including 12 novel and 15 previously reported variations. Six variations were detected repeatedly in different nonconsanguineous pedigrees. Four indel variations, located in the alanine/proline-rich region of the FOXL2 gene, presented with a relatively higher frequency. Two rare double variations were detected in two sporadic patients. FOXL2 gene variations were not detected in five sporadic patients. The phenotype varied among different families and patients, although they carried the same variations. Conclusions: We identified 12 novel variations in the FOXL2 gene that would expand the spectrum of the FOXL2 variation database. In addition, we found that the alanine/proline-rich region is a variation hotspot in the FOXL2 gene. The genotype-phenotype correlation is not easy to establish due to clinical and genetic heterogeneity.


Subject(s)
Blepharophimosis , Primary Ovarian Insufficiency , Humans , Female , Blepharophimosis/genetics , Blepharophimosis/diagnosis , Pedigree , Primary Ovarian Insufficiency/genetics , Mutation/genetics , Forkhead Box Protein L2/genetics , Forkhead Transcription Factors/genetics , Alanine/genetics , China , Proline/genetics
17.
FASEB J ; 35(4): e21355, 2021 04.
Article in English | MEDLINE | ID: mdl-33749886

ABSTRACT

FOXL2 and ESR2 are key transcriptional regulators in ovarian granulosa cells. To explore their transcriptional roles and their interplay, we have depleted Foxl2 and Esr2 in mouse primary granulosa cells to assess their ability to bind their targets and/or to modulate gene expression and cellular functions. We show that FOXL2 is involved in a large number of regulatory actions essential for the maintenance of granulosa cell fate. A parallel ChIP-seq analysis showed that FOXL2 mainly binds to sites located in intergenic regions quite far from its targets. A bioinformatic analysis demonstrated that FOXL2-activated genes were enriched in peaks associated with the H3K27ac mark, whereas FOXL2-repressed genes were not, suggesting that FOXL2 can activate transcription through binding to enhancer sites. We also identified about 500 deregulated genes upon Esr2 silencing, of which one third are also targets of FOXL2. We provide evidence showing that both factors modulate, through a coherent feed-forward loop, a number of common targets. Many of the FOXL2/ESR2 targets are involved in cell motility and, consistently, granulosa cells depleted for either Foxl2 or Esr2 exhibit decreased migration, invasion and adhesion. This effect is paralleled by the depletion of their target Phactr1, involved in actin cytoskeleton dynamics. Our analysis expands the number of direct and indirect transcriptional targets of both FOXL2 and ESR2, which deserve investigation in the context of adult-type granulosa cell tumors whose molecular diagnostic hallmark is the presence of the C134W FOXL2 pathogenic variant.


Subject(s)
Estrogen Receptor beta/metabolism , Forkhead Box Protein L2/metabolism , Granulosa Cells/physiology , Animals , Cell Adhesion , Cell Line, Tumor , Cell Movement , Estrogen Receptor beta/genetics , Female , Forkhead Box Protein L2/genetics , Gene Editing , Mice
18.
Nephrol Dial Transplant ; 37(10): 1833-1843, 2022 09 22.
Article in English | MEDLINE | ID: mdl-34473308

ABSTRACT

BACKGROUND: Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the most common cause of chronic kidney disease in the first three decades of life. Variants in four Forkhead box (FOX) transcription factors have been associated with CAKUT. We hypothesized that other FOX genes, if highly expressed in developing kidneys, may also represent monogenic causes of CAKUT. METHODS: We here performed whole-exome sequencing (WES) in 541 families with CAKUT and generated four lists of CAKUT candidate genes: (A) 36 FOX genes showing high expression during renal development, (B) 4 FOX genes known to cause CAKUT to validate list A, (C) 80 genes that we identified as unique potential novel CAKUT candidate genes when performing WES in 541 CAKUT families and (D) 175 genes identified from WES as multiple potential novel CAKUT candidate genes. RESULTS: To prioritize potential novel CAKUT candidates in the FOX gene family, we overlapped 36 FOX genes (list A) with lists C and D of WES-derived CAKUT candidates. Intersection with list C identified a de novo FOXL2 in-frame deletion in a patient with eyelid abnormalities and ureteropelvic junction obstruction, and a homozygous FOXA2 missense variant in a patient with horseshoe kidney. Intersection with list D identified a heterozygous FOXA3 missense variant in a CAKUT family with multiple affected individuals. CONCLUSIONS: We hereby identified FOXL2, FOXA2 and FOXA3 as novel monogenic candidate genes of CAKUT, supporting the utility of a paralog-based approach to discover mutated genes associated with human disease.


Subject(s)
Urinary Tract , Urogenital Abnormalities , Forkhead Box Protein L2/genetics , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-gamma/genetics , Humans , Kidney/abnormalities , Urinary Tract/abnormalities , Urogenital Abnormalities/genetics , Vesico-Ureteral Reflux , Exome Sequencing
19.
Int J Gynecol Pathol ; 41(3): 289-291, 2022 May 01.
Article in English | MEDLINE | ID: mdl-34166278

ABSTRACT

While most ovarian follicle cysts are <8 cm in greatest dimension, much larger follicle cysts (up to 18.5 cm) have been reported. To our knowledge, the FOXL2 mutation status of such cases has not been documented in the literature. Here, we report the features of a 14 cm ovarian cyst with no FOXL2 mutation detected by targeted next-generation sequencing. While adult granulosa cell tumor was the chief entity in our differential diagnosis, the absence of convincing nuclear grooves, lack of architectural variability, presence of a theca layer, and absence of FOXL2 mutation were consistent with a diagnosis of ovarian follicle cyst.


Subject(s)
Granulosa Cell Tumor , Ovarian Cysts , Ovarian Neoplasms , Adult , Female , Forkhead Box Protein L2/genetics , Granulosa Cell Tumor/diagnosis , Granulosa Cell Tumor/genetics , Granulosa Cell Tumor/pathology , Granulosa Cells/pathology , Humans , Mutation , Ovarian Cysts/diagnosis , Ovarian Cysts/pathology , Ovarian Follicle/pathology , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology
20.
J Pathol ; 255(3): 225-231, 2021 11.
Article in English | MEDLINE | ID: mdl-34338304

ABSTRACT

A recurrent mutation in FOXL2 (c.402C>G; p.C134W) is present in over 95% of adult-type granulosa cell tumours (AGCTs). In contrast, various loss-of-function mutations in FOXL2 lead to the development of blepharophimosis, ptosis, and epicanthus inversus syndrome (BPES). BPES is characterised by an eyelid malformation often accompanied with primary ovarian insufficiency. Two recent studies suggest that FOXL2 C402G is a gain- or change-of-function mutation with altered DNA-binding specificity. Another study proposes that FOXL2 C402G is selectively targeted for degradation, inducing somatic haploinsufficiency, suggesting its role as a tumour suppressor. The latter study relies on data indicative of an FOXL2 allelic imbalance in AGCTs. Here we present RNA-seq data as genetic evidence that no real allelic imbalance is observed at the transcriptomic level in AGCTs. Additionally, there is no loss of protein expression in tumours harbouring the mutated allele. These data and other features of this mutation compared to other oncogenes and tumour suppressor genes argue strongly against FOXL2 being a tumour suppressor in this context. Given the likelihood that FOXL2 C402G is oncogenic, targeting the variant protein or its downstream consequences is the most viable path forward to identifying an effective treatment for this cancer. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Forkhead Box Protein L2/genetics , Granulosa Cell Tumor/genetics , Oncogenes/genetics , Female , Humans , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL